Application of SILLS Software in Data Processing of Single Fluorite Fluid Inclusion LA-ICP-MS Trace Element Analysis
-
摘要: 近年来激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)应用于单个流体包裹体成分定量分析已成为研究流体包裹体的最佳手段之一。该实验过程和数据处理比较复杂,目前国内外采用的数据分析软件为一款基于MATLAB的SILLS软件,该软件主要是对矿物(锆石)、流体包裹体以及熔体包裹体LA-ICP-MS分析结果进行处理。本文以萤石流体包裹体LA-ICP-MS分析为例,阐述了样品制备与流体包裹体的优选方法,对流体包裹体片厚度以及单个流体包裹体的选取要求作了详细描述,对仪器参数设置、内外标样选取和剥蚀方法等进行了说明。基于SILLS软件采用尖峰消除的方法对待处理数据进行校正,对不同种类型的波峰进行峰宽的选取。在元素比值校正和等效盐度计算过程中,由于被测样品是萤石,Ca元素具有较高的背景值,选择以Na作为流体包裹体的内标元素,以Ca作为寄主矿物的内标元素对寄主矿物浓度进行计算,同时提出以电价平衡代替质量平衡进行等效盐度计算。以上方案提高了LA-ICP-MS分析单个萤石流体包裹体的准确性,有助于解释成矿流体来源和矿床成因等问题。要点
(1) 阐述了单个流体包裹体LA-ICP-MS分析过程中的常见问题。
(2) 对SILLS软件在使用过程中的常见问题进行分析,并提出合理的解决方法。
(3) 为提高单个流体包裹体LA-ICP-MS测试分析的准确性,对实验过程进行规范。
HIGHLIGHTS(1) The common problems in the analysis of single fluid inclusion LA-ICP-MS were described.
(2) The common problems in the use of SILLS software and propose reasonable solutions were discribed.
(3) The experimental process was standardized to improve the accuracy of the LA-ICP-MS test analysis of individual fluid inclusions.
Abstract:BACKGROUNDIn recent years, laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) for quantitative analysis of single fluid inclusion components has become one of the best methods for studying fluid inclusions. Due to the low success rate of this experiment, it is of great help to improve the experimental success rate by standardizing the whole experimental procedure and correctly processing the experimental data. At this stage, the data analysis software used at home and abroad is a SILLS software based on MATLAB, which deals with the LA-ICP-MS analysis results of mineral (zircon, etc.), fluid inclusions and melt inclusion.OBJECTIVESTo help researchers properly operate the entire experimental process, and to detail the use of the SILLS software for improved LA-ICP-MS analysis of single fluid inclusion.METHODSThe fluorite fluid inclusions were analyzed by LA-ICP-MS at the James Cook University, and the data was processed using the SILLS software. The actual operation of the experiment was performed to discuss common problems during the experiment.RESULTSThe fluorite fluid inclusion LA-ICP-MS analysis was taken as an example to standardize the sample preparation and selection before the experiment. The instrument parameters were set in the experiment, the internal and external standard samples were selected, and the Straight Ablation method was used instead of the Stepwise Ablation method. At the same time, based on the SILLS software, the peak elimination and how to choose a reasonable peak width in different situations were explained. In the element ratio correction and the equivalent salinity calculation, since the sample to be tested was fluorite, the Ca element had a higher background value. Therefore, the host mineral concentration was calculated by using Na as the internal standard element of the fluid inclusion and Ca as the internal standard element of the host mineral. At the same time, it was proposed to calculate the equivalent salinity by replacing the mass balance with the charge balance.CONCLUSIONSThe above scheme improves the accuracy of LA-ICP-MS analysis of individual fluorite fluid inclusions and helps to more accurately explain the source of ore-forming fluids and the genesis of the deposit.-
