The Content and Distribution Characteristics of Heavy Metals in Root Soils in the Jiajika Lithium Resource Area, Western Sichuan Province
-
摘要: 锂能源金属的战略地位不断提高,与锂矿床及锂金属相关的研究也在不断跟进,锂矿区土壤重金属污染近年来持续受到关注,其含量分布情况值得深入研究。本文对亚洲最大的锂矿区——川西甲基卡根系土壤环境进行重金属含量监测,调查和评价锂矿区土壤重金属含量水平及其安全性。2016-2018年于川西甲基卡锂资源富集区采集根系土壤样品68件,采用电感耦合等离子体质谱法(ICP-MS)测定根系土壤Cd、As、Pb、Cr、Cu、Ni、Zn含量。测试结果表明,甲基卡矿区根系土壤Cd、As、Pb、Cr、Cu、Ni、Zn含量平均值分别为0.13、15.31、25.47、60.57、16.12、23.59、66.83mg/kg,与2018年8月最新颁布的农用地土壤标准对比,无一超标,均低于风险筛选值及管制值。常见矿床的尾矿库区土壤一般存在严重的重金属污染,而甲基卡尾矿库土壤重金属含量均低于环境标准限值,且矿业活动停止的三年期间尾矿库区根系土壤中Cd、As、Cr含量明显呈逐年下降趋势。本研究认为,选矿厂房及尾矿库周边根系土壤重金属由于人为源的存在有一定的富集现象,但不构成危害,废弃物对环境污染小。要点
(1) 调查了亚洲最大的锂辉石矿区三年间根系土壤重金属含量水平及时空分布特征。
(2) 矿区根系土壤重金属含量水平均低于最新发布的环境限值,处于安全范围。
(3) 选矿厂房和尾矿库由于人为源的影响存在轻微的重金属富集现象,但远低于环境限值。
HIGHLIGHTS(1) The temporal and spatial distribution characteristics of heavy metal content in root soils in the largest spodumene mine in Asia were investigated.
(2) The level of heavy metal in the root soils of the mining area was lower than the newly released environmental limit and was in a safe range.
(3) The beneficiation area and tailings pond had slight heavy metal enrichment due to the influence of anthropogenic sources, but far below the environmental limit.
Abstract:BACKGROUNDWhen inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine the rare earth elements (REE) in the barite-associated light rare earth ores, Ba and light rare earth elements La, Ce, Pr, Nd, Sm, cause severe mass spectral overlap interference to the medium and heavy rare earths. Therefore, under the condition that complete digestion of oress, if the appropriate pretreatment method can be selected to achieve effective separation of the target elements from the matrix, it will be beneficial to reduce mass spectrum interferences.OBJECTIVES To reduce the mass spectrum interferences by establishing a simple and effective pretreatment method for separation of rare earth elements from barium and other coexisting elements in barite-associated rare earth ores.METHODSThe barite-associated rare earth ores samples were fused with sodium peroxide and sodium carbonate. After dissolution of the fusion cake, the target REE and the undesired barium were precipitated in triethanolamine solution, but some matrix elements like Si, Fe, Mg, and Al in samples, and most fusion agents, were separated by filtration. The target REE were secondly precipitated in ammonium hydroxide after dissolution of the precipitates by acid, so that Ba, Sr and Ca could be separated from REE. The separation exceeds 96%, so the mass spectrum interferences caused by barium polyatomic ions were effectively reduced. In