• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

基于DGT和化学提取法研究浙西北地质高背景区土壤镉生物有效性

吴超, 孙彬彬, 成晓梦, 刘冬, 乔宇, 贺灵, 曾道明

吴超,孙彬彬,成晓梦,等. 基于DGT和化学提取法研究浙西北地质高背景区土壤镉生物有效性[J]. 岩矿测试,2023,42(4):823−838. DOI: 10.15898/j.ykcs.202211230223
引用本文: 吴超,孙彬彬,成晓梦,等. 基于DGT和化学提取法研究浙西北地质高背景区土壤镉生物有效性[J]. 岩矿测试,2023,42(4):823−838. DOI: 10.15898/j.ykcs.202211230223
WU Chao,SUN Binbin,CHENG Xiaomeng,et al. Cadmium Bioavailability Based on Diffusive Gradients in Thin Films Technique and Conventional Chemical Extraction in High Geological Background Soil Area of Northwestern Zhejiang Province, China[J]. Rock and Mineral Analysis,2023,42(4):823−838. DOI: 10.15898/j.ykcs.202211230223
Citation: WU Chao,SUN Binbin,CHENG Xiaomeng,et al. Cadmium Bioavailability Based on Diffusive Gradients in Thin Films Technique and Conventional Chemical Extraction in High Geological Background Soil Area of Northwestern Zhejiang Province, China[J]. Rock and Mineral Analysis,2023,42(4):823−838. DOI: 10.15898/j.ykcs.202211230223

基于DGT和化学提取法研究浙西北地质高背景区土壤镉生物有效性

基金项目: 中国地质科学院地球物理地球化学勘查研究所中央财政科研项目结余资金项目(JY201905);中国地质科学院地球物理地球化学勘查研究所中央级公益性科研院所基本科研业务费专项资金资助项目(AS2022P03)
详细信息
    作者简介:

    吴超,硕士,工程师,主要研究方向为生态地球化学。E-mail:wuchao@mail.cgs.gov.cn

    通讯作者:

    孙彬彬,博士,教授级高级工程师,主要研究方向为生态地球化学。E-mail:sbinbin@mail.cgs.gov.cn

  • 中图分类号: O614.24+2;S151.9+3

Cadmium Bioavailability Based on Diffusive Gradients in Thin Films Technique and Conventional Chemical Extraction in High Geological Background Soil Area of Northwestern Zhejiang Province, China

  • 摘要:

    地质高背景区相较于人类活动引起的土壤镉污染影响范围更广,在区域尺度上对生态系统和人类健康构成危害。土壤镉生物有效性是决定其生物可利用性、生物毒性的关键因素,因此探寻可行的土壤镉生物有效性评价方法对污染农用地安全利用和风险管控具有重要的理论和实际意义。DGT技术、单一提取法、连续提取法和土壤溶液法常用于测定土壤有效镉,但已有研究成果主要基于同种土地利用类型土壤的室内盆栽实验,难以代表自然污染土壤中的复杂情况。为探明各土壤重金属有效态提取技术对地质高背景区不同土地利用类型土壤Cd生物有效性评估效果,本文以浙江西北部土壤Cd高地质背景区水田土壤-水稻籽实和旱地土壤-小白菜样品为研究对象,实验应用DGT技术、单一提取法(0.01mol/L氯化钙提取)、连续提取法(七步连续提取)和土壤溶液法评价土壤中镉生物有效性。结果显示:①研究区水田和旱地土壤Cd平均含量分别为1.07mg/kg和0.73mg/kg,显著高于浙江和全国土壤平均水平,Cd的异常富集主要与浙西北地区广泛分布的黑色岩系有关。②相较于碳酸盐岩区,黑色岩系区土壤中Cd的生物有效组分占比较高,水田和旱地土壤Cd的活动系数(MF)高达59.9%和51.8%,Cd易在土壤-作物系统中发生迁移富集;③植物体内镉含量Cd-P与不同方法测定的有效镉含量均呈显著正相关,但Cd-P与DGT技术测定的有效镉含量相关性优于其他三种方法,水田土壤测得的有效Cd与水稻籽实相关关系:$ {{C}}_{\text{soln}} $>CDGT>$ {{C}}_{{\text{CaCl}}_{\text{2}}} $>$ {{C}}_{{\text{F}}_{\text{1}}\text{+}{\text{F}}_{\text{2}}\text{+}{\text{F}}_{\text{3}}} $,旱地土壤测得的有效Cd与小白菜相关关系:CDGT >$ {{C}}_{{\text{CaCl}}_{\text{2}}} $>$ {{C}}_{{\text{F}}_{\text{1}}\text{+}{\text{F}}_{\text{2}}\text{+}{\text{F}}_{\text{3}}} $>$ {{C}}_{\text{soln}} $。综合比较不同土壤有效Cd测定方法的优缺点,DGT技术可以模拟植物体对Cd的动态吸收过程,更能准确地反映土壤Cd生物有效性,预测作物Cd含量水平,这与已有研究成果一致。此外,本文研究成果表明DGT技术评价土壤Cd生物有效性,不仅适用于人为污染区,也可应用于地质高背景区。

  • X射线荧光光谱定性分析技术经过长期的应用及发展,其应用范围也越来越广泛[1-4]。目前,XRF所带的定性分析软件(SQX)可自动对扫描谱图进行搜索和匹配,包括确定峰位、背景和峰位的净强度[5-7],并从XRF特征谱线数据库中配对确定元素的谱线,这对从事XRF的分析者而言非常便利[8-10]。近年来刘岩等[11]采用XRF无标样分析法检测催化剂,测定结果的相对标准偏差小于1.3%;张红菊等[12]采用XRF无标样分析法检测轻合金铝合金中的主量元素,其测量值与认定值的相对误差低于±5%,测量结果都具有很好的可靠性和准确度。