Keywords:
- LA-ICP-MS /
- single fluid inclusion /
- SILLS software /
- quantitative analysis /
- data treatment
-
硅元素被国际土壤界认为继氮、磷、钾之后的第四种植物营养元素[1]。硅对植物的形态特征、生理特征和植物体内其他营养元素的分布有一定影响。硅可以促进植物生长,提高光合作用,提高根系活力,增强抗病能力,提高植物产量等[2]。土壤中硅的含量差异较大,形态也多种多样,主要有石英、二氧化硅以及硅酸盐或铝硅酸盐,其含量测定尤为重要[3-4]。
土壤和沉积物中硅含量测定的报道诸多,主要有分光光度法、X射线荧光光谱法(XRF)、激光诱导击穿光谱技术和电感耦合等离子体发射光谱法(ICP-OES)[5-10]。分光光度法操作繁琐、要求高,不适合批量样品测试[11]。行业标准《土壤和沉积物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 780—2015)中采用XRF法需要高温熔融制样[12],并且建立校准曲线比较繁琐。激光诱导击穿光谱技术的测试结果与标准值基本吻合[13],准确度有待提高。ICP-OES法具有分析速度快、线性范围宽、检出限低、准确度高,并且能同时分析多种元素的优点,得到了广泛应用。ICP-OES法测定硅含量的前处理方法主要有碱性熔剂熔融制样或多种混合酸消解样品。行业标准《土壤和沉积物 11种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974—2018)采用碱性熔剂高温熔融,酸解后利用ICP-OES法测定土壤和沉积物中硅含量。王龙山等[14]报道了一种采用高温熔融,超声提取ICP-OES测定岩石、水系沉积物和土壤样品中硅含量的方法。余浪等[3]报道了一种采用盐酸-硝酸-氢氟酸混合酸,100~110℃微波消解样品,以铑为内标,基体匹配法测定硅含量的方法。杨娜等[15]采用微波消解,ICP-OES法测定硅含量。采用ICP-OES法测定硅含量时,碱熔法引入大量盐,测试时会有基体干扰;浸提法只能测定有效硅含量;微波消解设备相对昂贵;传统消解方法易造成硅挥发损失。因此,亟需开发一种前处理简单、效率高、准确度高、经济实惠的测定土壤中全硅含量的方法。
用超声作为样品前处理有诸多报道,包括超声消解电感耦合等离子体质谱法(ICP-MS)测定烟丝中钾钠钙镁元素含量[16]、超声辅助逆王水提取ICP-MS测定PM2.5颗粒物中24种金属元素含量[17],以及超声波水浴消解ICP-MS法测定土壤中Mn、Co、As、Ag、Cd、Sb和Bi元素含量[18]。在这些报道中,主要采用超声提取或超声辅助半消解测定样品中部分元素,这些元素稳定并且比较容易提取。本文在超声消解基础上,考虑混合酸消解时氢氟酸与硅反应生成的氟化硅易挥发损失、难以准确测定的特点,采用稀王水-氢氟酸-双氧水在密闭条件下超声消解样品,并对是否超声、是否密闭、超声条件及双氧水的加入量进行探讨,采用ICP-OES测定硅元素含量。将建立的方法测定国家标准物质GBW07401a(GSS-1a)、GBW07405a (GSS-5a)、GBW07377 (GSD-26)、GBW07379 (GSD-28)中硅含量,并与XRF结果进行对比,验证了方法的准确性和可靠性。
1. 实验部分
1.1 仪器与工作参数
Avio 500型电感耦合等离子体发射光谱仪(美国PerkinElmer公司);超纯水机(MILLI-Q ADVANTRGE A10);超声波清洗机(春霖公司)。
仪器谱线范围163~782nm;耐氢氟酸系统;功率1400W;进样量1.5mL/min;等离子气流速12L/min;辅助气流速0.5L/min;雾化气流速0.7L/min;径向观测方式。硅的分析谱线有251.611nm、212.412nm、288.158nm、252.851nm等,根据分析谱线的选取原则,分析应该选择灵敏度高、干扰少、线性范围宽的谱线,同时参照仪器推荐,最终选取元素的分析谱线为Si 251.611nm。
1.2 主要试剂
硝酸(CMOS纯,高纯半导体级);盐酸(CMOS纯,高纯半导体级);氢氟酸(CMOS纯,高纯半导体级);双氧水(优级纯);硅标准溶液(1000mg/L):购自国家有色金属及电子材料分析测试中心。
1.3 样品和标准物质
土壤实际样品:在云南松林内设置一块20m×20m样地。在样地内按照S形路线,选取9个点,采集0~10cm表层土壤样品混合成一份样品,每份样品进行编号。样品带回实验室进行风干,去除石块和根系,研磨,过100目筛,部分样品用于测试分析。编号分别为8、18、23、28、31作为实际样品测试。
标准物质GBW07401a (GSS-1a):暗棕壤,黑龙江西林铅锌矿区土壤,采用XRF法及重量法定值。GBW07405a (GSS-5a):黄红壤,江西七宝山多金属矿区土壤,采用XRF法及重量法定值。GBW07377 (GSD-26):水系沉积物成分标准物质,西藏纳木错沉积岩区,采用容量法定值。GBW07379 (GSD-28):水系沉积物成分标准物质,云南兰坪铅锌矿区,采用容量法定值。以上标准物质都是中国地质科学院地球物理地球化学勘查研究所研制。
1.4 样品溶液和标准溶液的制备
样品溶液:准确称取 0.05~0.10g样品置于 50mL离心管中,精确至0.0001g,加入20mL水润湿,加6mL王水、6mL氢氟酸、6mL双氧水,密封后于75℃超声1h,待溶液冷却至室温后转移至1000mL塑料容量瓶中,用超纯水定容后摇匀,待用。若浓度过高,用超纯水稀释后测定样品;若有不溶物,静置过夜后取上清液测定样品。
标准溶液:分别移取硅元素标准溶液(1000mg/L)0、0.5、1、1.5、2、3、5mL于6支100mL容量瓶中,分别加入2%硝酸定容,配制成浓度为0、5、10、15、20、30、50mg/L系列的标准溶液。
2. 结果与讨论
2.1 样品前处理对硅含量测试结果的影响
土壤和沉积物中硅含量测定方法是:样品先与碱性熔剂熔融,熔融物经酸溶解后用ICP-OES进行测定。样品前处理操作繁琐,且熔融过程引入了大量碱金属,测定时基体效应明显。本文采用超声密闭混合酸(稀王水-氢氟酸-双氧水)消解土壤和沉积物中的硅,测定时用耐氢氟酸系统,并且定容至1000mL减少基体效应。为确定密闭条件、超声条件及双氧水的加入量对样品前处理的影响,进行了不同消解条件下的对比实验。
2.1.1 不同消解条件对样品测试结果的影响
以GBW07401a (GSS-1a)为例,在相同的酸浓度、密封条件及反应时间(1h)内,对样品分别进行静置、75℃加热及75℃超声处理,测试结果列于表1,并计算测试结果的相对误差。样品溶液加酸后,静置条件下测试结果明显偏低;75℃加热时测试结果有所提高,但测试结果仍偏低;75℃超声处理样品时,测定值与理论值符合。超声的空化作用及非线性效应有利于样品溶液的分散及促进化学反应进行,加速样品消解。因此,消解土壤和沉积物样品中的硅时,需要在75℃下超声处理样品。
表 1 不同消解条件下样品测试结果的比较Table 1. Comparison of results with different digestion conditions序号 实验条件 SiO2含量测定值
(%)RSD
(%)以SiO2计平均值
(%)SiO2含量认定值及
不确定度(%)以SiO2计相对误差
