• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

高效液相色谱-电感耦合等离子体质谱法分析研究西兰花中硒形态

李乾玉, 姚晓慧, 刘丽萍, 陈绍占, 刘洋, 何洪巨

李乾玉, 姚晓慧, 刘丽萍, 陈绍占, 刘洋, 何洪巨. 高效液相色谱-电感耦合等离子体质谱法分析研究西兰花中硒形态[J]. 岩矿测试, 2023, 42(3): 523-535. DOI: 10.15898/j.ykcs.202209190176
引用本文: 李乾玉, 姚晓慧, 刘丽萍, 陈绍占, 刘洋, 何洪巨. 高效液相色谱-电感耦合等离子体质谱法分析研究西兰花中硒形态[J]. 岩矿测试, 2023, 42(3): 523-535. DOI: 10.15898/j.ykcs.202209190176
LI Qianyu, YAO Xiaohui, LIU Liping, CHEN Shaozhan, LIU Yang, HE Hongju. Selenium Speciation in Broccoli by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(3): 523-535. DOI: 10.15898/j.ykcs.202209190176
Citation: LI Qianyu, YAO Xiaohui, LIU Liping, CHEN Shaozhan, LIU Yang, HE Hongju. Selenium Speciation in Broccoli by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(3): 523-535. DOI: 10.15898/j.ykcs.202209190176

高效液相色谱-电感耦合等离子体质谱法分析研究西兰花中硒形态

基金项目: 

中国富硒产业研究院富硒专项“236”计划 2019ZKG-4-02

现代农业产业技术体系北京市创新团队建设专项 BAIC01-2022

详细信息
    作者简介:

    李乾玉,硕士研究生,主要研究方向是与营养相关的元素分析。E-mail: liqianyu0429@163.com

    通讯作者:

    刘丽萍,教授,主要从事与健康相关的有害物质及营养成分分析研究。E-mail: llp9312@163.com

  • 中图分类号: P618.76;O657.63

Selenium Speciation in Broccoli by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry

  • 摘要:

    硒是一种典型的“双功能”元素,摄入不足或摄入过量均会对人体健康产生不利影响,硒的生物活性不仅取决于硒含量,还与硒的化学形态密切相关,因此对食品中不同硒形态进行分析研究具有重要的意义。本文采用高效液相色谱-电感耦合等离子体质谱(HPLC-ICP/MS)联用技术分析研究了市售西兰花中硒酸根[Se(Ⅵ)]、亚硒酸根[Se(Ⅳ)]、硒代胱氨酸(SeCys2)、甲基硒代半胱氨酸(MeSeCys)、硒代蛋氨酸(SeMet)。以蛋白酶XIV和Tris-HCl缓冲溶液超声提取西兰花中硒形态,采用C18反相色谱柱为分析柱,10mmol/L柠檬酸和5mmol/L己烷磺酸钠(pH=4.0,含1%甲醇)为流动相,等度洗脱,8min内可实现硒形态的有效分离测定,方法线性范围为0.3~100.0μg/L,线性相关系数(r)均大于0.999,Se(Ⅵ)、Se(Ⅳ)、MeSeCys、SeMet的检出限在1.2~6.0μg/kg(以Se计)范围内。对西兰花样品进行低、中、高三个浓度水平的加标回收试验,加标回收率为81.9%~105.3%,相对标准偏差(RSD)均小于5%。采用本方法分析欧盟有证标准物质——小麦粉(ERM® BC210a)中SeMet的测定值在其标准值范围内。实验结果表明建立的硒形态分析方法适用于西兰花中Se(Ⅵ)、Se(Ⅳ)、MeSeCys、SeMet的测定。检出的11个不同地区市售西兰花样品中硒形态主要为MeSeCys,含量在0.004~0.043mg/kg(以Se计)之间。对方法研究过程中发现的SeCys2稳定性差和不同类型西兰花中Se(Ⅳ)加标回收率差异较大的问题进行分析探讨,通过改变蛋白酶XIV的用量考察了SeCys2的稳定性,结合对西兰花样品基质的分析研究,发现SeCys2稳定性与蛋白酶XIV含量和西兰花基质有关;根据对3种不同类型的西兰花样品中Se(Ⅳ)加标回收试验结果及相关文献报道,推测样品中存在的大量酚类物质会影响Se(Ⅳ)的分析测定。

    要点

    (1) 采用蛋白酶XIV和Tris-HCl缓冲溶液超声提取西兰花中硒形态。

    (2) 采用C18反相色谱柱为分析柱,柠檬酸和己烷磺酸钠为流动相,HPLC-ICP/MS分析西兰花中硒形态。

    (3) 西兰花样品中硒形态主要为甲基硒代半胱氨酸(MeSeCys)。

    (4) SeCys2稳定性与蛋白酶XIV含量和西兰花基质有关。

    HIGHLIGHTS

    (1) Selenium speciation in broccoli was extracted by proteinase XIV and Tris-HCl buffer solution.

    (2) HPLC-ICP-MS equipped with ZORBAX SB-Aq C18 reversed-phase column with 10mmol/L citric acid and 5mmol/L sodium hexane-sulfonate as mobile phase was applied to analyze the selenium speciation in broccoli.

    (3) Methylselenocysteine is the main selenium speciation in broccoli.

    (4) The stability of the SeCys2 standard solution is influenced by the proteinase XIV content and the sample matrix.

  • 苯胺是染料工业中最重要的中间体,在橡胶、塑料等行业均有应用1;吡啶和硝基苯则常用于染料等化工产品生产2-4。吡啶、苯胺和硝基苯具有高水溶性、毒性和难降解等特点3-7,被世界卫生组织国际癌症研究机构列入2A类或2B类致癌物清单。现有研究表明,环境水体中存在吡啶检出(0.175~1.62mg/L8-9),制药厂外排废水中吡啶浓度高达75.05mg/L10,苯胺、染料生产等化工废水和印染工业废水中检出苯胺(0.19~0.671mg/L)和(或)硝基苯(0.72~0.87µg/L)11-14。含有机污染物的废水和污水排放,使地表水和地下水受到苯胺和硝基苯污染的威胁15-16。开展同时检测水体,尤其是含有苯胺等具有致癌毒性的含氮有机污染物的印染废水中吡啶、苯胺和硝基苯方法的研究,对保障工业外排水质安全来说十分必要。

    吡啶、苯胺和硝基苯具有较强的极性和较低的沸点(115~212℃),根据其沸点大小可划分至挥发性有机物范畴。检测苯胺和硝基苯样品的标准方法是采用直接进样法、液液萃取法和固相萃取法等样品前处理方法,对应行业标准为《水质 硝基苯类化合物的测定 液液萃取/固相萃取-气相色谱法》(HJ 648—2013)、《水质 硝基苯类化合物的测定 气相色谱-质谱法》(HJ 716—2014)、《水质 苯胺类化合物的测定 气相色谱-质谱法》(HJ 822—2017)和《水质 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1048—2019)。直接进样法往往适用于干净水体;液液萃取法和固相萃取法涉及不少有机试剂的大量使用,在对分析人员健康存在损害的同时,对环境造成了二次污染。而吹脱捕集法17、顶空法18和顶空固相微萃取法19-20等样品前处理方法均可用于液体样品中挥发性有机物检测。吹脱捕集法和固相微萃取法存在吸附和解吸附环节,用于极性挥发性有机物检测时易出现明显拖尾的色谱峰;顶空固相微萃取法同时需要昂贵、易损坏的微萃取柱耗材。水质中吡啶的行业标准检测方法采用了顶空法——《水质 吡啶的测定 顶空/气相色谱法》(HJ 1072—2019),该方法更为简便快捷,现有不少文献采用顶空法检测水质中吡啶81021-26、苯胺1327和硝基苯28-30