    自然界矿物种类复杂,应用XRF半定量分析软件(SQX)分析未知样品时,由于SQX软件仅对样品中9F~92U元素进行半定量分析,而对H2O、C这些参数不能直接测定。对于烧失量(LOI)、结晶水(H2O+)含量较高的铝土矿,二氧化碳含量较高的碳酸盐矿物,硫、碳含量较高的硫化物金属矿这类高烧失量矿物样品,平衡归一化计算时对未知样品中的Al2O3、SiO2、CaO、MgO、Fe等主要元素分析结果影响较大,半定量分析数据准确度较低。这就要求XRF分析人员需要掌握未知样品的来源及基本情况,根据测定结果对各元素在样品中的结构状态进行评估,选用更为合理的校正模式,提高半定量分析的准确性[13-15]。为了解决这个问题,本文提出了一种校正模式。该校正模式根据半定量分析初步结果,采用重量法、碘量法、酸碱测定法、红外光谱法有选择性地对未知样品中的LOI、S、C、H2O+等项目进行定量分析,然后将定量分析结果输入SQX该参数的固定结果中,二次平衡归一计算得出新的半定量分析结果。应用该校正模式校正后,铝土矿、碳酸盐矿物、硫化物金属矿等高烧失量矿物的半定量分析结果的准确度得到大幅度提高。

    ZSX PrimusⅣ型顺序扫描波长色散X射线荧光光谱仪(日本理学电机工业株式会社),端窗铑靶X射线管,工作电压20~60kV,工作电流2~160mA,铍窗厚度30μm,视野光栏0.5~30mm,准直器: S2/S4,探测器: PC/SC,分光晶体:RX 25/Ge/PET/LiF200[16-19]。测量元素范围9F~92U。BP-1型压样机(丹东北方科学仪器公司)。各元素具体的测量条件见表 1

    表  1  仪器测量条件
    Table  1.  Measuring conditions of the XRF equipment
    分析元素 数据库 靶材 电流
    (kV)
    电压
    (mA)
    滤光片 衰减器 准直器 晶体 探测器 PHA
    重元素 Standard Rh 50 60 OUT 1/1 S2 LiF(200) SC 100~300
    重元素(1) Sta-Ni400 Rh 50 60 Ni-400 1/1 S2 LiF(200) SC 150~250
    Ca-Kα Standard Rh 40 75 OUT 1/1 S4 LiF(200) PC 100~300
    K-Kα Standard Rh 40 75 OUT 1/1 S2 LiF(200) PC 100~300
    Cl-Kα Standard Rh 30 100 OUT 1/1 S4 Ge PC 150~300
    S-Kα Standard Rh 30 100 OUT 1/1 S4 Ge PC 150~300
    P-Kα Standard Rh 30 100 OUT 1/1 S4 Ge PC 150~300
    Si-Kα Standard Rh 30 100 OUT 1/1 S4 PET PC 100~300
    Al-Kα Standard Rh 30 100 OUT 1/1 S4 PET PC 100~250
    Mg-Kα Standard Rh 30 100 OUT 1/1 S4 RX25 PC 100~250
    Na-Kα Standard Rh 30 100 OUT 1/1 S4 RX25 PC 100~250
    F-Kα Standard Rh 40 75 OUT 1/1 S4 RX25 PC 100~300
    下载: 导出CSV 
    | 显示表格

    XRF半定量分析可选择测定未知样品中F~U或Ti~U之间的元素,分析测试程序完成后会自动报出大于仪检出限的各元素的分析结果,这时应根据测试结果作一个初步判断是否需要进行SQX计算;如不需要,则可以直接报出测定结果;如测定结果与样品实际结构状态有较大差别,则需选用更为合适的校正模式、平衡组分或添加其他方法测试结果后进行SQX计算,以得到更为合理的测定结果。定性分析的基本流程见图 1

    图  1  定性分析基本流程
    Figure  1.  Flow chart of qualitative analysis

    为验证本文提出的半定量分析模式分析校正效果,选用国家标准物质铝土矿GBW(E)70036、碳酸盐矿物GBW07131、硫化物多金属矿GBW07166作为待测样品,在105℃下烘干2h,称取4.5±0.1g,倒入放置于平板模具上的PVC塑料环(外径40mm,内径35mm,高5mm)中,在30t压力下加压30s压制成型,编号,置于样品盒内,用X射线荧光光谱仪半定量分析方法进行测试[20-22]。仪器自动计算出各元素的含量。

    根据XRF半定量初步分析结果,按化学标准方法YS/T 575.19—2007、GB/T 3286.8—2014、GB/T 3286.7—2014、GB/T 14353.12—2010、GB/T 8151.2—2012、SN/T 3598—2013、GB/T 2469—1996、YS/T 575.18—2007选择性分析未知样品中的烧失量(LOI)、硫(S)、碳(C)、结晶水(H2O+),计算出定量结果,备用。

    将化学分析结果作为XRF半定量分析软件(SQX)中该元素的固定结果,重新进行平衡计算出新的半定量结果。

    铝土矿是一种土状矿物,化学组成为Al2O3·nH2O,含水不定,多为单水或三水矿物[23-24]。由于XRF的局限性,对于H2O、C这些未定量的参数,其含量在铝土矿中较高[25],平衡归一化计算时会对Al2O3、SiO2、Fe2O3等元素的影响较大。这时可采用烧失量校正的方法,添加烧失量(LOI)作为该样品的固定值,运行半定量分析软件(SQX)重新计算出新的结果。将GBW(E)70036作为未知样品用XRF定性分析方法进行分析,各种校正模式的计算值与认定值对照结果见表 2