addition, the interference correction coefficients by measuring the interference concentration at m/z 138-175 of the high concentration lighter rare earths standard single element solution were adopted to account for the oxide and hydroxide overlap problem for the determination of middle and heavier rare earth elements.RESULTSThe validity of the method was evaluated by analyses of rare earth ores certified reference materials and the results were in good agreement with certified values (|RE| < 10%). For the actual sample analysis of the barite-associated rare earth ores, the relative standard deviations (n=12) were from 0.5% to 4.6%, which proved that the method can be used to analyze rare earth elements in high-Ba ores.CONCLUSIONSThe results demonstrate that this method is both practical and effective for rare earth elements analysis in barite-associated rare earth ores. -
致谢: 全部样品的测试工作由国家地质实验测试中心完成,样品测试过程中得到了屈文俊研究员、马生凤教授级高级工程师及该单位其他工作人员的悉心指导和大力帮助,在此一并致谢。
-
表 1 甲基卡矿区2016—2018年根系土壤重金属元素含量测试结果
Table 1 Heavy metal content in root soils in Jiajika mining area from 2016 to 2018
采样时间
(年份)采样点位置 样品编号 重金属元素含量(mg/kg) Cd As Pb Cr Cu Ni Zn 2016 融达厂房海子北侧 16JJKS01 0.18 14.75 25.67 66.97 20.49 27.35 89.29 绝情谷海子东侧 16JJKS02 0.13 11.61 29.42 64.59 20.59 24.74 35.84 绝情谷海子东侧 16JJKS04 0.21 8.74 26.50 66.41 17.49 29.32 55.05 石英采矿址裂隙水旁 16JJKS05 0.07 19.42 29.34 62.24 17.45 17.65 45.70 绝情谷海子东侧 16JJKS07 0.24 8.58 25.34 65.06 17.38 28.79 58.94 508脉北侧干流旁 16JJKS09 0.12 14.83 30.14 75.89 18.98 25.37 49.29 36号点上游支流旁 16JJKS10 0.10 13.54 29.41 76.19 17.51 23.46 60.84 308号脉 16JJKS11 0.06 29.37 31.85 58.07 19.24 25.57 42.89 308脉旁海子边 16JJKS12 0.07 8.59 20.77 43.40 10.78 17.60 58.42 X03脉上游支流旁 16JJKS14 0.12 13.00 24.61 60.57 14.59 21.08 46.76 134脉矿区支流旁 16JJKS16 0.14 11.17 23.36 69.15 19.53 28.70 77.04 仁尼措东侧干流旁 16JJKS22 0.21 28.40 20.90 46.40 21.10 23.00 40.00 仁尼措东侧海子边 16JJKS23 0.09 11.20 30.20 56.10 11.50 17.00 41.90 X03脉 16JJKS26 0.21 12.40 25.00 61.40 15.50 23.70 62.30 X03脉 16JJKS27 0.13 14.30 28.20 71.20 18.50 25.20 75.30 X03脉 16JJKS30 0.15 29.20 26.30 64.50 16.70 22.40 63.50 X03脉 16JJKS31 0.17 12.90 28.10 66.00 19.50 22.20 79.50 308东侧草地 16JJKS32 0.16 14.20 28.70 69.60 19.30 18.90 80.70 X05脉 16JJKS33 0.11 4.18 28.00 63.10 19.10 26.70 43.40 X03脉 16JJKS35 0.08 8.55 24.30 56.10 15.20 23.50 52.80 308号脉 16JJKS36 0.13 5.84 24.90 50.20 13.20 21.00 51.60 矿区支流旁 16JJKS38 0.03 9.91 25.90 62.50 15.60 20.50 63.20 134脉下游 16JJKS39 0.08 7.65 23.70 58.20 14.50 20.20 43.10 尾矿库 16JJKS40 0.13 37.80 25.20 72.60 18.70 24.90 81.10 尾矿库下游 16JJKS42 0.18 29.80 23.70 67.90 26.30 32.80 105.00 尾矿库下游 16JJKS43 0.08 16.60 27.20 81.80 25.30 36.20 89.60 