    可见,顶空法用于吡啶、苯胺和硝基苯的同时检测,具有可行性,相关检测方法的开发,有利于提高检测机构效率。顶空法用于极性有机物检测,需要配合降低样品中目标物溶解浓度的措施(例如调节样品pH值、添加无机盐和有机试剂,以及提高样品平衡温度等),以提高方法灵敏度。本文开发了同时检测印染废水中吡啶、苯胺和硝基苯的顶空/气相色谱-质谱法(HS/GC-MS),优化了样品前处理参数,包括样品中碳酸钠和甲醇的加入量,以及样品加热平衡温度和平衡时间等。吡啶、苯胺和硝基苯同时检测方法的开发,在实际样品分析中测定结果准确可靠、实用性较强,有助于提高检测效率。研究成果对于实现印染废水中3种有机污染物的同时监控和保护环境具有重要现实意义,同时可为标准检测方法的制修订提供参考。

    气相色谱-质谱联用仪(GC-MS,ISQ7000型,美国ThermoFisher Scientific公司),静态顶空仪(TriPlus 500型,美国ThermoFisher Scientific公司)。

    吡啶标准储备溶液:浓度为4995mg/L,购自美国AccuStandard公司;苯胺标准储备溶液:浓度为5052mg/L,购自美国AccuStandard公司;硝基苯标准储备溶液:浓度为4996mg/L,购自美国AccuStandard公司。

    甲醇:HPLC级,购自美国J.T.Baker公司。碳酸钠:AR级,购自广东光华科技股份有限公司。纯水:某品牌市售矿泉水。

    硝基苯标准中间溶液:浓度为500mg/L,移取4996mg/L硝基苯标准储备溶液150µL至2mL棕色样品瓶中,再加入1350µL甲醇,盖紧后混匀。

    混合标准使用液1的配制:吡啶、苯胺和硝基苯浓度分别为1000、1000和100mg/L,分别移取200.2、198.0和200.0µL的4995mg/L吡啶标准储备溶液、5052mg/L苯胺标准储备溶液和500mg/L硝基苯标准中间溶液至2mL棕色样品瓶中,再加入401.8µL甲醇,盖紧后混匀。混合标准使用液1用于样品中碳酸钠和甲醇添加量、样品平衡温度的顶空法参数优化试验,每10.0mL实验室空白中加入10.0µL混合标准使用液1。

    混合标准中间液的配制:吡啶、苯胺和硝基苯浓度分别为1000、1000和500mg/L,分别移取200.2、198.0和100.1µL的4995mg/L吡啶标准储备溶液、5052mg/L苯胺标准储备溶液和4996mg/L硝基苯标准储备溶液至2mL棕色样品瓶中,再加入501.7µL甲醇,盖紧后混匀。

    混合标准使用液2的配制:吡啶、苯胺和硝基苯浓度分别为100、100和50.0mg/L,移取150µL混合标准中间液至2mL棕色样品瓶中,再加入1350µL甲醇,盖紧后混匀。混合标准使用液2用于样品平衡时间的顶空法参数优化试验,每10.0mL实验室空白中加入10.0µL混合标准使用液2;混合标准使用液 2参照上述配制步骤稀释10倍后得到混合标准使用液 3。混合标准使用液 2和混合标准使用液 3 用于校准曲线各浓度点的配制。

    上述所有标准溶液存放于−10℃冰箱。

    印染废水采自广东汕头市潮阳区纺织印染环保综合处理中心和汕头市潮南区纺织产业园区污水处理厂排放印染废水(分别简称“潮阳厂印染废水”和“潮南厂印染废水”),每个点位采集一瓶1000mL的印染废水样品,不加固定剂。采集样品时,应使样品在样品瓶中溢流且不留液上空间。样品在检测前,于4℃以下冷藏、密封、避光储存。样品检测时,同批次测定8个纯水制备的实验室空白样品。

    在20mL螺口顶空瓶内加入4.0g碳酸钠和总体积为50µL的甲醇,再添加10.0mL纯水或印染废水样品,盖紧螺盖后放入样品架,设置样品检测序列后即刻启动检测。

    静态顶空条件:平衡温度80.0℃,平衡时间60min,瓶压200kPa,瓶压力平衡时间1.0min;定量环和样品管路温度均为105℃,定量环压力185kPa,定量环平衡时间1.0min,进样时间2.0min。

    GC-MS条件:进样口温度250℃;载气为高纯氦气,流量1.00mL/min,不分流进样;色谱柱:型号TG-624,规格60m×0.25mm×1.40μm;程序升温:40℃保持2min,以10℃/min的速率升至120℃,再以15℃/min的速率升至240℃,保留7min;MS接口温度280℃,离子源温度300℃。

    吡啶、苯胺和硝基苯的色谱图见图1。吡啶保留时间为13.27min,定量离子m/z 79,定性离子m/z 52;苯胺保留时间为17.60min,定量离子m/z 93,定性离子m/z 66和m/z 65;硝基苯保留时间为19.29min,定量离子m/z 77,定性离子m/z 65和m/z 123。

    图  1  三种极性挥发性有机物的色谱图
    1—吡啶;2—苯胺;3—硝基苯。1—pyridine; 2—aniline; 3—nitrobenzene.
    Figure  1.  Chromatograms of 3 kinds of polar volatile organic compounds.

    由于印染废水的基体较为复杂,样品采集及保存时,选用玻璃材质的样品瓶。优化实验中样品重复分析3次或4次,印染废水及其加标样品的重复分析次数均为6次。以市售矿泉水作为配制实验室空白、校准曲线浓度梯度的纯水,3个批次实验室空白为6~8次重复,经检验3个批次的实验室空白中并无目标化合物检出。

    每批次样品,需同批次检测实验室空白加标样品,吡啶、苯胺和硝基苯的加标回收率分别控制在85%~115%、80%~115%和70%~115%范围内,实际样品的加标回收率均控制在60%~120%范围内,加标样品的RSD控制在15%以内。如果上述质量控制要求无法满足,需对仪器进行检查(例如气路漏气和堵塞等)及维护(例如GC-MS仪器的进样口和离子源等)。

    顶空法主要利用待检测有机物的挥发性,在特定的样品前处理方法条件下,有机物在样品瓶内的气液两相间的浓度达到相对的动态平衡时,采集气相空间的气体进行检测。因此,影响有机物在样品瓶内气液两相间浓度平衡的样品前处理方法参数(例如样品物理性质、仪器参数)均可改变检测方法的灵敏度和精密度,包括样品中盐类、有机试剂含量,以及样品的平衡温度和平衡时间等。以下内容将通过比较试验,筛选出合适的样品前处理方法参数。