(%)1 静置 39.86 39.90 40.26 0.6 40.01 56.60±0.46 −29.31 2 75℃加热 51.13 51.34 50.92 0.4 51.13 56.60±0.46 −9.67 3 75℃超声 57.29 56.41 55.71 1.4 56.47 56.60±0.46 −0.23 2.1.2 密闭效果对样品前处理的影响
为确定密闭效果对样品前处理的影响,以GBW07401a(GSS-1a)为例,在相同的酸浓度、超声温度及时间内(1h),进行了敞口、半封闭、密闭不同条件下处理样品,测试结果与理论值的相对误差越来越小(表2)。敞口或半封闭条件下消解样品,测试结果偏低;全封闭效果较好。可能是因为敞口或半封闭时,反应生成的四氟化硅易挥发损失,导致测试结果偏低,而密封条件下避免了硅的损失。超声消解样品,密闭条件下压力增加,与非密闭条件相比,相当于增加了温度和压力,样品在温度与压力的双重作用下消解速率加快,反应时间减少。因此,消解土壤和沉积物样品时需要采用密闭条件。
表 2 密闭条件对样品消解效果的影响Table 2. Influence of different sealing conditions on sample digestion序号 密闭方式 SiO2含量测定值
(%)RSD
(%)以SiO2计平均值
(%)SiO2含量认定值和
不确定度(%)以SiO2计相对误差
(%)1 敞口 49.14 49.14 48.84 0.3 49.04 56.60±0.46 −13.36 2 半密封 51.07 50.92 50.02 1.1 50.67 56.60±0.46 −10.48 3 密闭 57.29 56.41 55.71 1.4 56.47 56.60±0.46 −0.23 2.1.3 超声温度对样品前处理的影响
为确定超声温度对样品前处理的影响,以GBW07401a(GSS-1a)为例,在相同的酸浓度、密封条件及反应时间(1h)内,对样品分别进行不同温度下超声处理,测试结果列于表3,并计算测试结果的相对误差。室温(25℃)及45℃超声处理后,测试结果均偏低;75℃超声1h,测试结果与理论值相符;温度升高至85℃,测试结果与理论值基本相符。低温条件下超声对消解效果影响不明显,可能只是分散作用;随着超声温度升高,超声与加热的双重作用使消解速率逐渐加快。温度太低不利于消解反应的进行,需要很长时间才能消解完全;温度太高,可能会影响离心管密封效果,导致结果偏低。因此,消解土壤和沉积物样品中的硅时选择75℃。
表 3 超声温度对样品消解效果的比较Table 3. Comparison of results with different ultrasound temperature序号 超声温度
(℃)SiO2含量测定值
(%)RSD
(%)Si含量平均值
(%)以SiO2计平均值
(%)SiO2含量认定值和
不确定度(%)以SiO2计相对误差
(%)1 25 40.48 40.82 40.82 0.5 19.03 40.71 56.60±0.46 −28.07 2 45 45.59 45.46 44.88 0.8 21.18 45.31 56.60±0.46 −19.95 3 75 57.29 56.41 55.71 1.4 26.40 56.47 56.60±0.46 −0.23 4 85 55.45 56.71 56.18 1.1 26.23 56.11 56.60±0.46 −0.87 2.1.4 超声时间对样品前处理的影响
为确定超声时间对样品前处理的影响,以GBW07401a(GSS-1a)为例,在相同的酸浓度、密封条件及反应温度下,对样品分别进行不同超声时间处理,测试结果列于表4,并计算相对误差。75℃下超声0.5h,样品大部分已消解完全,超声1h样品已消解完全。随着超声时间延长,消解结果逐渐完全并保持稳定,测试结果与理论值越来越接近,相对误差也越来越小。为节省时间,选择样品溶液超声1h。
表 4 超声时间对样品前处理效果的比较Table 4. Comparison of results with different ultrasound time序号 超声时间
(h)SiO2含量测定值
(%)RSD
(%)Si含量平均值
(%)以SiO2计平均值
(%)SiO2含量认定值和
不确定度(%)以SiO2计相对误差
(%)1 0.5 50.34 49.68 50.38 0.8 23.43 50.13 56.60±0.46 −11.43 2 1 57.29 56.41 55.71 1.4 26.40 56.47 56.60±0.46 −0.23 3 2 57.08 57.10 56.22 0.9 26.55 56.80 56.60±0.46 0.35 4 3 56.26 56.50 56.29 0.2 26.34 56.35 56.60±0.46 −0.44 2.1.5 超声功率对样品前处理的影响
为确定超声功率对样品前处理的影响,以GBW07401a(GSS-1a)为例,在相同的酸浓度、密封条件、超声温度及超声时间内,对样品进行不同功率超声处理,测试结果列于表5,并计算测试结果的相对误差。随着超声功率增加,硅含量测试值逐渐增大,并与理论值越来越接近,测试值的相对误差也越来越小。当超声功率增大到一定值,测试结果与理论值相符。因此,消解样品时选择300W功率。
表 5 超声功率对样品前处理效果的测试结果比较Table 5. Comparison of results with different ultrasound powder序号 超声条件 Si含量测定值
(%)RSD
(%)Si含量测定平均值
(%)以SiO2计平均值
(%)SiO2含量认定值
及不确定度(%)以SiO2计相对误差
(%)1 75℃超声功率120W 56.44 55.64 55.39 1.0 26.09 55.82 56.60±0.46 −1.38 2 75℃超声功率240W 55.90 55.97 55.75 0.3 26.10 55.87 56.60±0.46 −1.29 3 75℃超声功率300W 57.29 56.41 55.71 1.4 26.40 56.47 56.60±0.46 −0.23 4 75℃超声功率360W 56.50 56.95 56.97 0.5 26.55 56.80 56.60±0.46 0.35 2.1.6 双氧水对样品前处理效果的影响
超声条件确定后,为确定双氧水对样品消解的影响,以GBW07401a(GSS-1a)为例,在其他条件相同的情况下,进行了不同添加量的双氧水对样品消解对比实验,测试结果见表6,并计算测试结果的相对误差。相同超声条件下,不加双氧水时,测试结果明显偏低;加入3mL双氧水后,测试结果有一定程度提高,但还是低于理论值;加入6mL双氧水和加入9mL双氧水后测试结果均与理论值相符,因此选择加入6mL双氧水。
表 6 不同添加量的双氧水对样品进行消解测试结果比较Table 6. Comparison of results with different amounts of hydrogen peroxide added序号 双氧水用量
(mL)Si含量测定值
(%)RSD
(%)Si含量测定平均值
(%)以SiO2计平均值
(%)SiO2含量认定值
及不确定度(%)以SiO2计相对误差
(%)1 0 42.89 42.25 42.44 0.8 19.88 42.53 56.60±0.46 −24.86 2 3 50.30 48.97 48.50 1.9 23.02 49.26 56.60±0.46 −12.97 3 6 57.29 56.41 55.71 1.4 26.40 56.47 56.60±0.46 −0.23 4 9 55.92 55.73 56.78 1.0 26.24 56.14 56.60±0.46 −0.81 采用稀王水-氢氟酸-双氧水消解试样,75℃密闭条件下超声,可发生的反应有:
HNO3+3HCl= 2H2O+Cl2+NOCl
H2O2+HNO3=HNO2+H2O+O2↑
2H2O2+2HCl=2HClO+2H2O=O2+2HCl+2H2O
Cl2+H2O2=2HCl+O2
3mL盐酸和1mL硝酸加热时,生成的氯化亚硝酰和新生的氯气具有较强的氧化性;双氧水与硝酸反应生成的亚硝酸,它的氧化能力在稀溶液时比NO3−离子还强;双氧水与盐酸反应生成的次氯酸具有很强的氧化性,可以把盐酸氧化成氯气;因此,反应生成的各种氧化性物质与酸的作用加速了样品溶解,并且土壤和沉积岩样品分解后的大多数矿物生成氯化物或氯配离子转入溶液,氯离子的配位作用进一步加速了样品溶解。稀酸处理样品,生成的氟化硅与水反应生成氟硅酸和硅酸。3SiF4+4H2O=2H2SiF6+H4SiO4,促进大量硅元素进入水溶液,减少了SiF4气体含量,抑制硅元素损失。采用稀王水-氢氟酸-双氧水消解试样,大大提高了反应效率,缩短反应时间,简化了前处理操作。表明土壤和沉积物中硅的测定可采用稀王水-氢氟酸-双氧水在全封闭条件下,75℃超声1h,测试结果准确。
2.2 校准曲线和方法检出限
将配制好的标准溶液在仪器工作条件下进行测定,分析线251.611nm,以Si元素浓度为横坐标、强度为纵坐标,采用线性计算截距的方式,绘制标准曲线。Si元素线性回归方程为:y=3573.41847x−430.08986,相关系数为0.999974,在5~50mg/L范围内线性良好。在最优工作条件下,按照实验方法,连续测定11次2%硝酸空白溶液,硅含量测试结果(mg/L)分别为:0.145、0.147、0.146、0.145、0.146、0.145、0.146、0.145、0.144、0.144、0.144。以测试结果的3倍标准偏差乘以稀释倍数(按称重0.1g,定容到1000mL),计算方法检出限为0.0395mg/g。
2.3 方法精密度和准确度验证
选取不同种类的国家标准物质GBW07401a、GBW07405a、GBW07377、GBW07379进行测试,每个标准物质平行分析 11 次。计算平均值与标准值之间的相对误差(%)来衡量方法准确度;计算 11 次平行测定的相对标准偏差(RSD)来衡量方法精密度。由表7可知,RSD在 0.26%~0.54%,说明方法精密度良好。ICP-OES测定值与标准值的相对误差在−0.28%~0.25%,说明方法准确度良好。
表 7 方法精密度和准确度实验Table 7. Precision and accuracy tests of the method标准物质编号 Si含量测定值
(%)RSD
(%)Si含量测定
平均值(%)以SiO2计
平均值(%)SiO2含量认定值
及不确定度(%)以SiO2计
相对误差(%)GBW07401a 56.91 56.80 56.84 0.40 26.52 56.74 56.60±0.46 0.25 56.22 56.93 56.65 56.99 56.71 56.91 56.69 56.50 GBW07405a 61.48 61.18 61.81 0.31 28.68 61.35 61.52±0.39 −0.28 61.16 61.33 61.25 61.21 61.21 61.44 61.36 61.38 GBW07377 63.50 63.17 63.75 0.26 29.65 63.43 63.48±0.43 −0.08 63.52 63.47 63.43 63.35 63.28 63.56 63.24 63.50 GBW07379 69.38 69.98 69.21 0.54 32.62 69.75 69.66±0.6 0.13 70.15 69.79 70.08 69.87 70.17 69.76 69.12 69.70 2.4 不同分析方法测试结果比对
为确定该方法的实用性,选取了不同硅含量的土壤实际样品,样品编号分别为8、18、23、28、31,每个样品称取5个平行样品,用本文的超声法快速消解样品并测试,同时用XRF法进行测定(三次测定,给出平均值)。由表8测试结果可知,实际样品两种方法比对发现,结果有部分偏差,两种方法的相对误差在−12.6%~27.1%,说明这两种方法测定结果偏差较大。而采用本文方法测定不同硅含量土壤样品的RSD为0.52%~0.77%,测试结果精密度良好,表明本文方法适用于实际样品测试。
表 8 实际样品测试结果比对Table 8. Comparison of analytical results of SiO2 content in actual samples实际样品编号 本文方法Si含量测定值
(%)RSD
(%)Si含量测定平均值
(%)XRF法Si含量测定值
(%)相对误差
(%)样品8 29.98 29.72 30.18 29.68 29.90 0.68 29.89 26.12 −12.60 样品18 12.13 12.03 12.22 12.04 12.06 0.66 12.10 15.38 27.10 样品23 14.91 15.11 14.95 14.93 15.17 0.77 15.01 17.07 13.70 样品28 29.93 29.75 29.80 29.86 30.15 0.52 29.90 27.67 −7.46 样品31 31.81 31.65 31.96 31.66 31.54 0.52 31.72 29.28 −7.69 对国家标准物质GBW07401a、GBW07405a、GBW07377、GBW07379也同时采用XRF法测定(三次测定,给出平均值)进行测试比对。由表9测试结果可知,本文方法与XRF测试结果有部分偏差,相对误差在−0.65%~4.80%。根据行业标准《土壤和沉积物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 780—2015)可知,国家有证标准物质中元素含量在5%以上时,误差要求在5%以内,除了GBW07405a在认定值范围内,其余三个标准物质均在XRF测量误差范围以内。
表 9 标准物质测试结果比对Table 9. Comparison of analytical results of SiO2 content in national standard substances标准物质编号 本文方法Si含量
测定平均值(%)RSD
(%)XRF法Si含量
测定值(%)以SiO2计XRF法
测定值(%)SiO2含量认定值
及不确定度(%)以SiO2计本文方法与
XRF法相对误差(%)GBW07401a 26.52 0.40 27.69 59.24 56.60±0.46 4.66 GBW07405a 28.68 0.31 28.57 61.12 61.52±0.39 −0.65 GBW07377 29.65 0.26 31.10 66.53 63.48±0.43 4.80 GBW07379 32.62 0.54 33.17 70.96 69.66±0.6 1.87 3. 结论
建立了超声快速消解ICP-OES法快速测定土壤和沉积物中硅元素含量的分析方法。通过优化样品前处理条件,对密闭条件、超声时间、超声温度及双氧水加入量进行筛选,选择合适的分析谱线,测定了土壤和沉积物国家标准物质GBW07401a、GBW07405a、GBW07377、GBW07379中的硅含量,并进行了精密度及准确度实验,其相对标准偏差(RSD)在 0.26%~0.54%,相对误差在−0.28%~0.25%。并通过实际样品测试,验证了本文方法的适用范围。