308脉北侧干流旁 16JJKS46 0.10 8.74 23.40 61.20 17.70 24.60 52.00 308脉北侧支流旁 16JJKS48 0.10 4.17 23.40 56.50 14.10 16.00 42.50 308脉北侧支流旁 16JJKS49 0.21 6.47 20.80 52.20 11.40 18.30 48.70 308脉北侧支流旁 16JJKS52 0.12 10.30 23.10 61.70 24.10 27.30 74.40 矿区支流旁 16JJKS53 0.14 11.00 28.10 72.50 23.00 34.40 60.70 2017 绝情谷海子边 17JJKS01 0.08 7.07 24.90 52.30 10.00 17.90 35.70 出拉海子东侧支流旁 17JJKS02 0.19 10.60 23.60 56.40 18.00 25.90 48.40 308脉上游支流旁 17JJKS04 0.29 9.82 20.20 47.50 14.70 18.20 116.00 308脉西北侧干流旁 17JJKS05 0.17 16.60 24.10 53.10 11.90 21.80 65.40 308脉干流旁 17JJKS06 0.19 29.10 26.20 56.60 17.90 27.60 60.70 308脉海子边 17JJKS07 0.12 19.30 31.60 60.20 17.10 21.30 54.20 X03脉上游 17JJKS08 0.13 12.20 23.10 62.50 11.20 26.00 57.00 134脉西侧干流旁 17JJKS09 0.09 8.08 26.50 62.20 14.60 22.20 36.30 134脉矿区支流旁 17JJKS10 0.11 12.40 25.20 73.40 16.10 25.60 43.40 134脉下游 17JJKS11 0.15 7.55 24.60 59.40 12.40 20.50 73.10 融达北西海子边 17JJKS12 0.11 9.46 24.20 68.10 15.90 28.60 65.30 融达北海子边 17JJKS13 0.15 11.70 24.20 45.00 16.00 15.80 32.80 尾矿库 17JJKS14 0.11 32.80 26.90 67.80 18.80 27.30 99.40 融达北海子边 17JJKS21 0.12 11.00 29.90 72.40 16.70 24.60 94.60 融达东北坡 17JJKS22 0.25 25.30 23.00 43.50 20.90 21.40 124.00 融达东北坡 17JJKS23 0.12 21.70 26.50 72.80 17.00 23.40 75.50 融达东北坡 17JJKS24 0.15 11.30 25.70 68.40 17.80 24.40 88.00 融达东北坡 17JJKS25 0.12 20.50 28.40 74.00 20.50 26.80 85.80 融达东北坡 17JJKS26 0.16 9.22 27.80 70.60 16.60 25.20 101.00 融达东北坡 17JJKS28 0.23 7.49 22.20 33.60 11.90 13.60 56.00 烧炭沟河边片岩旁 17STGS01 0.26 25.50 21.40 66.20 12.50 22.20 87.10 烧炭沟含锂辉石伟晶岩旁 17STGS02 0.23 16.10 28.60 68.60 19.00 23.20 103.00 烧炭沟伟晶岩转石旁 17STGS03 0.28 10.60 32.70 71.40 16.60 25.80 82.60 烧炭沟海子边 17STGS04 0.18 13.80 32.70 78.40 15.20 27.60 80.90 2018 308脉 18JJKS01 0.08 18.40 28.90 66.30 16.70 31.30 80.00 134脉矿区支流旁 18JJKS02 0.11 10.30 27.90 32.70 10.50 15.30 62.30 134脉下游 18JJKS03 0.07 12.20 24.20 60.60 18.10 26.60 71.70 融达北西方向支流 18JJKS04 0.08 7.10 21.70 65.70 14.10 38.70 65.60 融达海子北侧 18JJKS05 0.03 21.80 21.70 60.10 14.80 26.40 97.40 尾矿库 18JJKS06 0.03 17.50 20.60 57.10 15.20 22.70 89.60 尾矿库支流旁 18JJKS07 0.03 38.50 18.20 33.50 9.11 12.80 59.00 甲基措海子北侧 18JJKS08 0.08 7.61 25.50 45.30 9.79 19.20 51.00 308脉上游支流旁 18JJKS09 0.03 6.88 21.20 55.20 8.87 22.10 53.60 308脉上游支流旁 18JJKS10 0.09 26.70 28.50 75.70 15.60 27.10 70.20 308脉干流旁 18JJKS11 0.10 33.50 30.20 52.90 11.70 24.30 47.00 融达南西侧 18JJKS13 0.03 7.34 10.30 11.20 5.06 9.93 58.50 融达南西侧 18JJKS14 0.09 37.20 23.10 57.70 13.00 22.50 101.00 表 2 甲基卡矿区不同区域根系土壤重金属元素含量统计结果
Table 2 Statistical results of heavy metal content of root soils in different areas of Jiajika mining area
重金属
元素参数 尾矿库区 选矿
厂房已开采
矿区未开采资
源富集区无矿业活动区 甲基卡根系
土壤均值全国A层