    在水质有机物检测中适当添加盐类,可提高待检测有机物在气液两相中的分配系数,提高分析灵敏度。吴鹏等13比较了添加相同质量氢氧化钠、碳酸钠和氯化钠对苯胺灵敏度的影响,发现添加氢氧化钠的效果最好,分别是碳酸钠和氯化钠的2.6倍和25倍。然而,氢氧化钠固体很容易吸潮,且一般为块状,在称取过程中不易准确称取。预实验同时发现,使用饱和氯化钠配制的20.0µg/L实验室空白加标样品,当高浓度氢氧化钠溶液(20mol/L)的加入量在0.30~2.00mL范围内递增时,吡啶的仪器响应值呈线性递增,并未发现增加趋势变缓的迹象。可见,高浓度氢氧化钠溶液的添加量对吡啶的仪器响应值影响非常大,在实际样品检测时,还需加入不少于3g的氯化钠,严重影响20mL顶空瓶内样品总体积,本文作者不建议氢氧化钠溶液作为主要的辅助试剂用于调节水样的盐度和碱性。

    其他文献指出适量增加氯化钠或碳酸钠等盐的加入量可提高吡啶1021-26、苯胺27和硝基苯2029-30的仪器响应值。相比氯化钠,碳酸钠的加入同时起到增加样品碱性的效果,对于强极性的吡啶和苯胺,因其电离常数(吡啶:8.83,苯胺:9.38)较大,盐度和碱性升高均有助于提高检测方法的灵敏度1320-2123。例如,碳酸钠的添加量在4.0g21或5.0g23以内不断增加时,有利于提高吡啶的方法灵敏度。采用顶空法作为样品前处理方法检测水体中苯胺和硝基苯的报道中,少有探讨碳酸钠在提高方法灵敏度方面的探讨。本节内容主要探讨添加碳酸钠对吡啶、苯胺和硝基苯的仪器响应值的综合影响。

    当样品的平衡温度为80℃、平衡时间为60min时,考察不同碳酸钠加入量(3.0~6.0g)对目标物仪器响应值的影响。结果表明,当碳酸钠添加量从3.0g升至4.0g时,吡啶、苯胺和硝基苯的仪器响应值几乎呈直线递增趋势;添加量超过4.0g后,吡啶的仪器响应值增速明显变缓,苯胺和硝基苯的仪器响应值几乎无变化(图2)。实验结果与检测吡啶时选用5.0g碳酸钠的文献报道结果23接近,最终选择4.0g作为碳酸钠的添加质量。

    图  2  不同碳酸钠含量下吡啶、苯胺和硝基苯的定量离子峰面积的变化
    Figure  2.  Changes of peak areas of quantitative ions of pyridine,aniline and nitrobenzene under different Na2CO3 content.

    一般情况下,样品的平衡温度在90℃及以下时,挥发性有机物的仪器响应值随平衡温度升高而升高,例如硝基苯29和氯苯甲醚31。部分研究发现高于80℃的平衡温度往往不利于进一步提高吡啶222426和苯胺13的仪器响应值,也有90℃平衡温度下吡啶获得最大仪器响应值的报道25

    当样品中碳酸钠添加量为4.0g,样品平衡时间为60min时,考察了平衡温度(40~90℃)对3种有机物仪器响应值的影响。结果发现,在60~80℃范围内,3种有机物的仪器响应值均随平衡温度升高而升高,进一步提高平衡温度并不利于提高灵敏度(图3),因此选择平衡温度为80℃,该结果与文献[132224]报道的基本一致。

    图  3  平衡温度与吡啶、苯胺和硝基苯的定量离子峰面积的关系
    Figure  3.  Relationship between peak areas of targets (pyridine,aniline and nitrobenzene) and different equilibrium temperatures.

    极性有机溶剂(例如甲醇)的加入,可在一定程度上起到降低待检测有机物在水体中浓度的作用,但过多的甲醇并不利于增加方法的灵敏度32。当10.0mL样品中加入4.0g碳酸钠,样品的平衡温度为80.0℃、平衡时间为60min时,观察了10.0mL样品中加入总体积分别为20.0、50.0、100、150、200和300µL甲醇后,吡啶、苯胺和硝基苯仪器响应值的变化情况。由图4可见,当甲醇总体积从20.0µL增加至50.0µL时,3种目标物的仪器响应值均获得最高值,随着甲醇加入量的进一步增加而呈下降趋势。过量的挥发性甲醇可明显地增加样品瓶内气相空间的压力,对气态目标物的浓度产生稀释作用,同时大量气态甲醇进入检测系统,导致色谱柱过载,使得目标物的峰型变差。因此,选择甲醇加入总体积为50.0µL。

    图  4  不同甲醇含量下吡啶、苯胺和硝基苯的定量离子峰面积的变化
    Figure  4.  Changes of peak areas of quantitative ions of pyridine, aniline and nitrobenzene under different methanol content.

    适当增加平衡时间,有利于提高目标物的仪器响应值,但不同研究间的差别较大。例如苯胺的最佳平衡时间只需15min27或选择20min13,10~40min的平衡时间变化对吡啶的仪器响应值无明显影响2226,其他研究吡啶检测的平衡时间大部分选择20~40min8102123-26

    当样品中加入4.0g碳酸钠、平衡温度为80℃时,本研究考察了平衡时间(30~120min)对3种有机物仪器响应值的影响。由图5可见,3种有机物均呈现出仪器响应值先增后降的趋势,最大值均在60min出现,因此选择60min作为平衡时间。

    图  5  平衡时间对吡啶、苯胺和硝基苯定量离子峰面积的影响
    Figure  5.  Effect of equilibrium times on peak areas of pyridine, aniline and nitrobenzene.

    移取适量的混合标准使用液于2~7个预加有4.0g碳酸钠、10.0mL纯水的顶空瓶内,制备吡啶和苯胺的标准溶液系列分别为0.00、1.00、2.00、5.00、10.0、20.0和30.0µg/L,硝基苯的标准溶液系列分别为0.00、0.50、1.00、2.50、5.00、10.0和15.0µg/L,补充适量甲醇至甲醇总体积为 50µL。采用外标法定量,以定量离子的峰面积为纵坐标(y),目标物的质量浓度为横坐标(x),建立线性回归方程。当校准曲线非强制过原点时,吡啶、苯胺和硝基苯校准曲线的截距分别为−234、−6189和−14524(对应计算浓度分别为0.02、0.57和0.56µg/L),当校准曲线直接用于3种化合物定量时,低浓度样品的结果将偏高,尤其是苯胺和硝基苯。同时,统计3批次实验室空白结果发现;当校准曲线强制过原点时,测定实验室空白中苯胺和硝基苯的测定值与单点校正法结果非常接近,它们均极显著小于校准曲线非强制过原点的测定值;吡啶因非强制过原点的校准曲线截距不明显,定量结果与校准曲线强制过原点和单点校正法接近(表1)。为提高方法在低浓度范围的准确度,校准曲线在线性拟合时,参考文献[33]设置强制过原点。在上述浓度范围内,吡啶、苯胺和硝基苯的质量浓度与定量离子峰面积的拟合曲线方程分别为y=14318xy=10484xy=24662x,对应线性关系分别为0.9984、0.9960和0.9922,线性范围分别为1.00~30.0μg/L、1.00~30.0μg/L和0.50~15.0µg/L,本研究建立的方法适用于上述线性范围内的样品检测。