与XRF法测试结果对比,本文方法操作简便、成本低,适用于大批量样品中易挥发元素硅的测定,对于其他易挥发元素的测定需要进一步探索。
致谢: 在实验过程中得到了James Cook大学Yi Hu博士的指导,在论文撰写过程中得到了成都理工大学彭惠娟副教授、地质过程与矿产资源国家重点实验室曾丽平博士以及南京大学内生金属矿床成矿作用国家重点实验室潘君屹博士的指导,审稿人提出了宝贵的修改意见和建议,在此一并表示感谢。 -
表 1 部分实验室单个流体包裹体LA-ICP-MS分析仪器参数
Table 1 LA-ICP-MS instrumental parameters of single fluid inclusion provided by partial laboratories
参数 Leeds University[51] Bem University[52] Natural History Museum.London[61] University of Lorraine[62] ETH Zürich[63] James cook
(本次实验)[42]激光参数 激光型号 GeoLas Q Plus GeoLas Pro New-Wave UP213AI GeoLas GeoLas 200Q GeoLas Pro 激光波长
(nm)193 193 213 193 193 193 能量密度
(J/cm2)10 24 2.5~24 10 16 6 频率
(Hz)5~10 10 20 5~10 线扫面6,点10 10 剥蚀直径
(μm)10~50 4~200 13 10~90 8~9 16~60
(主要为24~44)载气 0.68L/min He 1L/min He 0.008L/min H2 1.1L/min He 0.51L/min He 0.5~0.8L/min He 0.8L/min He (MC-)
ICP-MS
参数质谱型号 Agilent 7500c ELAN DRC-e Thermo Element Plasma Quad 3 Agilent 7500c Nu Plasma 1700 Nu Plasma Varian 820 雾化气 0.94L/min Ar 0.83L/min Ar 0.7L/min Ar NR 2.9~3.1L/min Ar 0.95L/min Ar 辅助气 NR 0.70L/min Ar NR NR 0.85~0.90L/min Ar 0.80L/min Ar 冷却气 NR 16.0L/min Ar NR NR 2.9~3.1L/min Ar 18.0L/min Ar 注:“NR”表示未报道。 -
Audétat A, Günther D, Heinrich C A.Formation of a magmatic-hydrothermal ore deposit:Insights with LA-ICP-MS analysis of fluid inclusions[J].Science, 1998, 279:2091-2094. doi: 10.1126/science.279.5359.2091
Audétat A, Günther D, Heinrich C A.Causes for large-scale metal zonation around mineralized plutins:Fluid inclusion LA-ICP-MS evidence from the Mole Granite[J].Australia Economic Geology, 2000, 95(8):1563-1581. doi: 10.2113/gsecongeo.95.8.1563
Audétat A, Günther D, Heinrich C A.Magmatic-hydrothermal evolution in a fractionating granite:A microchemical study of the Sn-W-F-mineralized Mole Granite (Austrilia)[J].Geochimica et Cosmochimica Acta, 2000, 64(19):3373-3393. doi: 10.1016/S0016-7037(00)00428-2
Zou H, Fang Y, Zhang S T, et al.The source of Fengjia and Langxi barite-fluorite deposits in Southeastern Sichuan, China:Evidence from rare earth elements and S, Sr, and Sm-Nd isotopic data[J].Geological Journal, 2017, 52:470-488. doi: 10.1002/gj.2779
Zou H, Zhang S T, Chen A Q, et al.Hydrothermal fluid sources of the Fengjia barite-fluorite deposit in Southeast Sichuan, China:Evidence from fluid inclusions and hydrogen and oxygen isotopes[J].Resource Geology, 2016, 66:24-36. doi: 10.1111/rge.12084
Chicharro E, Boiron M C, López-García J Á, et al.Origin, ore forming fluid evolution and timing of the Logrosán Sn-(W) ore deposits (Central Iberian Zone, Spain)[J].Ore Geology Reviews, 2016, 72(1):896-913. http://www.sciencedirect.com/science/article/pii/S0169136815300767
Seo J H, Guillong M, Aerts M, et al.Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS[J].Chemical Geology, 2011, 284(1-2):35-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=592b1121e8b29d934455f0402211895e
Zhe M, Hu J Z, Song Y, et al.Fluid inclusions and hydrogen, oxygen, and lead isotopes of the antuoling molybdenum deposit, Northern Taihang Mountains, China[J].Resource Geology, 2017, 67(4):399-413. doi: 10.1111/rge.12135
Kang M, Yuan Y, Yue C C, et al.Fluid inclusion and isotope characteristics of the Xishanwanyangchang silver polymetallic deposit, Inner Mongolia, China[J].Geological Journal, 2018, 53:303-318. doi: 10.1002/gj.3189