    表  2  铝土矿标准物质GBW(E)70036各种校正模式计算值与认定值对比
    Table  2.  Calculated values and standard values of bauxite standard material GBW(E)70036 in various correction models
    分析元素 氧化物模式测试
    结果(%)
    添加LOI校正结果
    (%)
    H2O作平衡
    校正结果(%)
    GBW(E)70036
    认定值(%)
    氧化物模式测试结果
    相对误差(%)
    LOI校正结果
    相对误差(%)
    MgO 0.136 0.121 0.116 0.120 13.33 0.83
    Al2O3 76.94 67.51 64.46 69.74 10.32 -3.20
    SiO2 7.91 6.62 6.12 4.88 62.09 35.66
    P2O5 0.159 0.132 0.121 0.120 32.50 10.00
    SO3 0.182 0.00 0.139 0.047 - -
    K2O 1.07 0.880 0.810 0.710 50.70 23.94
    CaO 0.258 0.212 0.195 0.180 43.33 17.78
    TiO2 5.10 4.17 3.81 3.97 28.46 5.04
    Fe2O3 7.42 5.97 5.35 6.09 21.84 -1.97
    LOI * 13.70 13.74 - -
    H2O * 18.26 - - -
    注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI或H2O其中一项参数有测量结果时,另一项结果不参与校正计算;“-”表示未定值或未统计计算。
    下载: 导出CSV 
    | 显示表格

    表 2可知,GBW(E)70036以氧化物模式的测试结果与认定值误差较大,当添加LOI校正计算后,其多个元素的平均相对误差由32.8%降至12.3%,准确度大幅提高。此外,在确定未知样品是未经高温灼烧的情况下,还可以采用H2O作为平衡组分直接计算,其计算结果也与认定值较为相近。

    碳酸盐矿物中CO2的占比较高, 而CO2是SQX软件未能定量参数之一,给定性分析结果带来较大误差。为提高定性分析的准确度,可对CO2或烧失量进行定量分析[26],添加烧失量或CO2定量分析结果作为该样品的固定值,运行SQX重新计算出新的结果。将GBW07131作为未知样品用XRF定性分析方法进行分析,各种校正模式的计算值与认定值对照结果见表 3

    表  3  碳酸盐标准物质GBW07131各种校正模式计算值与认定值对比
    Table  3.  Calculated values and standard values of carbonate standard material GBW07131 in various correction models
    分析元素 氧化物模式
    测试结果(%)
    CO2平衡
    校正结果(%)
    添加LOI
    校正结果(%)
    钙镁元素以碳酸盐
    计平衡计算(%)
    GBW07131
    认定值(%)
    氧化物模式测试
    结果相对误差(%)
    LOI校正结果
    相对误差(%)
    MgO 29.73 19.57 19.18 20.4 20.14 47.62 4.77
    Al2O3 0.759 0.454 0.449 0.451 0.290 161.72 -54.83
    SiO2 2.18 1.29 1.27 1.28 1.15 89.57 -10.43
    P2O5 0.051 0.030 0.030 0.030 0.016 218.75 -87.50
    SO3 0.442 0.256 0.00 0.254 - - -
    K2O 0.292 0.161 0.160 0.160 0.160 82.50 0.00
    CaO 64.54 31.76 32.07 31.50 30.93 108.66 -3.69
    TiO2 0.045 0.018 0.0186 0.0178 0.013 246.15 -43.08
    MnO 0.038 0.015 0.016 0.011 0.012 216.67 -33.33
    Fe2O3 0.435 0.169 0.176 0.167 0.170 155.88 -3.53
    CO2 * 45.66 - - - -
    LOI * 45.67 - 45.73 - 0.13
    注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI或CO2其中一项参数有测量结果时,另一项结果不参与校正计算;“-”表示未定值或未统计计算。
    下载: 导出CSV 
    | 显示表格

    表 3可知,GBW07131以氧化物模式测试结果较认定值误差较大。当添加LOI校正计算后,其多个元素的平均相对误差由122.4%降至27.2%,准确度大幅提高。此外,采用滴加稀盐酸确定未知样品是碳酸盐矿物的情况下,可以采用CO2作为平衡组分直接计算或者将CaO、MgO换算成为CaCO3、MgCO3计算模式重新平衡计算,其结果也与认定值较为相近。

    硫化物多金属矿中的碳、硫元素含量较高,以氧化物模式对该类型样品进行半定量分析时误差较大。当采用化学法测定这类样品的烧失量时,硫化物金属矿中的硫在高温下会被空气中的氧替换,不仅会出现烧蚀减量,还会出现烧蚀增量,使得烧失量的结果是不准确的[27-28],因此不能把烧失量校作为该未知样品的固定值对测定结果进行平衡计算。这时可以采用化学法测定该未知样品中的C、S元素,作为该样品的固定值,运行半定量分析软件(SQX)重新计算出新的结果。将GBW07166作为未知样品用XRF半定量程序进行分析,各种校正模式的计算值与认定值对照结果见表 4