    表  1  校准曲线强制过原点对实验室空白结果的影响
    Table  1.  Effects of forced through origin of the calibration curves on the results of blank samples.
    实验室
    空白
    吡啶(µg/L)苯胺(µg/L)硝基苯(µg/L)
    非强制
    过原点
    强制
    过原点
    单点
    校正
    非强制
    过原点
    强制
    过原点
    单点
    校正
    非强制
    过原点
    强制
    过原点
    单点
    校正
    第一次试验
    n=6)
    0.64a 0.63b 0.51 0.68aacc 0.11 0.14
    第二次试验
    n=8)
    0.82 0.80 0.65 0.66aacc 0.09b 0.11 0.60aacc 0.05bb 0.08
    第三次试验
    n=8)
    0.83a 0.81b 0.67 0.83aacc 0.26bb 0.32 0.56aacc 0.01 0.01
    注:“—”表示无硝基苯的定量离子峰;a表示非强制过原点校准曲线的测定值与单点校正法(吡啶、苯胺和硝基苯的校正浓度分别为1.00、1.00和0.50µg/L,以下同)结果间存在显著性差异(P<0.05),aa表示他们间存在极显著性差异(P<0.01);b表示强制过原点校准曲线的测定值与单点校正法结果间存在显著性差异(P<0.05),bb表示它们之间存在极显著性差异(P<0.01);cc表示非强制过原点校准曲线的测定值与强制过原点校准曲线测定值间存在极显著性差异(P<0.01)。
    下载: 导出CSV 
    | 显示表格

    在优化的顶空条件下,以纯水作为实验室空白样品,分别加入一定质量浓度的吡啶(2.00μg/L)、苯胺(2.00μg/L)和硝基苯(1.00μg/L)进行测定,重复10次,结果见表2。参考《环境监测分析方法标准制订技术导则》(HJ 168—2020)中有关方法检出限和检测下限的测定方法,统计上述10个实验室空白加标样品的测定浓度,根据结果的标准偏差(SD)的2.821倍作为方法检出限(分别为0.93、0.49和0.15µg/L),以方法检出限的4倍作为检测下限,3种化合物的检测下限分别为3.72、1.96和0.60µg/L。

    表  2  优化后方法特性指标(n=10)
    Table  2.  The corresponding characteristic indexes of optimized methods (n=10).
    化合物配制浓度
    (μg/L)
    测定值
    (μg/L)
    标准偏差检出限
    (μg/L)
    检测下限
    (μg/L)
    污染物排放限值
    (μg/L)
    标准限值d
    (μg/L)
    吡啶2.003.060.3290.933.72100a,2000b200
    苯胺2.002.380.1710.491.96500a,b100
    1000c
    硝基苯1.001.080.0500.150.602000b17
    注:苯胺、硝基苯的污染物排放限值分别为苯胺类化合物和硝基苯类化合物的综合排放限值;a污染物排放限值来自《杂环类农药工业水污染物排放标准》(GB 21523—2008);b表示污染物排放限值来自《石油化学工业污染物排放标准》(GB 31571—2015);c表示污染物排放限值来自《纺织染整工业水污染物排放标准》(GB 4287—2012);d表示标准限值来自《地表水环境质量标准》(GB 3838—2002),其中苯胺和硝基苯的标准限值分别只针对苯胺和硝基苯。
    下载: 导出CSV 
    | 显示表格

    表2可知,3种化合物的方法检出限和检测下限均远小于《地表水环境质量标准》(GB 3838—2002)中对应的标准限值,吡啶的方法检出限远小于《杂环类农药工业水污染物排放标准》(GB 21523—2008)和《石油化学工业污染物排放标准》(GB 31571—2015)中污染物排放限值,可见本研究所建立的新方法可用于水源水和工业废水中吡啶、苯胺和硝基苯的同时检测。

    取纯水作为实验室空白样品,添加3个浓度水平的吡啶、苯胺和硝基苯后进行检测,每个浓度水平8个重复。如表3可知,当实验室空白样品中分别添加低中高3个浓度水平的目标物时,吡啶、苯胺和硝基苯的平均回收率分别介于94.2%~105.5%、83.2%~105.8%和73.6%~99.7%,对应的RSD分别介于8.2%~14.2%、8.8%~12.8%和5.9%~13.0%,说明对于纯水基体的样品,该方法具有良好的精密度和准确度。

    表  3  实验室空白中3个水平下的加标样品准确度、精密度结果 (n=8)
    Table  3.  Accuracy and precision results of blank samples spiked with three levels (n=8).
    化合物配制浓度
    (μg/L)
    测定值
    (μg/L)
    回收率
    (%)
    RSD
    (%)
    吡啶5.004.7194.214.2
    10.009.4894.811.6
    20.0021.09105.58.2
    苯胺5.004.1683.212.8
    10.008.9489.411.5
    20.0021.15105.88.8
    硝基苯2.501.8473.613.0
    5.004.1983.810.6
    10.009.9799.75.9
    下载: 导出CSV 
    | 显示表格

    采集潮阳厂印染废水和潮南厂印染废水,对其中吡啶、苯胺和硝基苯含量进行检测,同时对上述样品进行加标回收率检测,结果见表4表5。2个印染废水样品中添加5.00、10.00和20.00µg/L等3个水平的吡啶和苯胺时,回收率均值分别介于73.2%~86.7%和71.1%~87.5%,加标样品结果的RSD分别介于3.7%~11.5%和2.8%~9.9%;硝基苯的添加浓度分别为2.50、5.00和10.00µg/L,回收率均值和RSD分别介于67.2%~89.9%和2.2%~9.5%。上述数据说明本研究建立的同时检测吡啶、苯胺和硝基苯的方法,用于检测印染废水时,仍具有良好的准确度和精密度。

    表  4  汕头市潮阳区纺织印染环保综合处理中心污水处理厂排放印染废水中3个水平下的加标回收率 (n=6)
    Table  4.  Recoveries and RSDs of the three organic compounds at three levels in printing and dyeing wastewater from the wastewater treatment plant of the Textile Printing and Dyeing Environmental Protection Comprehensive Treatment Center in Chaoyang District, Shantou City (n=6).
    化合物本底浓度
    (μg/L)
    加标浓度
    (μg/L)
    测定值
    (μg/L)
    回收率
    (%)
    RSD
    (%)
    吡啶1.135.005.3384.011.5
    10.008.7175.86.3
    20.0018.1084.95.5
    苯胺5.365.009.7387.49.9
    10.0012.4771.16.9
    20.0022.3284.84.2
    硝基苯ND2.501.9876.47.3
    5.003.6772.03.8
    10.008.6285.56.3
    注:“ND”表示结果小于方法检出限。
    下载: 导出CSV 
    | 显示表格
    表  5  汕头市潮南区纺织产业园区污水处理厂排放印染废水中3个水平下的加标回收率 (n=6)
    Table  5.  Recoveries and RSDs of the three organic compounds at three levels in printing and dyeing wastewater from Sewage Treatment Plant of the Textile Industrial Park,Chaonan District, Shantou City (n=6).
    化合物本底浓度
    (μg/L)
    加标浓度
    (μg/L)
    测定值
    (μg/L)
    回收率
    (%)
    RSD
    (%)
    吡啶1.105.004.7673.23.8
    10.009.2481.410.9
    20.0018.4386.73.7
    苯胺1.715.005.4073.82.8
    10.009.5378.29.5
    20.0019.2187.55.1
    硝基苯0.192.501.8767.22.5
    5.003.9775.69.5
    10.009.1889.92.2
    下载: 导出CSV 
    | 显示表格