倪培, 范宏瑞, 丁俊英.流体包裹体研究进展[J].矿物岩石地球化学通报, 2014, 33(1):1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001 Ni P, Fan H R, Ding J Y.Progress in fluid inclusions[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1):1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001
孙小虹, 胡明月, 刘成林, 等.激光剥蚀ICP-MS法测定盐类矿物单个流体包裹体的成分[J].分析化学, 2013, 41(2):235-241. http://d.old.wanfangdata.com.cn/Periodical/fxhx201302013 Sun X H, Hu M Y, Liu C L, et al.Composition determination of single fluid inclusions in salt minerals by laser ablation ICP-MS[J].Chinese Journal of Analytical Chemistry, 2013, 41(2):235-241. http://d.old.wanfangdata.com.cn/Periodical/fxhx201302013
Mavrogenes J A, Bodnar R J, Anderson A J.Assessment of the uncertainties and limitations of quantitative elemental analysis of individual fluid inclusions using synchrotron X-ray fluorescence (SXRF)[J].Geochimica et Cosmochimica Acta, 1995, 59(19):3987-3995. doi: 10.1016/0016-7037(95)00261-W
Kurosawa M, Shimano S, Ishii S, et al.Quantitative trace element analysis of single fluid inclusions by proton-induced X-ray emission (PIXE):Application to fluid inclusions in hydrothermal quartz[J].Geochimica et Cosmochimica Acta, 2003, 67(22):4337-4352. doi: 10.1016/S0016-7037(03)00378-8
王莉娟, 王玉往, 王京彬, 等.内蒙古大井锡多金属矿床流体成矿作用研究:单个流体包裹体组分LA-ICP-MS分析证据[J].科学通报, 2006, 51(10):1203-1210. doi: 10.3321/j.issn:0023-074X.2006.10.012 Wang L J, Wang Y W, Wang J B, et al.Study on fluid mineralization of Dajing tin polymetallic deposit in Iinner Mongolia:Evidence from LA-ICP-MS analysis of single fluid inclusion component[J].Chinese Science Bulletin, 2006, 51(10):1203-1210. doi: 10.3321/j.issn:0023-074X.2006.10.012
卢焕章, 郭迪江.流体包裹体研究的进展和方向[J].地质论评, 2000, 46(4):385-392. doi: 10.3321/j.issn:0371-5736.2000.04.006 Lu H Z, Guo D J.Progress and trends of research on fluid inclusions[J].Geological Review, 2000, 46(4):385-392. doi: 10.3321/j.issn:0371-5736.2000.04.006
Pettke T, Oberli F, Audétat A, et al.Recent develop-ments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS[J].Ore Geology Reviews, 2012, 44:10-38. doi: 10.1016/j.oregeorev.2011.11.001
孙贺, 肖益林.流体包裹体研究:进展、地质应用及展望[J].地球科学进展, 2009, 24(10):1105-1121. doi: 10.3321/j.issn:1001-8166.2009.10.005 Sun H, Xiao Y L.Fluid inclusions:Latest development, geological applications and prospect[J].Advances in Earth Science, 2009, 24(10):1105-1121. doi: 10.3321/j.issn:1001-8166.2009.10.005
Longerich A P, Jackson S E, Canther D.Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J].Journal of Analytical Atomic Spectrometry, 1996, 11(9):899-904. doi: 10.1039/JA9961100899
Pettke T, Oberli F, Audétat A, et al.Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS[J].Ore Geology Reviews, 2012, 44:10-38. doi: 10.1016/j.oregeorev.2011.11.001
付乐兵, 魏俊浩, 张道涵, 等.单个流体包裹体成分LA-ICPMS分析与矿床学应用进展[J].中南大学学报(自然科学版), 2015, 46(10):3832-3840. doi: 10.11817/j.issn.1672-7207.2015.10.037 Fu L B, Wei J H, Zhang D H, et al.A review of LA-ICPMS analysis for individual fluid inclusions and its applications in ore deposits[J].Journal of Central South University (Science and Technology), 2015, 46(10):3832-3840. doi: 10.11817/j.issn.1672-7207.2015.10.037
Tsui T F.Laser Microprobe Analysis of Fluid Inclusions in Quartz[D].Massachusetts: Harvard University, 1976: 1-156.