土壤背景值Cd 最小值(mg/kg) 0.03 0.03 0.03 0.10 0.03 0.13 0.10 最大值(mg/kg) 0.18 0.25 0.29 0.28 0.24 平均值(mg/kg) 0.09 0.13 0.11 0.17 0.13 As 最小值(mg/kg) 16.60 7.10 5.84 4.18 4.17 15.32 11.20 最大值(mg/kg) 38.50 37.20 33.50 29.20 28.40 平均值(mg/kg) 28.83 15.42 15.37 14.41 11.28 Pb 最小值(mg/kg) 18.20 10.30 20.20 23.10 20.77 25.47 26.00 最大值(mg/kg) 27.20 29.90 31.85 32.70 30.20 平均值(mg/kg) 23.63 23.88 26.59 26.84 25.27 Cr 最小值(mg/kg) 33.50 11.20 32.70 60.57 43.40 60.57 61.00 最大值(mg/kg) 81.80 74.00 76.19 78.40 72.50 平均值(mg/kg) 63.45 57.86 60.58 66.26 57.91 Cu 最小值(mg/kg) 9.11 5.06 8.87 11.20 9.79 16.12 22.60 最大值(mg/kg) 26.30 20.90 19.53 19.50 24.10 平均值(mg/kg) 18.90 15.77 15.40 16.34 16.04 Ni 最小值(mg/kg) 12.80 9.93 15.30 21.08 16.00 23.59 26.90 最大值(mg/kg) 36.20 38.70 31.30 27.60 34.40 平均值(mg/kg) 26.12 23.48 23.69 24.22 22.32 Zn 最小值(mg/kg) 59.00 32.80 36.30 43.40 35.70 66.83 74.2 最大值(mg/kg) 105.00 124.00 116.00 103.00 80.70 平均值(mg/kg) 87.28 81.06 60.74 69.45 53.30 表 3 农用地(非水田)土壤污染风险筛选值、管制值及矿区土壤重金属含量对比(基本项目)
Table 3 Risk screening values and control values for soil contamination of agricultural land and heavy metal content in root soils in Jiajika mining area (non-paddy field)
污染物
项目风险筛选值
(mg/kg)
pH≤5.5风险管制值
(mg/kg)pH≤5.5甲基卡根系土壤重金属
元素含量(mg/kg)Cd 0.3 1.5 0.03~0.29 Hg 1.3 2.0 - As 40 200 4.17~38.5 Pb 79 400 10.3~32.7 Cr 150 800 11.2~81.8 Cu 50 - 5.06~26.3 Ni 60 - 9.3~38.7 Zn 200 - 32.8~124 -
余广学, 张金震, 王烨, 等.郑州市土壤重金属污染状况和质量评价[J].岩矿测试, 2015, 34(3):340-345. doi: 10.15898/j.cnki.11-2131/td.2015.03.014 Yu G X, Zhang J Z, Wang Y, et al.Investigation and evaluation of heavy metal pollution in soil from Zhengzhou City[J].Rock and Mineral Analysis, 2015, 34(3):340-345. doi: 10.15898/j.cnki.11-2131/td.2015.03.014
郑喜珅, 鲁安怀, 高翔, 等.土壤中重金属污染现状与防治方法[J].土壤与环境, 2002, 11(1):79-84. doi: 10.3969/j.issn.1674-5906.2002.01.020 Zheng X S, Lu A H, Gao X, et al.Contamination of heavy metals in soil present situation and method[J].Soil and Environmental Science, 2002, 11(1):79-84. doi: 10.3969/j.issn.1674-5906.2002.01.020
刘勇, 岳玲玲, 李晋昌.太原市土壤重金属污染及其潜在生态风险评价[J].环境科学学报, 2011, 31(6):1285-1293. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201106023 Liu Y, Yue L L, Li J C.Evaluation of heavy metal contamination and its potential ecological risk to the soil in Taiyuan, China[J].Acta Scientiae Circumstantiae, 2011, 31(6):1285-1293. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201106023
Fernández C J, Barba B C, GonzáLez I, et al.Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain)[J].Water, Air, and Soil Pollution, 2009, 200(1-4):211-226. doi: 10.1007/s11270-008-9905-7