    表  4  硫化矿多金属矿标准物质GBW07166各种校正模式计算值与认定值对比
    Table  4.  Calculated values and standard values of sulfide polymetallic ore standard material GBW07166 in various correction models
    分析元素 氧化物模式测试
    结果(%)
    总硫、总碳固定
    平衡计算(%)
    LOI平衡计算
    (%)
    Sulfide模式
    校正结果(%)
    GBW07166
    认定值(%)
    氧化物模式测试
    结果相对误差(%)
    总硫、总碳校正
    结果相对误差(%)
    MgO 0.360 0.350 0.675 0.505 0.310 16.13 12.90
    Al2O3 1.60 1.55 3.03 2.29 1.25 28.00 24.00
    SiO2 3.34 3.50 6.26 4.86 3.78 -11.64 7.41
    S 18.43 33.80 0.00 27.75 33.80 - -
    K2O 0.306 0.433 0.387 0.484 0.320 -4.38 35.31
    CaO 2.05 2.02 2.61 3.27 1.96 4.59 3.06
    Fe 18.22 28.58 27.45 30.84 29.60 -38.45 -3.45
    Cu 15.50 28.00 30.72 28.42 24.20 -35.95 15.70
    Zn 0.025 0.057 0.049 0.055 0.057 -56.14 0.00
    C * 0.138 - - - -
    LOI * 27.04 - - - -
    注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI或C其中一项参数有测量结果时,另一项结果不参与校正计算;“-”表示未定值或未统计计算。
    下载: 导出CSV 
    | 显示表格

    表 4可知,GBW07166以氧化物模式或添加LOI校正计算结果后,测试结果较认定值误差较大,当添加全硫、全碳校正计算结果后,其多个元素的平均相对误差由27.2%降至9.5%,准确度大幅提高。此外,在没有条件测定全硫、全碳元素时,选用SQX软件中Sulfide校正模式重新平衡计算,其结果也与认定值较为相近。

    选取3件不同类型的未知样品,应用XRF半定量程序分析,根据XRF半定量初步分析结果,计算对照结果见表 5。未知样品1、2在添加烧失量(LOI)校正计算后半定量分析结果与化学法分析结果比较,多个元素的平均相对误差分别由46.2%降至18.0%和37.6%降至7.1%。未知样品3添加总硫、总碳校正计算结果后,其多个元素的平均相对误差由28.1%降至10%,准确度得到了明显提高。若与DZ/T 130—2006《地质矿产实验室测试质量管理规范》要求定量分析规范中误差允许限(Yc)相比较,除少部分项目能满足规范要求外,大部分项目还是达不到定量分析要求。但是如铝土矿中的Al2O3,碳酸盐矿物中的CaO、MgO,硫化物多金属矿中Fe、Zn、Cu、Pb等元素的相对误差均在5%以内,与DZ/T 130—2006要求较为接近。

    表  5  某未知样品各种校正模式的计算值与化学分析值对比
    Table  5.  Calculated values and chemical analysis values of various correction modes for the unknown sample
    样品编号 分析元素 氧化物模式测试
    结果(%)
    平衡校准计算
    结果(%)
    化学法测定值
    (%)
    氧化物模式测试
    结果相对误差(%)
    平衡校准计算结果
    相对误差(%)
    允许限Yc
    (%)
    Al2O3 86.97 76.11 78.01 11.49 -2.44 0.63
    SiO2 2.94 1.82 1.31 124.43 38.93 4.17
    Fe2O3 3.26 2.54 2.55 24.84 -0.46 5.11
    TiO2 4.29 3.4 3.10 38.38 9.78 4.80
    未知样品1 K2O 0.19 0.17 0.16 18.75 6.25 10.45
    CaO 0.33 0.31 0.31 6.45 0.00 9.00
    MgO 0.29 0.25 0.20 45.00 25.00 9.95
    P2O5 0.28 0.22 0.14 100.00 61.37 10.76
    LOI * 14.6 14.6 - - 2.58
    Na2O 0.76 0.71 0.781 -2.59 -8.72 7.17
    MgO 0.29 0.24 0.21 39.14 14.95 9.84
    Al2O3 0.48 0.39 0.31 54.13 26.16 9.00
    SiO2 1.15 0.93 0.83 38.66 12.45 7.05
    P2O5 1.24 1.00 0.97 28.34 2.88 6.77
    Fe2O3 1.70 1.21 1.18 44.18 2.13 6.41
    未知样品2 S 4.72 3.21 47.04 - 4.74
    CaO 1.13 0.81 0.83 36.64 -2.40 7.05
    Cr 18.49 13.09 12.89 43.46 1.53 2.75
    Ni 22.81 16.18 16 42.55 1.12 2.47
    Cu 14.53 10.31 10.33 40.62 -0.23 3.04
    Zn 3.04 2.16 2.02 43.24 5.94 5.49
    LOI * 37.00 37.00 - - -
    MgO 0.21 0.200 0.185 14.49 8.11 10.12
    Al2O3 0.53 0.472 0.427 23.87 10.61 8.34
    SiO2 2.18 1.818 1.650 32.00 10.15 5.83
    P2O5 0.02 0.024 0.028 -34.29 -13.21 14.91
    S 18.84 34.02 34.02 - - -
    K2O 0.05 0.048 0.042 15.44 13.31 13.77
    未知样品3 CaO 0.15 0.127 0.137 7.72 -7.50 10.81
    TiO2 0.03 0.031 0.026 30.98 20.78 15.18
    Fe 4.52 6.942 6.720 -32.81 3.31 3.64
    Cu 0.68 1.057 1.218 -44.37 -13.18 6.36
    Zn 32.24 50.517 48.250 -33.18 4.70 1.15
    Pb 1.58 2.505 2.646 -40.46 -5.33 5.05
    C * 1.21 1.21 - - -
    注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI有测量结果时,该项结果不参与校正计算;“-”表示未定值或未统计计算。
    下载: 导出CSV 
    | 显示表格

