Determination of Petroleum Oil in Soil by Fluorescence Spectrophotometry with Oscillatory Extraction
-
摘要:
石油类物质是中国建设用地土壤污染风险管控的污染物之一,开展土壤中石油类物质的检测对土壤污染防治工作具有重要意义。本文采用正己烷为萃取溶剂,土壤经振荡提取后,以荧光光度法为检测手段,建立了一种绿色环保、灵敏高效的土壤石油类物质检测方法。通过对实验过程进行优化,该方法的线性相关系数r≥0.999,检出限为3mg/kg。使用10种不同类型土壤进行方法精密度和准确度验证,精密度为2.5%~9.2%,基体加标回收率为80.0%~110%。为验证方法可比性,分别使用本方法和《土壤 石油类的测定 红外分光光度法》(HJ 1051—2019)对5种不同类型土壤进行检测比对,测定结果相对偏差在5.0%~15%之间,具有较好的一致性。
Abstract:BACKGROUNDAs an important index of soil environmental quality, the determination of petroleum oil has become one of the must-test items in environmental monitoring. The gravimetric method is not suitable for the purpose of environmental monitoring because it can only be used for the determination of non-volatile substances and has low sensitivity. Gas chromatography is mainly used for the determination of C10-C40 saturated alkanes in samples. The infrared spectrometry used characteristic absorption at different wavenumber to characterize the content of petroleum substances in the samples, but the response of infrared spectrometry to aromatic hydrocarbons is not sensitive.
OBJECTIVESTo establish a simple pre-treatment efficiency, low detection limit and good reproducible method for determination of petroleum oil in soil.
METHODSUsing n-hexane as the solvent, adsorption column as the extraction method and oscillatory as the pretreatment method, petroleum oil was extracted from soil and determined by fluorescence spectrophotometry.
RESULTSUnder the optimal conditions that with 275nm as the excitation wavelength and 315nm as the emission wavelength, the extraction solvent was n-hexane and the extraction method was adsorption column, the calibration curves of petroleum oil were linear with correlation coefficients 0.999, and the detection limit was 3mg/kg. The relative standard derivations (RSDs) were from 2.5% to 9.2% and the average spiked recoveries were between 80.0% and 110%. Compared with the currently valid infrared spectrometry method (HJ 1051—2019), the results of the two methods were consistent.
CONCLUSIONSThe solvent of n-hexane has higher toxicity and stability than tetrachloroethene, and better environmental friendliness. The oscillatory extraction method is simple and easy to operate. The detection limit of this method is lower than that of infrared spectrometry (4mg/kg), and the precision and accuracy of the method is good. This method can be used as a supplement to the existing methods for the detection of petroleum in soil.
-
Keywords:
- soil /
- petroleum oil /
- oscillatory extraction /
- fluorescence spectrophotometry /
- hexane
-
-
表 1 实际样品石油类物质的测定精密度
Table 1 The precision results of petroleum oil in different actual soil samples
测定次数 实际样品石油类物质的测定结果(mg/kg) 样品1-1 样品1-2 样品1-3 样品1-4 样品1-5 样品1-6 样品2-1 样品2-2 样品2-3 样品2-4 1 32 48 3 12 12 24 <3 <3 <3 <3 2 30 43 4 13 13 23 <3 <3 <3 <3 3 35 50 3 15 11 23 <3 <3 <3 <3 4 32 47 4 12 14 22 <3 <3 <3 <3 5 35 48 4 14 12 23 <3 <3 <3 <3 6 31 44 4 14 12 22 <3 <3 <3 <3 平均值(mg/kg) 32 47 4 13 12 23 / / / / SD(mg/kg) 2.1 2.7 0.1 1.2 1.0 0.8 / / / / RSD(%) 6.6 5.7 2.5 9.2 8.3 3.5 / / / / 表 2 化工厂厂界周边土壤样品中石油类物质的准确度测定结果
Table 2 The accuracy results of petroleum oil in perimeter soil samples from the chemical plant
测定