徐友宁, 张江华, 柯海玲, 等.矿业活动区农田土壤重金属累积风险的评判方法——以小秦岭金矿区为例[J].地质通报, 2014, 33(8):1097-1105. doi: 10.3969/j.issn.1671-2552.2014.08.002 Xu Y N, Zhang J H, Ke H L, et al.An assessment method for heavy metal cumulative risk on farmland soil in the mining area:A case study of the Xiaoqinling gold mining area[J].Geological Bulletin of China, 2014, 33(8):1097-1105. doi: 10.3969/j.issn.1671-2552.2014.08.002
陈小敏, 朱保虎, 杨文, 等.密云水库上游金矿区土壤重金属空间分布、来源及污染评价[J].环境化学, 2015, 34(12):2248-2256. doi: 10.7524/j.issn.0254-6108.2015.12.2015071601 Chen X M, Zhu B H, Yang W, et al.Sources, spatial distribution and contamination assessments of heavy metals in gold mine area soils of Miyun Reservoir upstream, Beijing, China[J].Environmental Chemistry, 2015, 34(12):2248-2256. doi: 10.7524/j.issn.0254-6108.2015.12.2015071601
Candeias C, Melo R, Ávila P F, et al.Heavy metal pollution in mine-soil-plant system in S.Francisco de Assis-Panasqueira mine (Portugal)[J].Applied Geochemistry, 2014, 44(12):12-26. http://cn.bing.com/academic/profile?id=c26255129381c373ed38bb0a46e9b008&encoded=0&v=paper_preview&mkt=zh-cn
常玉虎, 赵元艺, 曹冲, 等.德兴铜矿区主要流域内环境介质中重金属含量特征与健康风险评价[J].地质学报, 2015, 89(5):889-908. doi: 10.3969/j.issn.0001-5717.2015.05.005 Chang Y H, Zhao Y Y, Cao C, et al.Characteristics of heavy metals content and assessment of health risk in different environment media in the Dexing copper mining area[J].Acta Geologica Sinica, 2015, 89(5):889-908. doi: 10.3969/j.issn.0001-5717.2015.05.005
毛香菊, 马亚梦, 邹安华, 等.内蒙古草原某铜钼矿区土壤重金属污染特征研究[J].环境科学与技术, 2016, 39(6):156-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201606029 Mao X J, Ma Y M, Zou A H, et al.Characteristics of heavy metals in soils from a copper-molybdenum mining area of grassland in Inner Mongolia[J].Environmental Science & Technology, 2016, 39(6):156-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201606029
兰砥中, 雷鸣, 周爽, 等.湘南某铅锌矿区周围农业土壤中重金属污染及其潜在风险评价[J].环境化学, 2014, 33(8):1307-1313. http://d.old.wanfangdata.com.cn/Periodical/hjhx201408008 Lan D Z, Lei M, Zhou S, et al.Heavy metals pollution and potential ecological risk in soils around Pb/Zn mine area in Hunan Province[J].Environmental Chemistry, 2014, 33(8):1307-1313. http://d.old.wanfangdata.com.cn/Periodical/hjhx201408008
余志, 陈凤, 张军方, 等.锌冶炼区菜地土壤和蔬菜重金属污染状况及风险评价[J].中国环境科学, 2019, 39(5):2086-2094. doi: 10.3969/j.issn.1000-6923.2019.05.037 Yu Z, Chen F, Zhang J F, et al.Contamination and risk of heavy metals in soils and vegetables from zinc smelting area[J].China Environmental Science, 2019, 39(5):2086-2094. doi: 10.3969/j.issn.1000-6923.2019.05.037