    采集潮阳厂印染废水和潮南厂印染废水,对其所含吡啶、苯胺和硝基苯排放浓度进行定量分析。同批次实验室空白测得吡啶、苯胺和硝基苯的浓度均小于对应的方法检出限(分别为0.93、0.49和0.15µg/L),实际样品相关结果见表4表5。从表4表5可知,潮阳厂印染废水和潮南厂印染废水中吡啶均有轻微检出(1.10~1.13µg/L),后者同时检出硝基苯(0.19µg/L);苯胺的浓度分别是方法检出限的10.9倍和3.5倍,低于文献报道的印染废水结果(320µg/L13)。由上述结果可知,汕头市2个纺织印染园区的污水处理厂排放印染废水中存在吡啶、苯胺或硝基苯检出,说明园区内企业的生产工艺和(或)污水处理厂印染废水处理流程中存在3种化合物污染。本研究建立的新方法可应用于印染废水中吡啶、苯胺和硝基苯的持续监控,有必要一提的是,3种化合物在污水处理厂处理工艺中的消减、迁移规律将是接下来的研究方向。

    与只能检测吡啶、苯胺和硝基苯其中一种有机物的文献报道方法813212327比较,采用HS/GC-MS法同时检测水质中吡啶、苯胺和硝基苯,提高了检测效率。与文献报道的气相色谱法(配氢火焰离子化检测器,GC-FID)81321-222429或气相色谱法(配电子捕获检测器,GC-ECD)28相比,本文开发的检测方法在降低假阳性干扰方面具有优势。同时,本研究测得方法检出限优于吡啶标准检测方法HJ 1072—2019(30µg/L)和文献(2~20µg/L)81321-2224-2527-30,高于吡啶检测文献报道值(0.2µg/L23);高于苯胺(HJ 822—2017和HJ 1048—2019)和硝基苯(HJ 648—2013和HJ 716—2014)的标准检测方法,但避免了使用二氯甲烷(2A类致癌物)、甲苯(3类致癌物)、正己烷、丙酮等高毒有机试剂,以及固相萃取柱和净化柱等贵重耗材(表6),且样品体积远小于上述标准检测方法(HJ 1048—2019的直接进样法除外)。本研究建立的方法更有利于减轻操作人员工作强度,以及降低操作人员的伤害和环境的二次污染。

    表  6  本研究与文献报道和标准检测方法的比较
    Table  6.  Comparison of this study with literature reports and standards.
    化合物样品前处理分析检测方法参考文献或
    标准检测方法
    样品体积
    (mL)
    前处理方法
    及主要过程
    主要辅助试剂
    及添加量
    方法名称方法检出限
    (µg/L)
    吡啶10.0顶空碳酸钠(4.0g)GC-MS0.93本研究
    10.0顶空氯化钠(4g)GC-FID4.424
    10.0顶空氯化钠(2g)GC-FID1622
    10.0顶空氯化钠(3g)GC-FID2025-26
    10.0顶空氯化钠(3g)GC-FID2610
    10.0顶空氯化钠(4g)GC-FID308
    10.0顶空碳酸钠(4.0g)GC-FID2021
    10.0顶空碳酸钠(5.0g)GC-MS0.223
    10.0顶空氯化钠(3g)GC-FID30HJ 1072—2019
    苯胺10.0顶空碳酸钠(4.0g)GC-MS0.49本研究
    10.0顶空氢氧化钠(5g)GC-FID213
    20.0顶空氯化钠(10g)GC-MS5.8027
    1000液液萃取二氯甲烷(145mL)+
    正己烷(134mL)+
    异丙醇(2.5mL)+
    氯化钠(30g)
    GC-MS0.057HJ 822—2017
    0.010微孔滤膜过滤,
    直接进样
    LC-TQMS0.2HJ 1048—2019
    100固相萃取乙酸(5mL)LC-TQMS0.02HJ 1048—2019
    硝基苯10.0顶空碳酸钠(4.0g)GC-MS0.15本研究
    40.0顶空GC-ECD<2.528
    10.0顶空氯化钠(4.0g)GC-FID1029
    10.0顶空氯化钠(4g)GC-MS7.630
    200液液萃取甲苯(40mL)GC-ECD0.17HJ 648—2013
    1000固相萃取正己烷(7.5mL)+
    丙酮(2.5mL)
    GC-ECD0.032HJ 648—2013
    1000液液萃取二氯甲烷(89mL)+
    正己烷(18mL)
    GC-MS0.04HJ 716—2014
    1000固相萃取二氯甲烷(15mL)GC-MS0.04HJ 716—2014
    注:GC-FID表示配氢火焰离子化检测器的气相色谱法;GC-ECD表示配电子捕获检测器的气相色谱法;LC-TQMS表示液相色谱-三重四极杆质谱法。
    下载: 导出CSV 
    | 显示表格

    采用顶空/气相色谱-质谱法检测印染废水中吡啶、苯胺和硝基苯,探讨了加入碳酸钠和甲醇对提高方法灵敏度的作用机理,优化了样品的平衡温度和平衡时间等顶空方法参数。本文方法具有良好的精密度和准确度,方法检出限小于大部分采用顶空法的文献报道,同时,样品前处理过程简单、省时和可全自动化,避免了使用大量的二氯甲烷、甲苯、正己烷、丙酮等有毒有害试剂,且节省固相萃取柱、净化柱等贵重耗材的消耗。

    本文方法可对印染废水中吡啶、苯胺和硝基苯的排放浓度进行同时监控,为吡啶、苯胺和硝基苯在印染废水处理过程的迁移规律研究提供技术支撑。由于化工原料品类众多,在使用过程中可能产生其他苯胺类和硝基苯类有机污染物,该方法还可以深入扩展,用于检测更多种类物质,后期将开展本方法在多种苯胺类和硝基苯类化合物检测应用方面的研究,为印染废水中有机污染物检测提供可行方法。

  • 图  1   五种形态硒混合标液在不同色谱柱下的色谱图(10μg/L)

    (a)Hamilton PRP-X100色谱柱;(b)ZORBAX SB-Aq C18色谱柱。

    Figure  1.   Chromatograms of 5 forms of selenium mixed standard solution under different columns (10μg/L).

    (a) Hamilton PRP-X100 column; (b) ZORBAX SB-Aq C18 column.

    图  2   不同浓度的蛋白酶XIV对西兰花样品中5种硒形态的提取效果

    Figure  2.   Effect of different concentrations of proteinase XIV on the extraction of five selenium speciation from broccoli samples. As can be seen from the graph, the content of the five selenium speciation increases and then decreases with the increase of concentration of proteinase XIV. The best extraction efficiency was reached when the concentration of proteinase XIV was 6mg/mL.

    图  3   不同体积的缓冲溶液对西兰花样品中5种硒形态提取效果的影响

    Figure  3.   Effects of different volumes of buffer solution on the extraction of five selenium speciation from broccoli samples. The graph shows that the best extraction results were obtained when the buffer solution was added at 12mL.

    图  4   不同浓度蛋白酶XIV对SeCys2标准溶液稳定性的影响

    (a) 蛋白酶XIV浓度为1mg/mL;(b)蛋白酶XIV浓度为2mg/mL;(c)蛋白酶XIV浓度为4mg/mL;(d)蛋白酶XIV浓度为6mg/mL。

    Figure  4.   Effect of different concentrations of proteinase XIV on stability of SeCys2 standard solutions. The concentration of proteinase XIV is: (a) 1mg/mL; (b) 2mg/mL; (c) 4mg/mL; (d) 6mg/mL.