次数样品1-1 样品1-2 样品1-3 样品1-4 样品1-5 样品1-6 样品(mg/kg) 加标样品(mg/kg) 样品(mg/kg) 加标样品(mg/kg) 样品(mg/kg) 加标样品(mg/kg) 样品(mg/kg) 加标样品(mg/kg) 样品(mg/kg) 加标样品(mg/kg) 样品(mg/kg) 加标样品(mg/kg) 1 32 79 48 149 3 13 12 25 12 30 24 76 2 30 73 43 145 4 13 13 22 13 28 23 64 3 35 90 50 140 3 13 15 25 11 30 23 70 4 32 74 47 155 4 12 12 21 14 29 22 71 5 35 85 48 150 4 12 14 25 12 27 23 76 6 31 70 44 138 4 11 14 25 12 28 22 68 平均值 32 78 47 146 4 12 13 24 12 29 23 71 加标量 50 100 10 10 20 50 回收率
(%)92.0 99.0 80.0 110.0 85.0 96.0 表 3 农用地土壤样品中石油类物质的准确度测定结果
Table 3 The accuracy results of petroleum oil in soil samples from agricultural land
测定次数 2-1 2-2 2-3 2-4 样品
(mg/kg)加标样品
(mg/kg)样品
(mg/kg)加标样品
(mg/kg)样品
(mg/kg)加标样品
(mg/kg)样品
(mg/kg)加标样品
(mg/kg)1 <3 9 <3 10 <3 10 <3 9 2 <3 9 <3 9 <3 9 <3 8 3 <3 9 <3 10 <3 9 <3 8 4 <3 8 <3 9 <3 8 <3 8 5 <3 9 <3 8 <3 10 <3 9 6 <3 8 <3 8 <3 9 <3 9 平均值 9 9 9 8 加标量 10 10 10 10 回收率(%) 90.0 90.0 90.0 80.0 表 4 采用不同硅酸镁净化方式石油类物质的测定结果
Table 4 The results of petroleum oil determined with different purification modes of magnesium silicate
测定
次数振荡吸附法
(玻璃漏斗+玻纤滤膜)吸附柱吸附法 振荡吸附法
(玻璃漏斗+玻纤滤膜)吸附柱吸附法 净化后测定值
(mg/kg)杂质
去除率(%)净化后测定值
(mg/kg)杂质
去除率(%)测定值
(mg/kg)空白加标回收率
(%)测定值
(mg/kg)空白加标回收率
(%)1 5 90.0 <3 100.0 18 90.0 20 100.0 2 6 88.0 <3 100.0 18 90.0 19 95.0 3 6 88.0 <3 100.0 18 90.0 21 105.0 4 5 90.0 <3 100.0 18 90.0 19 95.0 5 4 92.0 <3 100.0 19 95.0 19 95.0 6 5 90.0 <3 100.0 19 95.0 20 100.0 平均值 5 90.0 <3 100.0 18 90.0 20 100.0 表 5 不同硅酸镁填充高度对植物油的吸附效率
Table 5 The absorption efficiency of vegetable oil with different height of magnesium silicate extraction column
参数 100mL浓度为500mg/L的植物油溶液 硅酸镁高度(mm) 40 60 80 100 120 植物油测定浓度(mg/L) 9.83 3.32 0.00 0.00 0.00 吸附效率(%) 99.0 99.6 100.0 100.0 100.0 表 6 本文的荧光分光光度法与红外分光光度法(现行标准方法)比对结果
Table 6 Comparison of analytical results of petroleum oil determined with fluorescence spectrophotometry (this method) and infrared spectrophotometry (standard methods)
实际样品
编号红外分光光度法(mg/kg) 荧光分光光度法(mg/kg) 红外分光光度法和
荧光分光光度法
相对偏差(%)样品3-1 <4 <3 / 样品3-2 <4 <3 / 样品3-3 16 12 15 样品3-4 53 48 5.0 样品3-5 39 32 9.9 -
[1] 吕志萍,程龙飞. 石油污染土壤中石油含量对玉米的影响[J]. 油气田环境保护, 2001, 11(1): 36−37. Lyu Z P,Cheng L F. The influence on corn growth caused by petroleum concentration of soil contaminated by petroleum[J]. Environmental Protection of Oil & Gas Fields, 2001, 11(1): 36−37.
[2] 魏样. 土壤石油污染的危害及现状分析[J]. 中国资源综合利用, 2020, 38(4): 120−122. doi: 10.3969/j.issn.1008-9500.2020.04.033 Wei Y. The harm and present situation of soil oil pollution[J]. China Resources Comprehensive Utilization, 2020, 38(4): 120−122. doi: 10.3969/j.issn.1008-9500.2020.04.033
[3] 李玉芳,潘萌,顾涛,等. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578−586. Li Y F,Pan M,Gu T,et al. Exposure of mother and infants to polycyclic aromatic hydrocarbons during lactation,Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578−586.
[4] 曹小聪,吴晓晨,徐文帅,等. 水和沉积物中石油烃的分析方法及污染特征研究进展[J]. 黄靖工程技术学报, 2020, 10(5): 871−882. Cao X C,Wu X C,Xu W S,et al. Research progress of analytical methods and pollution characteristics of petroleum hydrocarbons in water and sediment[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 871−882.
[5] 刘丹青. 我国污染场地土壤石油烃环境质量标准体系的现状与趋势[J]. 中国环境监测, 2020, 36(1): 138−146. Liu D Q. Current situation and trend of petroleum hydrocarbon related standard system in contaminated site soils of China[J]. Environmental Monitoring in China, 2020, 36(1): 138−146.