金晓丹, 罗栋源, 马华菊, 等.广西某铅锌矿区土壤镉、铅、砷形态分布对水稻重金属的影响[J].西南农业学报, 2018, 31(6):1293-1299. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201806031 Jin X D, Luo D Y, Ma H J, et al.Effect of soil Cd, Pb, As and their fractions distribution on corresponding heavy metals in rice surrounding lead-zinc mines in Guangxi Province[J].Southwest China Journal of Agricultural Science, 2018, 31(6):1293-1299. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201806031
邢奕, 司艳晓, 洪晨, 等.铁矿区重金属污染对土壤微生物群落变化的影响[J].环境科学研究, 2013, 26(11):1201-1211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj201311008 Xing Y, Si Y X, Hong C, et al.Impact of long term heavy metal pollution on microbial community in iron mine soil[J].Research of Environmental Science, 2013, 26(11):1201-1211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj201311008
唐文杰, 黄江波, 余谦, 等.锰矿区农作物重金属含量及健康风险评价[J].环境科学与技术, 2015, 38(增刊1):464-473. Tang W J, Huang J B, Yu Q, et al.Analysis on the content of heavy metal in the food crop sand assessment on human health risk of manganese mine[J].Environmental Science & Technology, 2015, 38(Suppplement 1):464-473.
刘胜洪, 张雅君, 杨妙贤, 等.稀土尾矿区土壤重金属污染与优势植物累积特征[J].生态环境学报, 2014, 23(6):1042-1045. doi: 10.3969/j.issn.1674-5906.2014.06.021 Liu S H, Zhang Y J, Yang M X, et al.Heavy metal contamination of soil and concentration of dominant plants in rare earth mine tailing area[J].Ecology and Environmental Sciences, 2014, 23(6):1042-1045. doi: 10.3969/j.issn.1674-5906.2014.06.021
徐狮.离子型稀土矿原地浸矿土壤重金属迁移转化规律研究[D].南昌: 江西理工大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10407-1017223392.htm Xu S.Study on Migration and Transformation of Heavy Metals in in-situ Leaching Soil of Ionic Rare Earth Ore[D].Nanchang: Jiangxi University of Science and Technology, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10407-1017223392.htm
Claveria R J R, Perez T R, Perez R E C, et al.The identification of indigenous Cu and As metallophytes in the Lepanto Cu-Au mine, Luzon, Philippines[J].Environmental Monitoring and Assessment, 2019, 191(3):185. doi: 10.1007/s10661-019-7278-6
陈璐, 文方, 程艳, 等.铅锌尾矿库周边土壤重金属污染特征及环境风险[J].中国环境监测, 2017, 33(1):82-87. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201701018 Chen L, Wen F, Cheng Y, et al.Study on contamination characteristics and environmental risk of heavy metals in the soils around Pb-Zn tailings reservoir[J].Environmental Monitoring in China, 2017, 33(1):82-87. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201701018
王登红, 王瑞江, 付小方, 等.对能源金属矿产资源基地调查评价基本问题的探讨——以四川甲基卡大型锂矿基地为例[J].地球学报, 2016, 37(4):471-480. doi: 10.3975/cagsb.2016.04.09 Wang D H, Wang R J, Fu X F, et al.A discussion on the major problems related to geological investigation and assessment for energy metal resources base:A case study of the Jiajika large lithium mineral resource base[J].Acta Geoscientica Sinica, 2016, 37(4):471-480. doi: 10.3975/cagsb.2016.04.09