    图  5   样品色谱图

    Figure  5.   Chromatograms of samples. The chromatogram shows that the predominant speciation of selenium in the sample is methylselenocysteine.

    表  1   不同提取剂对西兰花样品中硒形态提取效果的影响

    Table  1   Extraction results of selenium speciation in broccoli sample using different extractants. As shown in the table, proteinase XIV is the best to use for extracting.

    提取剂 Se(Ⅵ)含量(mg/kg) Se(Ⅳ)含量(mg/kg) SeCys2含量(mg/kg) MeSeCys含量(mg/kg) SeMet含量(mg/kg) 5种硒形态含量之和(mg/kg)
    超纯水 0.029 0.020 0.019 0.136 0.051 0.255
    100mmol/L Tris-HCl缓冲液0.025 0.021 0.017 0.124 0.012 0.199
    蛋白酶XIV 0.026 0.018 0.042 0.140 0.300 0.526
    复合蛋白酶 0.028 0.015 0.000 0.108 0.244 0.395
    下载: 导出CSV

    表  2   方法线性方程、相关系数和检出限

    Table  2   Linear equations, correlation coefficients, and detection limit of the method.

    硒形态 线性范围(μg/L) 线性方程 相关系数(r) 定量限(μg/kg) 方法检出限(μg/kg)
    Se(Ⅵ) 0.9~100.0 y=2243.1x-650.8 0.9999 10.8 3.6
    Se(Ⅳ) 0.6~100.0 y=2165.7x-412.7 0.9999 7.2 2.4
    SeCys2* 1.0~100.0 y=2183.6x-765.0 1.0000 - -
    MeSeCys 0.3~100.0 y=2385.0x-1544.4 0.9999 3.6 1.2
    SeMet 1.5~100.0 y=2169.5x-607.9 1.0000 18.0 6.0
    注:“*”表示因SeCys2的加标回收率低于80%无法准确定量,故未计算方法检出限。
    Note: “*” indicates that the detection limit of the method was not calculated because the spiked recovery of SeCys2 was less than 80% and could not be accurately quantified.
    下载: 导出CSV

    表  3   西兰花精密度及加标回收率测定结果(n=6)

    Table  3   Determination results of precision and recovery rate of broccoli (n=6).

    硒形态 本底值(mg/kg) 加标量(mg/kg) 6次测定值(mg/kg) 加标回收率(%) RSD(%)
    0.12 0.123 0.126 0.123 0.125 0.126 0.124 102.2~105.3 1.0
    Se(Ⅵ) ND 0.36 0.366 0.367 0.360 0.366 0.369 0.366 100.0~102.1 1.6
    0.60 0.609 0.620 0.594 0.608 0.614 0.604 99.0~103.3 1.3
    0.12 0.099 0.100 0.099 0.100 0.100 0.100 82.7~85.2 1.0
    Se(Ⅳ) ND 0.36 0.305 0.295 0.296 0.295 0.296 0.301 81.9~85.6 1.7
    0.60 0.501 0.505 0.502 0.500 0.505 0.497 82.8~84.1 0.7
    0.12 0.009 0.010 0.010 0.010 0.011 0.010 7.91~8.77 4.4
    SeCys2 ND 0.36 0.036 0.034 0.034 0.034 0.034 0.036 9.47~9.97 2.0
    0.60 0.060 0.061 0.058 0.063 0.063 0.062 9.74~10.5 2.5
    0.12 0.107 0.106 0.107 0.108 0.108 0.106 88.1~89.7 0.7
    MeSeCys ND 0.36 0.323 0.311 0.313 0.315 0.317 0.317 86.4~89.6 1.4
    0.60 0.544 0.542 0.544 0.554 0.553 0.554 90.4~92.4 1.3
    0.12 0.126 0.124 0.125 0.125 0.127 0.127 98.4~102.9 0.7
    SeMet ND 0.36 0.350 0.354 0.349 0.350 0.353 0.353 97.0~98.2 0.8
    0.60 0.591 0.595 0.595 0.599 0.617 0.605 98.4~102.9 1.9
    下载: 导出CSV

    表  4   三个不同的西兰花中Se(Ⅳ)加标回收实验结果(n=3)

    Table  4   Analytical results of spiked recovery test of Se(Ⅳ) for three broccoli samples (n=3).

    样品名称 本底浓度(mg/kg) 加标量(mg/kg) 3次测定加标回收率(%) 平均加标回收率(%) H P
    西兰花(a) ND 0.11 81.3 81.0 81.1 81.1
    西兰花粉末(b) ND 0.40 68.1 68.4 72.1 69.5 7.20 0.027*
    西兰花粉末(c) 0.008 0.40 1.55 1.53 1.53 1.53
    注:ND表示低于检出限;“*”:P值小于0.05为差异具有统计学意义。
    Note: ND indicates below detection limit; “*” indicates that p-value of less than 0.05 is considered a statistically significant difference.
    下载: 导出CSV
  • [1] 李洁, 祝振洲, 程水源, 等. 硒形态检测方法在富硒食品标准中的应用与进展[J]. 食品科技, 2021, 46(12): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ202112002.htm

    Li J, Zhu Z Z, Cheng S Y, et al. Recent insights on application of selenium forms detection in selenium enriched food standards[J]. Food Science and Technology, 2021, 46(12): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ202112002.htm

    [2] 余侃, 肖秋水, 黄思思, 等. 生物有机硒对不同水稻品种主要性状、重金属含量及硒吸收的影响[J]. 南方农业学报, 2021, 52(5): 1206-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY202105010.htm

    Yu K, Xiao Q S, Huang S S, et al. Effects of bioorganic selenium on main characters, heavy metal content and selenium absorption of different rice varieties[J]. Journal of Southern Agriculture, 2021, 52(5): 1206-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY202105010.htm

    [3]

    Hadrup N, Ravn-Haren G. Acute human toxicity and mortality after selenium ingestion: A review[J]. Journal of Trace Elements in Medicine and Biology, 2020, 58(C): 126435.

    [4] 朱帅, 沈亚婷, 贾静, 等. 液相色谱-高分辨质谱法在中国东北地区农作物有机硒形态分析中的应用[J]. 岩矿测试, 2021, 40(2): 262-272. doi: 10.15898/j.cnki.11-2131/td.202005130070

    Zhu S, Shen Y T, Jia J, et al. Determination of organic selenium compounds in crops by liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 262-272. doi: 10.15898/j.cnki.11-2131/td.202005130070

    [5] 何涛, 董依博, 王长平, 等. 有机硒与无机硒对蛋鸡生产性能及蛋硒含量的Meta分析[J]. 动物营养学报, 2022, 34(4): 2654-2666. doi: 10.3969/j.issn.1006-267x.2022.04.059

    He T, Dong Y B, Wang C P, et al. Meta-analysis of organic selenium and inorganic selenium on performance of laying hens and selenium content in eggs[J]. Chinese Journal of Animal Nutrition, 2022, 34(4): 2654-2666. doi: 10.3969/j.issn.1006-267x.2022.04.059