[6] 安彩秀,刘淑红,史会卿,等. 一种计算环境样品中石油类总量的红外标准曲线法[J]. 岩矿测试, 2022, 41(5): 1−9. An C X,Liu S H,Shi H Q,et al. An infrared standard curve method for calculating the total amount of petroleum in environmental samples[J]. Rock and Mineral Analysis, 2022, 41(5): 1−9.
[7] 薛广海,李强,刘庆,等. 当前国内外含油污泥处理标准及石油烃检测方法的深度剖析和对比[J]. 石油化工应用, 2019, 38(1): 1−6. Xue G H,Li Q,Liu Q,et al. In-depth analysis and comparison on the standards and testing methods for oil contaminated soil of domestic and international[J]. Petrochemical Industry Application, 2019, 38(1): 1−6.
[8] 赵昌平,冯小康,朱强. 快速溶剂萃取-气相色谱法测定土壤中石油烃(C10-C40)[J]. 理化检验(化学分册), 2020, 56(7): 827−831. Zhao C P,Feng X K,Zhu Q. GC determination of petroleum hydrocarb (C10-C40) in soil with rapid solvent extraction[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2020, 56(7): 827−831.
[9] 段旭,李慧慧,杨柳晨,等. 土壤中总石油烃测定3种前处理方法的比对[J]. 福建分析测试, 2019, 28(3): 47−50. Duan X,Li H H,Yang L C,et al. Three pretreatment methods of methods of determination of total petroleum hydrocarbon in soil[J]. Fujian Analysis & Testing, 2019, 28(3): 47−50.
[10] 曹攽,胡祖国,郑存江,等. 超声萃取-气相色谱法测定土壤中石油烃[J]. 理化检验(化学分册), 2018, 54(3): 275−279. Cao B,Hu Z G,Zheng C J,et al. Determination of petroleum hydrocarbons in soil by GC combined with ultrasonic extraction[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(3): 275−279.
[11] Adeniji A O, Okoh O O, Okoh A I. Analytical methods for the determination of the distribution of total petroleum hydrocarbons in the water and sediment of aquatic systems: A review[J]. Journal of Chemistry, 2017, doi: 10.1155/2017/5178937.
[12] 吴嘉鹏,楼振纲,胡笑妍,等. 紫外法与红外法测定石油类的比对研究[J]. 中国无机分析化学, 2019, 9(6): 78−82. doi: 10.3969/j.issn.2095-1035.2019.06.017 Wu J P,Lou Z G,Hu X Y,et al. Comparison of ultraviolet and infrared spectrophotometry in the determination of petroleum[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(6): 78−82. doi: 10.3969/j.issn.2095-1035.2019.06.017
[13] 刘玉龙,黄燕高,刘菲. 气相色谱法测试土壤中分段石油烃的标准化定量方法初探[J]. 岩矿测试, 2019, 38(1): 102−111. doi: 10.15898/j.cnki.11-2131/td.201709040139 Liu Y L,Huang Y G,Liu F. Analysis of total petroleum hydrocarbon fractions in soils by gas chromatography:Standardized calibration and quantitation method[J]. Rock and Mineral Analysis, 2019, 38(1): 102−111. doi: 10.15898/j.cnki.11-2131/td.201709040139
[14] 赵江华,王鹏,黎卫亮,等. 复垦土地样品中石油类物质加速溶剂萃取-荧光分光光度法分析方法研究[J]. 岩矿测试, 2021, 40(3): 375−383. Zhang J H,Wang P,Li W L,et al. An infrared standard curve method for calculating the total amount of petroleum in environmental samples[J]. Rock and Mineral Analysis, 2021, 40(3): 375−383.
[15] Ann A,Michael R,Veronica M,et al. Long-term health effects of early life exposure to tetrachoroethylene (PCE)-contaminated drinking water:Aretrospective cohort study[J]. Environmental Health, 2015, 14(1): 36. doi: 10.1186/s12940-015-0021-z
[16] 左兆陆. 土壤石油烃类污染物荧光测量技术及应用研究[D]. 合肥: 中国科学技术大学, 2020. Zuo Z L. Application study on fluorescence measurement technology of petroleum hydrocarbon pollutants in soil[D]. Hefei: University of Science and Technology of China, 2020.
[17] 左兆陆,赵南京,孟德硕,等. 基于三维荧光光谱的土壤中石油类有机物分类识别[J]. 激光与光电子学进展, 2019, 56(22): 222601-1−222601-7. Zuo Z L,Zhao N J,Meng D S,et al. Indentification of petroleum organic matter in soil based on three-dimensional fluorescence spectroscopy[J]. Laser & Optoelectronics Progress, 2019, 56(22): 222601-1−222601-7.
[18] 魏玲. 石油产品及其污染土壤中多环芳烃的荧光光谱特征[D]. 南宁: 广西师范大学, 2010. Wei L. Characteristics of fluorescence spectra of polycyclic aromatic hydrocarbons in petroleum products and oil-contaminated soil[D]. Nanning: Guangxi Normal University, 2010.