    实验证明采用本文提出的校正模式进行校正,分析铝土矿、碳酸盐矿物和硫化物多金属矿中多元素的平均准确度提高了2.6~4.5倍,半定量分析结果准确度大幅提高。其中,铝土矿中的Al2O3,碳酸盐矿物中的CaO、MgO,硫化物矿物中Fe、Zn、Cu、Pb等主量元素的相对误差均在5%以内,与化学法分析结果较为相近。本方法可快速、较为准确地测定铝土矿、碳酸盐矿物和硫化物矿物中多元素的含量。

    这种化学法与半定量分析软件相结合的半定量校正模式,不仅可用于铝土矿、碳酸盐矿物和硫化物矿物,还适用于烧失量较高的锰矿、磷矿等矿物的压片半定量分析[29-30]。对于硫化物矿物等多金属矿的定量全分析,因为这类矿物容易腐蚀铂坩埚而很少采用熔片制样XRF分析[31],通常采用化学分析法,但流程繁琐,本文研究方法可作为一种有效的矿石全分析的补充手段。

  • 图  1   研究区位置及采样点位示意图

    底图数据来源于多目标区域地球化学调查工作。

    Figure  1.   Location of the study area and sampling sites. The red point is sampling position, the base map shows the distribution characteristics of Cd content in soil, and the data comes from the multi-purpose regional geochemical survey.

    图  2   研究区(a)水田土壤和旱地土壤(b)Cd各形态占总量的比例

    Figure  2.   Percent distributions among various fractions of soil cadmium in (a) paddy soil and (b) dryland soil. The proportion of bioavailable components of Cd is relatively high.

    图  3   不同方法测定的土壤有效Cd含量特征

    a—单一提取法和连续提取法; b—DGT法和土壤溶液法。

    Figure  3.   Available Cd of Se determined by different methods.

    图  4   不同地区土壤Cd活动系数(MF)

    Figure  4.   Cd mobility coefficient in different areas. The proportion of bioavailable components of Cd is relatively high in the weathering soil of the black shale area, showing a high biological activity.

    表  1   研究区土壤、作物Cd含量及土壤理化性质统计

    Table  1   Statistical date of Cd concentrations in soil and crop and soil properties in the study area.

    土壤-作物系统参数Cd-SCd-PBCFpH有机质
    水田土壤-水稻籽实
    n=80)
    最小值0.180.010.0154.90.74
    最大值6.613.291.188.07.48
    平均值1.070.260.286.13.40
    标准差1.270.430.260.81.16
    变异系数(%)119167941434
    旱地土壤-小白菜
    n=20)
    最小值0.160.010.034.71.68
    最大值2.390.310.246.04.80
    平均值0.730.080.115.33.37
    标准差0.550.080.060.40.71
    变异系数(%)759956721
    浙江表层土壤背景值[17]0.07--5.7[18]2.26[18]
    全国土壤背景基准值[19]0.14--8.01.00
    注:Cd-S和Cd-P分别为土壤和作物总Cd含量,单位为mg/kg;BCF、pH值无量纲;有机质含量单位为%。
    下载: 导出CSV

    表  2   不同成因Cd污染区水稻籽实生物富集系数(BCF)

    Table  2   Bioconcentration factor (BCF) of Cd in rice from different sources.

    水稻采样地区Cd污染源Cd含量
    最小值
    (mg/kg)
    Cd含量
    最大值
    (mg/kg)
    Cd含量
    平均值
    (mg/kg)
    本研究区 黑色岩系 0.015 1.18 0.28
    浙江安吉[3] 黑色岩系 - - 0.36
    广西横县[4] 碳酸盐岩 0.003 0.735 0.076
    广西西南部[25] 碳酸盐岩 0.001 0.174 0.038
    长三角工业区[26] 人为活动 0.01 0.94 0.25
    珠三角工业区[27] 人为活动 0.20 0.46 0.35
    下载: 导出CSV

    表  3   土壤有效Cd与作物Cd含量线性相关系数

    Table  3   Relationships between available Cd in soil and Cd concentration in crops.

    项目nCDGT${{C} }_{ {\text{CaCl} }_{\text{2} } }$${{C} }_{ {\text{F} }_{\text{1} }\text{+}{\text{F} }_{\text{2} }\text{+}{\text{F} }_{\text{3} } }$Csoln
    Cd-P(水稻籽实)800.622**0.583**0.577**0.634**
    Cd-P(小白菜)200.887**0.795**0.717**0.635**
    注:Cd-P为作物Cd含量;“**”表示P<0.01水平(双侧)极显著相关。
    下载: 导出CSV

    表  4   土壤有效Cd与土壤pH值和有机质(OM)线性相关系数

    Table  4   Relationships between available Cd, pH value and organic matter (OM) in soil.

    土壤类型项目CDGT$ {{C}}_{{\text{CaCl}}_{\text{2}}} $$ {{C}}_{{\text{F}}_{\text{1}}\text{+}{\text{F}}_{\text{2}}\text{+}{\text{F}}_{\text{3}}} $Csoln
    水田土壤
    n=80)
    pH −0.678** 0.154 −0.053 −0.249**
    有机质 0.032 0.314** 0.284 −0.126
    旱地土壤
    n=20)
    pH −0.400 0.096 −0.186 −0.515*
    有机质 0.241 0.362 0.242 0.160
    注:“**”表示P<0.01水平(双侧)极显著相关;“*”表示P<0.05水平(双侧)极显著相关。
    下载: 导出CSV
  • [1] 杨杰,董静,宋洲,等. 鄂西铜铅锌尾矿库周边农田土壤-水稻重金属污染状况及风险评价[J]. 岩矿测试, 2022, 41(5): 867−879.