    [6] 赵谋明, 郑泽洋, 刘小玲. 食品中硒的总量及化学形态分析研究进展[J]. 南方农业学报, 2019, 50(12): 2787-2796. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY201912023.htm

    Zhao M M, Zheng Z Y, Liu X L. Total content determination and chemical speciation analysis of selenium in food: A review[J]. Journal of Southern Agriculture, 2019, 50(12): 2787-2796. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY201912023.htm

    [7] 朱玲玲, 胡花丽, 罗淑芬, 等. 褪黑素调控呼吸代谢及抗氧化活性延缓采后青花菜衰老[J]. 农业工程学报, 2018, 34(3): 300-308. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201803040.htm

    Zhu L L, Hu H L, Luo S F, et al. Melatonin delaying senescence of postharvest broccoli by regulating respiratory metabolism and antioxidant activity[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(3): 300-308. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201803040.htm

    [8]

    Radünz M, Hackbart H C D, Bona N P, et al. Glucosino-lates and phenolic compounds rich broccoli extract: Encapsulation by electrospraying and antitumor activity against glial tumor cells[J]. Colloids and Surfaces B: Biointerfaces, 2020, 192: 111020. doi: 10.1016/j.colsurfb.2020.111020

    [9] 刘文营, 李享, 成晓瑜. 添加西兰花种子水提物改善腊肉色泽和风味提高抗氧化性[J]. 农业工程学报, 2018, 34(21): 288-294. doi: 10.11975/j.issn.1002-6819.2018.21.036

    Liu W Y, Li X, Cheng X Y. Addition of Brassica oleracea L. seed water extract improving colour, flavour and anti-oxidation of cantonese cured meat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 288-294. doi: 10.11975/j.issn.1002-6819.2018.21.036

    [10] 房艳, 王贝, 高俊海, 等. 高效液相色谱-氢化物发生原子荧光光谱法测定食品中多形态硒含量[J]. 食品科学技术学报, 2020, 38(6): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-BQGB202006009.htm

    Fang Y, Wang B, Gao J H, et al. Determination of content of polymorphic selenium in foods by HPLC-HG-AFS[J]. Journal of Food Science and Technology, 2020, 38(6): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-BQGB202006009.htm

    [11]

    Theunis M, Naessens T, Peeters L, et al. Optimization and validation of analytical RP-HPLC methods for the quantification of glucosinolates and isothiocyanates in Nasturtium officinale R. Br and Brassica oleracea[J]. LWT-Food Science and Technology, 2022, 165: 113668. doi: 10.1016/j.lwt.2022.113668

    [12] 陆晓奇, 王健, 朱元元, 等. 典型富硒植物中硒形态和生物可给性研究[J]. 土壤, 2018, 50(6): 1229-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806028.htm

    Lu X Q, Wang J, Zhu Y Y, et al. Study on Se speciation and bioaccessibility of typical Se-enriched plants[J]. Soils, 2018, 50(6): 1229-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806028.htm

    [13] 刘为, 尹金晶, 吴慕慈, 等. 富硒农产品中硒代氨基酸形态及其在不同蛋白组分中的分布[J]. 食品与机械, 2022, 38(6): 45-51, 190. https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX202206008.htm

    Liu W, Yin J J, Wu M C, et al. Selenium amino acids speciation in selenium-enriched agricultural products and their distribution in different protein components[J]. Food & Machinery, 2022, 38(6): 45-51, 190. https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX202206008.htm

    [14] 陈清清, 张泽洲, 袁林喜, 等. 富硒西兰花中硒的赋存形态及其抗氧化性[J]. 宜春学院学报, 2020, 42(12): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YCSB202012021.htm

    Chen Q Q, Zhang Z Z, Yuan L X, et al. Study on the distribution and combined speciation of selenium in Se-enriched broccoli and their antioxidant activity[J]. Journal of Yichun University, 2020, 42(12): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YCSB202012021.htm

    [15]

    Karas K, ZiołaFrankowska A, Frankowski M. New me-thod for simultaneous arsenic and selenium speciation analysis in seafood and onion samples[J]. Molecules, 2021, 26(20): 6233. doi: 10.3390/molecules26206233

    [16]

    Sele V, Ornsrud R, Sloth J J, et al. Selenium and sele-nium species in feeds and muscle tissue of Atlantic salmon[J]. Journal of Trace Elements in Medicine and Biology, 2018, 47: 124-133.

    [17] 张浩, 莫海珍, 周全霞, 等. 气相色谱串联质谱法测定加工工艺对毛豆硒蛋氨酸含量的影响[J]. 食品科学, 2010, 31(14): 216-220. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201014051.htm

    Zhang H, Mo H Z, Zhou Q X, et al. Effects of processing and storage conditions on selenomethionine content in edamame determined by gas chromatography-mass spectrometry[J]. Food Science, 2010, 31(14): 216-220. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201014051.htm

    [18] 冯金素, 曹玉嫔, 莫桂春, 等. g-C3N4富集结合毛细管电泳与电感耦合等离子体质谱联用分析西瓜中硒形态[J]. 色谱, 2020, 38(10): 1224-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ202010013.htm

    Feng J S, Cao Y P, Mo G C, et al. Selenium speciation in watermelon by g-C3N4 enrichment combined with capillary electrophoresis-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Chromatography, 2020, 38(10): 1224-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ202010013.htm

    [19] 刘崴, 胡俊栋, 杨红霞, 等. 电感耦合等离子体质谱联用技术在元素形态分析中的应用进展[J]. 岩矿测试, 2021, 40(3): 327-339. doi: 10.15898/j.cnki.11-2131/td.202006110089

    Liu W, Hu J D, Yang H X, et al. Research progress on elemental speciation analysis by inductively coupled plasma-mass spectrometry hyphenated techniques[J]. Rock and Mineral Analysis, 2021, 40(3): 327-339. doi: 10.15898/j.cnki.11-2131/td.202006110089

    [20] 秦玉燕, 时鹏涛, 王运儒, 等. 高效液相色谱-氢化物发生-原子荧光光谱法测定富硒食品中5种形态硒的含量[J]. 理化检验(化学分册), 2018, 54(5): 566-572. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201805021.htm

    Qin Y Y, Shi P T, Wang Y R, et al. HPLC-HG-AFS determination of 5 species of selenium in foodstuffs rich in selenium[J]. Physical Testing and Chemical Analysis Part B (Chemical Analysis), 2018, 54(5): 566-572. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201805021.htm

    [21]

    Pedrero Z, Madrid Y, Camara C. Selenium species bioacce-ssibility in enriched radish (Raphanus sativus): A potential dietary source of selenium[J]. Journal of Agricultural and Food Chemistry, 2006, 54(6): 2412-2417.