Tsui T F, Holland H D.Analysis of fluid inclusions by laser microprobe[J].Economic Geology, 1979, 74(7):1647-1653. doi: 10.2113/gsecongeo.74.7.1647
Ulrich T, Günther D, Heinrich C A.Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J].Nature, 1999, 399(6737):676-679. doi: 10.1038/21406
Heinrich C A, Günther D, Audétat A, et al.Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions[J].Geology, 1999, 27(8):755-758. doi: 10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2
Shepherd T J, Chenery S R.Laser ablation ICP-MS elemental analysis of individual fluid inclusions:An evaluation study[J].Geochimica et Cosmochimica Acta, 1995, 59(19):3997-4007. doi: 10.1016/0016-7037(95)00294-A
Ghazi A M, McCandless T E, Vanko D A, et al.New quantitative approach in trace elemental analysis of single fluid inclusions:Applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J].Journal of Analytical Atomic Spectrometry, 1996, 11(9):667-674. doi: 10.1039/ja9961100667
Moissette A, Shepherd T J, Chenery S R.Calibration strategies for the elemental analysis of individual aqueous fluid inclusions by laser ablation inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 1996, 11(3):177-185. doi: 10.1039/ja9961100177
Günther D, Audétat A, Frischknecht R.Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation-inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 1998, 13(4):263-270. doi: 10.1039/A707372K
McCandless T E, Lajack D J, Ruiz J, et al.Trace element determination of single fluid inclusions in quartz by laser ablation ICP-MS[J].Geostandards Newsletter, 1997, 21(2):279-287. doi: 10.1111/j.1751-908X.1997.tb00676.x
Shepherd T J, Ayora C, Cendón D I, et al.Quantitative solute analysis of single fluid inclusions in halite by LA-ICP-MS and cryo-SEM-EDS:Complementary microbeam techniques[J].European Journal of Mineralogy, 1998, 10(6):1097-1108. doi: 10.1127/ejm/10/6/1097
Loucks R R, Mavrogenes J A.Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions[J].Science, 1999, 284(5423):2159-2163. doi: 10.1126/science.284.5423.2159
Schafer B, Frischknecht R, Günther D, et al.Determination of trace-element partitioning between fluid and melt using LA-ICP-MS analysis of synthetic fluid inclusions in glass[J].European Journal of Mineralogy, 1999, 11(3):415-426. doi: 10.1127/ejm/11/3/0415
吴石头, 许春雪, Klaus Simon, 等.193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J].岩矿测试, 2017, 36(5):451-459. http://www.ykcs.ac.cn/article/id/071045ab-1633-4d90-9da7-a74fa5cbf0ca Wu S T, Xu C X, Klaus S, et al.Study on ablation behaviors and ablation rates of a 193nm ArF excimer laser system for selected substrates in LA-ICP-MS analysis[J].Rock and Mineral Analysis, 2017, 36(5):451-459. http://www.ykcs.ac.cn/article/id/071045ab-1633-4d90-9da7-a74fa5cbf0ca
周亮亮, 魏均启, 王芳, 等.LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J].岩矿测试, 2017, 36(4):350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007 Zhou L L, Wei J Q, Wang F, et al.Optimization of the working parameters of LA-ICP-MS and its application to zircon U-Pb dating[J].Rock and Mineral Analysis, 2017, 36(4):350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007
周文喜, 王华建, 付勇, 等.基于LA-ICP-MS多元素成像技术的早寒武世磷结核成因研究[J].岩矿测试, 2017, 36(2):97-106. doi: 10.15898/j.cnki.11-2131/td.2017.02.002 Zhou W X, Wang H J, Fu Y, et al.Study on the formation mechanism of phosphate nodules in the Early Cambrian period using LA-ICP-MS multi-element imaging technology[J].Rock and Mineral Analysis, 2017, 36(2):97-106. doi: 10.15898/j.cnki.11-2131/td.2017.02.002
王家松, 许雅雯, 彭丽娜, 等.应用激光拉曼光谱研究锆石LA-ICP-MSU-Pb定年中的α通量基体效应[J].岩矿测试, 2016, 35(5):458-467. doi: 10.15898/j.cnki.11-2131/td.2016.05.003 Wang J S, Xu Y W, Peng L N, et al.Laser-Raman spectroscopic study and LA-ICP-MS U-Pb dating of zircons from the Badaling granitic complex[J].Rock and Mineral Analysis, 2016, 35(5):458-467. doi: 10.15898/j.cnki.11-2131/td.2016.05.003
蓝廷广, 胡瑞忠, 范宏瑞, 等.流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用[J].岩石学报, 2017, 33(10):3239-3262. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201710017 Lan T G, Hu R Z, Fan H R, et al.In-situ analysis of major and trace elements in fluid inclusion and quartz:LA-ICP-MS method and applications to ore deposits[J].Acta Petrologica Sinica, 2017, 33(10):3239-3262. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201710017
Huang B, Yan Y, Piper J D A, et al.Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times[J].Earth-Science Reviews, 2018, 186:8-36. doi: 10.1016/j.earscirev.2018.02.004
Pettke T, Oberli F, Audétat A, et al.Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS[J].Ore Geology Reviews, 2012, 44:10-38. doi: 10.1016/j.oregeorev.2011.11.001
Iain M S, Anthony E W, Katherine M A, et al.Source of fluids forming distal Zn-Pb-Ag skarns:Evidence from laser ablation-inductively coupled plasma-mass spectrometry analysis of fluid inclusions from El Mochito, Honduras[J].Geology, 2008, 36(12):947-950. doi: 10.1130/G25214A.1
Anthony E W, Iain M S, Katherine M A, et al.The genesis of distal zinc skarns:Evidence from the mochito deposit, Honduras[J].Economic Geology, 2010, 105(8):1411-1440. doi: 10.2113/econgeo.105.8.1411
Shu Q H, Lai Y, Sun Y, et al.Ore genesis and hydrothermal evolution of the baiyinnuo'er zinc-lead skarn deposit, Northeast China:Evidence from isotopes (S, Pb) and fluid inclusions[J].Economic Geology, 2013, 108(4):835-860. doi: 10.2113/econgeo.108.4.835
Tobias F, Thomas W, Markus W, et al.Fluid mixing forms basement-hosted Pb-Zn deposits:Insight from metal and halogen geochemistry of individual fluid inclusions[J].Geology, 2013, 41(6):679-682. doi: 10.1130/G34092.1
Li W, Audetat A, Zhang J.The role of evaporites in the formation of magnetite-apatite deposits along the Middle and Lower Yangtze River, China:Evidence from LA-ICP-MS analysis of fluid inclusions[J].Ore Geology Reviews, 2015, 67:264-278. doi: 10.1016/j.oregeorev.2014.12.003
Zhang Y, Shao Y, Wu C, et al.LA-ICP-MS trace element geochemistry of garnets:Constraints on hydrothermal fluid evolution and genesis of the Xinqiao Cu-S-Fe-Au deposit, Eastern China[J].Ore Geology Reviews, 2017, 86:426-439. doi: 10.1016/j.oregeorev.2017.03.005
Levresse G, Bouabdellah M, Gasquet D, et al.Basinal brines at the origin of the imiter Ag-Hg deposit (Anti-Atlas, Morocco):Evidence from LA-ICP-MS data on fluid inclusions, Halogen signatures, and stable isotopes (H, C, O)[J].Economic Geology, 2016, 112(5):1753-1781.