    Yang J,Dong J,Song Z,et al. Heavy metal pollution characteristics and risk assessment of soil and rice in farmland around the copper-lead-zinc tailing,western Hubei Province[J]. Rock and Mineral Analysis, 2022, 41(5): 867−879.

    [2] 马生明,朱立新,汤丽玲,等. 城镇周边和江河沿岸土壤中Hg和Cd存在形式解析与生态风险评估[J]. 岩矿测试, 2020, 39(2): 225−234.

    Ma S M,Zhu L X,Tang L L,et al. The occurrences of Hg and Cd in soils around cities and rivers and their ecological risk assessment[J]. Rock and Mineral Analysis, 2020, 39(2): 225−234.

    [3] 唐豆豆,袁旭音,汪宜敏,等. 地质高背景农田土壤中水稻对重金属的富集特征及风险预测[J]. 农业环境科学学报, 2018, 37(1): 18−26.

    Tang D D,Yuan X Y,Wang Y M. Enrichment characteristics and risk prediction of heavy metals for rice grains growing in paddy soils with a high geological background[J]. Journal of Agro-Environment Science, 2018, 37(1): 18−26.

    [4] 马宏宏,彭敏,刘飞,等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1): 449−459.

    Ma H H,Peng M,Liu F,et al. Bioavailability,translocation,and accumulation characteristics of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi,China[J]. Environmental Science, 2020, 41(1): 449−459.

    [5] 赵万伏,宋垠先,管冬兴,等. 典型黑色岩系分布区土壤重金属污染与生物有效性研究[J]. 农业环境科学学报, 2018, 37(7): 1332−1341.

    Zhao W F,Song Y X,Guan D X,et al. Pollution status and bioavailability of heavy metals in soils of a typical black shale area[J]. Journal of Agro-Environment Science, 2018, 37(7): 1332−1341.

    [6] 成晓梦,吴超,孙彬彬,等. 浙江中部典型黑色岩系分布区土壤-作物富硒特征与重金属风险评价[J]. 现代地质, 2021, 35(2): 1−9.

    Cheng X M,Wu C,Sun B B,et al. Selenium-rich characteristics and risk assessment of heavy metals in soil and crop in a typical black shale area of the central part of Zhejiang Province,China[J]. Geoscience, 2021, 35(2): 1−9.

    [7] 程志中, 谢学锦, 冯济舟, 等. 中国南方地区地球化学图集[M]. 北京: 地质出版社, 2015: 47.

    Cheng Z Z, Xie X J, Feng J Z, et al. Geochemical atlas of Southern China[M]. Beijing: Geological Publishing House, 2015: 47.

    [8] 宋明义. 浙西地区下寒武统黑色岩系中硒与重金属的表生地球化学及环境效应[D]. 合肥: 合肥工业大学, 2009: 23-24.

    Song M Y. Epigenetic geochemistry and environmental effects of selenium and heavy metals in the lower Cambrian black rock series in Western Zhejiang[D]. Hefei: Hefei Polytechnic University, 2009: 23-24.

    [9] 李财,任明漪,石丹,等. 薄膜扩散梯度(DGT)——技术进展及展望[J]. 农业环境科学学报, 2018, 37(3): 2613−2628.

    Li C,Ren M Y,Shi D,et al. Diffusive gradient in thin films (DGT):Technological progress and prospects[J]. Journal of Agro-Environment Science, 2018, 37(3): 2613−2628.

    [10] 魏天娇,管冬兴,方文,等. 梯度扩散薄膜技术(DGT)的理论及其在环境中的应用 Ⅲ:植物有效性评价的理论基础与应用潜力[J]. 农业环境科学学报, 2018, 37(5): 841−849.

    Wei T J,Guan D X,Fang W,et al. Theory and application of diffusive gradients in thin-films (DGT) in the environment Ⅲ:Theoretical basis and application potential in phytoavailability assessment[J]. Journal of Agro-Environment Science, 2018, 37(5): 841−849.

    [11]

    Williams P N,Zhang H,Davison W,et al. Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils[J]. Environmental Science & Technology, 2011, 45: 6080−6087.

    [12] 陈莹,刘汉燚,刘娜,等. 农地土壤重金属Pb和Cd有效性测定方法的筛选与评价[J]. 环境科学, 2021, 42(7): 3494−3506.

    Chen Y,Liu H Y,Liu N,et al. Screening and evaluation of methods for determining available lead (Pb) and cadmium (Cd) in farmland soil[J]. Environmental Science, 2021, 42(7): 3494−3506.

    [13] 高慧,宋静,吕明超,等. DGT和化学提取法评价贵州赫章土法炼锌区污染土壤中镉的植物吸收有效性[J]. 农业环境科学学报, 2017, 36(10): 1992−1999.

    Gao H,Song J,Lyu M C,et al. Evaluation of cadmium phytoavailability in soils from a zinc smelting area in Hezhang County,Guizhou Province,using diffusive gradients in thin films and conventional chemical extractions[J]. Journal of Agro-Environment Science, 2017, 36(10): 1992−1999.

    [14] 宋宁宁,王芳丽,沈跃,等. 梯度薄膜扩散技术(DGT)与传统化学方法评估黑麦草吸收Cd的对比[J]. 环境化学, 2012, 31(12): 1960−1967.

    Song N N,Wang F L,Shen Y,et al. Comparison of the method of diffusive gradients in thin films with traditional chemical extraction techniques for evaluating cadmium bioavailability in ryegrass[J]. Environmental Chemistry, 2012, 31(12): 1960−1967.