    [22] 秦冲, 施畅, 万秋月, 等. 高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态[J]. 岩矿测试, 2018, 37(6): 664-670. doi: 10.15898/j.cnki.11-2131/td.201803200024

    Qin C, Shi C, Wan Q Y, et al. Speciation analysis of inorganic selenium in soil by high performance liquid chromatography-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 664-670. doi: 10.15898/j.cnki.11-2131/td.201803200024

    [23] 陈绍占, 唐德剑, 李晓玉, 等. 谷类食品中硒形态超声酶提取-高效液相色谱-电感耦合等离子体质谱法测定[J]. 中国公共卫生, 2020, 36(1): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGW202001033.htm

    Chen S Z, Tang D J, Li X Y, et al. Determination of selenium species in cereal food with ultrasonic enzyme extraction and high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Public Health, 2020, 36(1): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGW202001033.htm

    [24] 刘源, 陈绍占, 陈镇, 等. 高效液相色谱-电感耦合等离子体质谱法测定人尿中硒形态[J]. 分析测试学报, 2020, 39(2): 273-277. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST202002018.htm

    Liu Y, Chen S Z, Chen Z, et al. Determination of selenium speciations in human urine by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2020, 39(2): 273-277. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST202002018.htm

    [25] 陈绍占, 张妮娜, 刘丽萍. 液相色谱-电感耦合等离子体质谱联用技术分析水中5种硒形态[J]. 中国卫生检验杂志, 2021, 31(9): 1048-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ202109007.htm

    Chen S Z, Zhang N N, Liu L P. Analysis of 5 selenium forms in water by liquid chromatography-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Health Laboratory Technology, 2021, 31(9): 1048-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ202109007.htm

    [26] 张珂, 张钦龙, 张蜀, 等. 高效液相色谱-电感耦合等离子体串联质谱法测定富硒大蒜中硒形态[J]. 中国食品卫生杂志, 2021, 33(5): 577-582. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSPZ202105013.htm

    Zhang K, Zhang Q L, Zhang S, et al. Determination of selenium species in Se-enriched garlic with high performance liquid chromatography-inductively coupled plasma tandem mass spectrometry[J]. Chinese Journal of Food Hygiene, 2021, 33(5): 577-582. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSPZ202105013.htm

    [27] 姚晓慧, 陈绍占, 刘丽萍, 等. 高效液相色谱-电感耦合等离子体质谱法分析人血清中的硒形态[J]. 质谱学报, 2022, 43(3): 381-388. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB202203012.htm

    Yao X H, Chen S Z, Liu L P, et al. Analysis of selenium species in human serum by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(3): 381-388. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB202203012.htm

    [28] 林樾, 陈尚卫, 虞锐鹏, 等. 高效液相色谱-电感耦合等离子体质谱法测定富硒碎米荠中的硒形态[J]. 分析科学学报, 2021, 37(5): 637-642. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX202105011.htm

    Lin Y, Chen S W, Yu R P, et al. Determination of selenium speciations in selenium-enriched cardamine violifolia by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Science, 2021, 37(5): 637-642. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX202105011.htm

    [29] 姚真真, 哈雪姣, 马智宏, 等. 高效液相色谱-电感耦合等离子体质谱法检测富硒苹果中5种硒形态[J]. 食品安全质量检测学报, 2018, 9(3): 475-480. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201803004.htm

    Yao Z Z, Ha X J, Ma Z H, et al. Determination of 5 kinds of selenium species in selenium-enriched apples by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Food Safety and Quality, 2018, 9(3): 475-480. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201803004.htm

    [30] 邵鹏威, 路国慧, 郑宇, 等. 高效液相色谱-电感耦合等离子体质谱测定大米粉中的硒形态[J]. 环境化学, 2020, 39(5): 1434-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202005031.htm

    Shao P W, Lu G H, Zheng Y, et al. Determination of selenium species in rice flour using high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Environmental Chemistry, 2020, 39(5): 1434-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202005031.htm

    [31] 林樾. 堇叶碎米荠硒形态分析及其富硒多肽对肝癌细胞作用研究[D]. 无锡: 江南大学, 2021.

    Lin Y. Speciation analysis of selenium in cardamine violifolia and its selenium enriched peptides activity in hepatoma cells[D]. Wuxi: Southern Yangtze University, 2021.

    [32] 赵秋香, 冯超, 莫书伟, 等. 形态硒的研究过程中硒代胱氨酸的稳定性[J]. 光谱实验室, 2011, 28(4): 2074-2078. https://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201104126.htm

    Zhao Q X, Feng C, Mo S W. Stability of selenocystine during the research on process of selenium species[J]. Chinese Journal of Spectroscopy Laboratory, 2011, 28(4): 2074-2078. https://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201104126.htm

    [33] 赵秋香, 冯超, 陈福强. 形态硒的研究过程中硒代蛋氨酸的稳定性研究[J]. 广州化工, 2011, 39(8): 66-68, 119. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201108028.htm

    Zhao Q X, Feng C, Chen F Q. Stability of selenomethionine during the extraction of selenium species[J]. Guanzhou Chemical Industry, 2011, 39(8): 66-68, 119. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201108028.htm

    [34]

    Cuderman P, Stibilj V. Stability of Se species in plant extracts rich in phenolic substances[J]. Analytical and Bioanalytical Chemistry, 2010, 396(4): 1433-1439.

    [35]

    Tian M, Xu X Y, Liu Y L, et al. Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars[J]. Food Chemistry, 2016, 190: 372-380.

    [36]

    Gui J Y, Rao S, Guo Y Y, et al. Comparative study of the effects of selenium yeast and sodium selenite on selenium content and nutrient quality in broccoli florets (Brassica oleracea L. var. italica)[J]. Journal of the Science of Food and Agriculture, 2021, 102(4): 1707-1708.

    [37] 饶申, 程华, 刘浩东, 等. 硒对十字花科作物营养品质的影响综述[J]. 食品科技, 2022, 47(3): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ202203005.htm

    Rao S, Cheng H, Liu H D, et al. Effects of selenium on the nutrient quality in cruciferous crops: A review[J]. Food Science and Technology, 2022, 47(3): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ202203005.htm

    [38]

    Lima L W, Pilon-Smits E A H, Schiavon M. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues[J]. Biochimica et Biophysica Acta, 2018, 1862(11): 2343-2353.

  • 期刊类型引用(6)

    1. 刘玖芬,赵晓峰,侯红星,秦天,陈占生,徐立明,杨柯,孔繁鹏,刘晓煌,卢兵,李子奇,刘佳,包茹意,郝爱兵. 地表基质调查分层及分层测试指标体系设计与构建. 岩矿测试. 2024(01): 16-29 . 本站查看
    2. 郭荣,沈亚婷. 土壤中微塑料与环境污染物的复合作用及其对微生物的影响. 岩矿测试. 2024(01): 1-15 . 本站查看
    3. 苏宁,谢惠春,乔枫,蒋礼玲,祁得胜,王路昊,耿贵工. 海东市平安区土壤与农作物Se含量分布特征. 陕西农业科学. 2024(04): 96-102+114 . 百度学术
    4. 李敬杰,杨涛,王明国,连晟,吕永高,蔡婧怡. 三江平原东部土壤和农作物硒含量特征及影响因素. 环境科学. 2024(10): 6195-6206 . 百度学术
    5. 龚仓,王顺祥,陆海川,陈勇,刘玖芬. 基于地理探测器的土壤重金属空间分异及其影响因素分析研究进展. 环境科学. 2023(05): 2799-2816 . 百度学术
    6. 田强国,侯进凯,杨在伟,李立园. 河南省洛阳市土壤硒全量、有效性及形态分布特征. 物探与化探. 2023(05): 1371-1378 . 百度学术

    其他类型引用(2)

图(5)  /  表(4)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  39
  • PDF下载量:  33
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-09-18
  • 修回日期:  2022-11-07
  • 录用日期:  2023-01-17
  • 网络出版日期:  2023-07-16
  • 刊出日期:  2023-05-27

目录

/

返回文章
返回