Huang B, Yan Y, Piper J D A, et al.Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times[J].Earth-Science Reviews, 2018, 186:8-36. doi: 10.1016/j.earscirev.2018.02.004
Guillong M, Meier D L, Allan M M, et al.SILLS: A MATLAB-based Program for the Reduction of Laser Ablation ICP-MS Data of Homogeneous Materials and Inclusions[M]//Sylvester P.Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues.Quebec: Mineralogical Association of Canada, 2008: 328-333.
Longerich A P, Jackson S E, Canther D.Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J].Journal of Analytical Atomic Spectrometry, 1996, 11(9):899-904. doi: 10.1039/JA9961100899
Halter W E, Pettke T, Heinrich C A, et al.Major to trace element analysis of melt inclusions by laser-ablation ICP-MS:Methods of quantification[J].Chemical Geology, 2002, 183:63-86. doi: 10.1016/S0009-2541(01)00372-2
Allan M M, Yardley B, Forbes L J, et al.Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions[J].American Mineralogist, 2005, 90(11/12):1767-1775. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=am.2005.1822
Luo Y, Gao S, Longerich H P, et al.The uncertainty budget of the multi-element analysis of glasses using LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2007, 22:122-130. doi: 10.1039/B608010C
于倩.石盐中单个流体包裹体LA-ICP-MS测试方法研究[D].北京: 中国地质大学(北京), 2015. http://cdmd.cnki.com.cn/Article/CDMD-11415-1015387230.htm Yu Q.Study on the Analysis Method of LA-ICP-MS for the Individual Fluid Inclusions Hosted in Halite[D].Beijing: China University of Geosciences (Beijing), 2015. http://cdmd.cnki.com.cn/Article/CDMD-11415-1015387230.htm
李晓春, 范宏瑞, 胡芳芳, 等.单个流体包裹体LA-ICP-MS成分分析及在矿床学中的应用[J].矿床地质, 2010, 29(6):1017-1028. doi: 10.3969/j.issn.0258-7106.2010.06.006 Li X C, Fan H R, Hu F F, et al.An analysis of the individual fluid inclusion by LA-ICP-MS and its application to ore deposits[J].Mineral Deposits, 2010, 29(6):1017-1028. doi: 10.3969/j.issn.0258-7106.2010.06.006
Pettke T.Analytical Protocols for Element Concentration and Isotope Ratio Measurements in Fluid Inclusions by LA-(MC)-ICP-MS[M]//Sylvester P.Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues.Vancouver: Mineralogical Association of Canada, 2008: 189-218.
Guillong M, Hametner K, Reusser E, et al.Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193nm, 213nm and 266nm wavelengths[J].Geostandards and Geoanalytical Research, 2005, 29(3):315-331. doi: 10.1111/j.1751-908X.2005.tb00903.x
Bodnar R J.Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J].Geochimica et Cosmochimica Acta, 1993, 57:683-684. doi: 10.1016/0016-7037(93)90378-A
Kendrick M A, Phillips D.New constraints on the release of noble gases during in vacuo crushing and application to scapolite Br-Cl-I and 40Ar/39Ar age determinations[J].Geochimica et Cosmochimica Acta, 2009, 73(19), 5673-5692. doi: 10.1016/j.gca.2009.06.032
Kendrick M A.High precision Cl, Br and I determina-tions in mineral standards using the noble gas method[J].Chemical Geology, 2012, 292-293:116-126. doi: 10.1016/j.chemgeo.2011.11.021
Hammerli J, Rusk B, Spandler C, et al.In situ quantification of Br and Cl in minerals and fluid inclusions by LA-ICP-MS:A powerful tool to identify fluid sources[J].Chemical Geology, 2013, 337/338:75-87. doi: 10.1016/j.chemgeo.2012.12.002
Stoffell B, Wilkinson J J, Jeffries T E M, et al.Transport and deposition in hydrothermal veins revealed by 213nm UV laser ablation microanalysis of single fluid inclusions[J].American Journal of Science, 2004, 304(6):533-557. doi: 10.2475/ajs.304.6.533
Leisen M, Dubessy J, Boiron M.Improvement of the determination of element concentrations in quartz-hosted fluid inclusions by LA-ICP-MS and Pitzer thermodynamic modeling of ice melting temperature[J].Geochimica et Cosmochimica Acta, 2012, 90:110-125. doi: 10.1016/j.gca.2012.04.040
Pettke T, Oberli F, Heinrich C A.The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions[J].Earth and Planetary Science Letters, 2010, 296(3/4):267-277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=15a0b43ff1e8c424b8433b8fc51fabcd
Grubbs F E.Procedures for detecting outlying observations in samples[J].Techno-Metrics, 1969, 11:1-21. doi: 10.1080/00401706.1969.10490657
Frezzotti M L, Tecce F, Casagli A.Raman spectroscopy for fluid inclusion analysis[J].Journal of Geochemical Exploration, 2012, 112:1-20. doi: 10.1016/j.gexplo.2011.09.009
Guillong M, Latkoczy C, Seo J H, et al.Determination of sulfur in fluid inclusions by laser ablation ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2008, 23(12):1581-1589. doi: 10.1039/b807383j
Schlegel T U, Wälle M, Steele M M, et al.Accurate and precise quantification of major and trace element compositions of calcic-sodic fluid inclusions by combined microthermometry and LA-ICP-MS analysis[J].Chemical Geology, 2012, 334:144-153. doi: 10.1016/j.chemgeo.2012.10.001
胡圣虹, 胡兆初, 刘勇胜, 等.单个流体包裹体元素化学组成分析新技术——激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)[J].地学前缘, 2001, 8(4):434-440. doi: 10.3321/j.issn:1005-2321.2001.04.026 Hu S H, Hu Z C, Liu Y S, et al.New techniques of major and minor elemental analysis in individual fluid inclusion-Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J].Earth Science Frontiers, 2001, 8(4):434-440. doi: 10.3321/j.issn:1005-2321.2001.04.026