    [15] 吴超,孙彬彬,陈海杰,等. 应用梯度扩散薄膜技术评价天然富硒土壤中硒的生物有效性[J]. 岩矿测试, 2022, 41(1): 66−79. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201007

    Wu C,Sun B B,Chen H J,et al. Assessment of selenium bioavailability in natural selenium-rich soil based on diffusive gradients in thin films[J]. Rock and Mineral Analysis, 2022, 41(1): 66−79. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201007

    [16]

    Houba V J G,Temminghoff E J M,Gaikhorst G A,et al. Soil analysis procedures using 0.01M calcium chloride as extraction reagent[J]. Communications in Soil Science and Plant Analysis, 2000, 31(9/10): 1299−1396.

    [17] 董岩翔, 郑文, 周建华, 等. 浙江省土壤地球化学背景值[M]. 北京: 地质出版社, 2007: 130−131.

    Dong Y X, Deng W, Zhou J H, et al. Soil geochemical background values in Zhejiang Province[M]. Beijing: Geological Publishing House, 2007: 130−131.

    [18] 侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数(下册)[M]. 北京: 地质出版社, 2020: 2620−2621.

    Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical parameters in China (Part Ⅱ)[M]. Beijing: Geological Publishing House, 2020: 2620−2621.

    [19] 王学求,周建,徐善法,等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469−1480.

    Wang X Q,Zhou J,Xu S F,et al. China soil geochemical baselines networks:Data characteristics[J]. Geology in China, 2016, 43(5): 1469−1480.

    [20]

    Lund L J,Betty E E,Page A L,et al. Occurrence of naturally high cadmium levels in soils and its accumulation by vegetation[J]. Journal of Environmental Quality, 1981, 10(4): 551−556.

    [21]

    Park M,Chon H T,Marton L. Mobility and accumulation of selenium and its relationship with other heavy metals in the system rocks/soils-crops in areas covered by black shale in Korea[J]. Journal of Geochemical Exploration, 2010, 107(2): 161−168. doi: 10.1016/j.gexplo.2010.09.003

    [22] 刘意章,肖唐付,熊燕,等. 西南高镉地质背景区农田土壤与农作物的重金属富集特征[J]. 环境科学, 2019, 40(6): 2877−2884.

    Liu Y Z,Xiao T F,Xiong Y,et al. Accumulation of heavy metals in agricultural soils and crops from an area with high geochemical background of cadmium,Southwestern China[J]. Environmental Science, 2019, 40(6): 2877−2884.

    [23]

    Han T,Fan S F,Zhu X Q,et al. Submarine hydrothermal contribution for extreme element accumulation during the early Cambrian,South China[J]. Ore Geology Reviews, 2017, 86: 297−308. doi: 10.1016/j.oregeorev.2017.02.030

    [24]

    Alamgir M. The effects of soil properties to the extent of soil contamination with metals[A]//Hasegawa H, Rahman I M M, Rahman M A. Environmental remediation technologies for metal-contaminated soils[M]. Tokyo: Springer, 2016: 1−19.

    [25] 宋波,肖乃川,马丽钧,等. 基于DGT技术的广西碳酸盐岩区稻米镉含量主控因素[J]. 环境科学, 2022, 43(1): 463−471.

    Song B,Xiao N C,Ma L J,et al. Main control factors of cadmium content in rice in carbonate rock region of Guangxi based on DGT technique[J]. Environmental Science, 2022, 43(1): 463−471.

    [26]

    Chen H Y,Yuan X Y,Li T Y,et al. Characteristics of heavy metal transfer and their influencing factors in different soil-crop systems of the industrialization region,China[J]. Ecotoxicology & Environmental Safety, 2016, 126(2): 193−201.

    [27] 倪卫东,朱凰㮠,冯先翠,等. 东莞Cd轻度污染土壤种植水稻安全风险评估[J]. 安徽农业科学, 2022, 50(10): 41−45.

    Ni W D,Zhu F R,Feng X C,et al. Safety risk assessment of rice planting on Cd slightly polluted soil in Dongguan[J]. Journal of Anhui Agricultural Sciences, 2022, 50(10): 41−45.

    [28] 白宇明,李永利,周文辉,等. 典型工业城市土壤重金属元素形态特征及生态风险评估[J]. 岩矿测试, 2022, 41(4): 632−641.

    Bai Y M,Li Y L,Zhou W H,et al. Speciation characteristics and ecological risk assessment of heavy metal elements in soils of typical industrial city[J]. Rock and Mineral Analysis, 2022, 41(4): 632−641.

    [29] 陈静,孙琴,姚羽,等. DGT和传统化学法比较研究复合污染土壤中Cd的生物有效性[J]. 环境科学研究, 2014, 27(10): 1172−1179.

    Chen J,Sun Q,Yao Y,et al. Comparison of DGT technique with traditional method for evaluating cadmium bioavailability in soils with combined pollution[J]. Research of Environmental Sciences, 2014, 27(10): 1172−1179.

    [30] 姚羽,孙琴,丁士明,等. 基于薄膜扩散梯度技术的复合污染土壤镉的生物有效性研究[J]. 农业环境科学学报, 2014, 33(7): 1279−1298.

    Yao Y,Sun Q,Ding S M,et al. Diffusive gradients in thin films (DGT) technique for evaluation of cadmium bioavailability in heavy metal Co-polluted soils[J]. Journal of Agro-Environment Science, 2014, 33(7): 1279−1298.

    [31] 刘小莲,杜平,陈娟,等. 基于梯度扩散薄膜技术评估稻田土壤中镉的生物有效性[J]. 农业环境科学学报, 2017, 36(12): 2429−2437.

    Liu X L,Du P,Chen J,et al. Evaluation of cadmium bioavailability via diffusive gradients in thin film technology for agricultural soils[J]. Journal of Agro-Environment Science, 2017, 36(12): 2429−2437.

    [32]

    Davison W,Zhang H. Progress in understanding the use of diffusive gradients in thin films (DGT)-back to basics[J]. Environment Chemistry, 2012, 9(1): 1−13. doi: 10.1071/EN11084

    [33]

    Tian Y,Wang X,Luo J,et al. Evaluation of holistic approaches to predicting the concentrations of metals in field cultivated rice[J]. Environmental Science & Technology, 2008, 42(20): 7649−7654.

    [34]

    Menzies N W,Donn M J,Kopittke P M,et al. Evaluation of extractants for estimation of the phytoavailable trace metals in soils[J]. Environmental Pollution, 2007, 14(5): 121−130.

    [35] 周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 31(3): 319−336.

    Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 31(3): 319−336.

    [36] 熊英,王亚平,韩张雄,等. 全国土壤污染状况详查重金属元素可提取态提取试剂的选择[J]. 岩矿测试, 2022, 41(3): 384−393.

    Xiong Y,Wang Y P,Han Z X,et al. Screening of extractable reagents for heavy metal elements in the detailed survey of soil pollution in China[J]. Rock and Mineral Analysis, 2022, 41(3): 384−393.

    [37] 周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014, 38(6): 1097−1106.

    Zhou G H. Recent progress in the study of heavy metal bioavailability in soil[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1097−1106.

    [38] 戴高乐,侯青叶,杨忠芳,等. 洞庭湖平原土壤铅活动性影响因素研究[J]. 现代地质, 2019, 33(4): 783−793.

    Dai G L,Hou Q Y,Yang Z F,et al. Factors affecting mobility of lead in the soils of the Dongting Lake Plain,China[J]. Geoscience, 2019, 33(4): 783−793.

    [39] 夏伟,吴冬妹,袁知洋. 土壤-农作物系统中重金属元素迁移转化规律研究——以湖北宣恩县为例[J]. 资源环境与工程, 2018, 32(4): 563−568.

    Xia W,Wu D M,Yuan Z Y. Study on the migration and transformation law of heavy metals in soil-crop system[J]. Resources Environment & Engineering, 2018, 32(4): 563−568.

    [40] 邓帅, 段佳辉, 宁墨奂, 等. 典型黑色岩系地质高背景区土壤和农产品重金属富集特征与污染风险[J]. 环境科学, 2023, 44(4): 2234-2242.

    Deng S, Duan J H, Ning M H, et al. Accumulation and pollution risks of heavy metals in soils and agricultural products from a typical black shale region with high geological background[J]. Environmental Science, 2023, 44(4): 2234-2242.

    [41] 马宏宏,彭敏,郭飞,等. 广西典型岩溶区农田土壤-作物系统Cd迁移富集影响因素[J]. 环境科学, 2021, 42(3): 1514−1522.

    Ma H H,Peng M,Guo F,et al. Factors affecting the translocation and accumulation of cadmium in a soil-crop system in a typical karst area of Guangxi Province,China[J]. Environmental Science, 2021, 42(3): 1514−1522.

    [42]

    Luo J,Zhang H,Santner J,et al. Performance characteristics of diffusive gradients in thin films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(Ⅴ),selenium(Ⅵ),vanadium(Ⅴ),and antimony(Ⅴ)[J]. Analytical Chemistry, 2010, 82(21): 8903−8909. doi: 10.1021/ac101676w

    [43]

    Frohne T,Rinklebe J. Biogeochemical fractions of mercury in soil profiles of two different floodplain ecosystems in Germany[J]. Water Air & Soil Pollution, 2013, 224(6): 1591.

    [44] 余贵芬,蒋新,孙磊,等. 有机物质对土壤镉有效性的影响研究综述[J]. 生态学报, 2002, 22(5): 770−776.

    Yu G F,Jiang X,Sun L,et al. A review for effect of organic substances on the availability of cadmium in soils[J]. Acta Ecologica Sinica, 2002, 22(5): 770−776.

  • 期刊类型引用(5)

    1. 刘畅,胡骏翔,苑芷茜. 应用PXRF与ICP-OES法测定土壤中锰的比对研究. 环境科学与管理. 2023(07): 115-119 . 百度学术
    2. 田戈,刘卫,郭颖超,马春红,张文宇,谷周雷. 恒温振荡浸提-电感耦合等离子体发射光谱法测定土壤中的交换性锰. 中国土壤与肥料. 2023(08): 243-248 . 百度学术
    3. 杨晓红,陈丽琼,刘婉秋. X射线荧光光谱法在环境监测中的发展与应用. 理化检验-化学分册. 2022(07): 861-868 . 百度学术
    4. 徐冬梅,陈晋,张敏. WDXRF法测定污染土壤和沉积物中金属元素. 环境监测管理与技术. 2022(06): 52-55+68 . 百度学术
    5. 刘宏,付淑惠,李海霞,靳晧琛,余恒. X射线荧光光谱仪滤光片故障解决思路探讨. 四川环境. 2022(06): 254-259 . 百度学术

    其他类型引用(2)

图(4)  /  表(4)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  95
  • PDF下载量:  113
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-11-22
  • 修回日期:  2023-01-15
  • 录用日期:  2023-03-29
  • 网络出版日期:  2023-05-29
  • 刊出日期:  2023-08-30

目录

/

返回文章
返回