王登红, 孙艳, 刘喜方, 等.锂能源金属矿产深部探测技术方法与找矿方向[J].中国地质调查, 2018, 5(1):1-9. http://d.old.wanfangdata.com.cn/Periodical/zgdzdc201801001 Wang D H, Sun Y, Liu X F, et al.Deep exploration technology and prospecting direction for lithium energy metal[J].Geological Survey of China, 2018, 5(1):1-9. http://d.old.wanfangdata.com.cn/Periodical/zgdzdc201801001
王登红, 吴西顺.21世纪的能源金属——锂的奥秘[J].国土资源科普与文化, 2017(4):22-27. http://www.cnki.com.cn/Article/CJFDTotal-GTKW201704007.htm Wang D H, Wu X S.Energy metals in the 21st century:The mystery of lithium[J].Land Resources Science and Culture, 2017(4):22-27. http://www.cnki.com.cn/Article/CJFDTotal-GTKW201704007.htm
王登红, 付小方.四川甲基卡外围锂矿找矿取得突破[J].岩矿测试, 2013, 32(6):987. doi: 10.3969/j.issn.0254-5357.2013.06.023 Wang D H, Fu X F.A breakthrough in the prospecting of lithium deposits in the periphery of Sichuan Jiajika[J].Rock and Mineral Analysis, 2013, 32(6):987. doi: 10.3969/j.issn.0254-5357.2013.06.023
王登红, 刘丽君, 侯江龙, 等.初论甲基卡式稀有金属矿床"五层楼+地下室"勘查模型[J].地学前缘, 2017, 24(5):1-7. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201705002.htm Wang D H, Liu L J, Hou J L, et al.A preliminary review of the application of "Five levels+Basement" model for Jiajika-style rare metal deposits[J].Earth Science Frontiers, 2017, 24(5):1-7. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201705002.htm
刘丽君, 付小方, 王登红, 等.甲基卡式稀有金属矿床的地质特征与成矿规律[J].矿床地质, 2015, 34(6):1187-1198. http://d.old.wanfangdata.com.cn/Periodical/kcdz201506008 Liu L J, Fu X F, Wang D H, et al.Geological characteristics and metallogeny of Jiajika style rare metal deposits[J].Mineral Deposit, 2015, 34(6):1187-1198. http://d.old.wanfangdata.com.cn/Periodical/kcdz201506008
付小方, 袁蔺平, 王登红, 等.四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型[J].矿床地质, 2015, 34(6):1172-1186. http://d.old.wanfangdata.com.cn/Periodical/kcdz201506007 Fu X F, Yuan L P, Wang D H, et al.Mineralization characteristics and prospecting model of newly discovered X03 rare metal vein in Jiajika orefield, Sichuan[J].Mineral Deposit, 2015, 34(6):1172-1186. http://d.old.wanfangdata.com.cn/Periodical/kcdz201506007
鲁照玲, 胡红云, 姚洪.土壤中重金属元素电感耦合等离子体质谱定量分析方法的研究[J].岩矿测试, 2012, 31(2):241-246. doi: 10.3969/j.issn.0254-5357.2012.02.008 Lu Z L, Hu H Y, Yao H.Study on quantitative analysis method for several heavy metals in soil sample by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2012, 31(2):241-246. doi: 10.3969/j.issn.0254-5357.2012.02.008
苏荣, 王晓飞, 洪欣, 等.微波消解-电感耦合等离子体质谱法测定土壤中10种重金属元素[J].现代化工, 2015, 35(1):175-177. http://d.old.wanfangdata.com.cn/Periodical/xdhg201501043 Su R, Wang X F, Hong X, et al.Determination of 10 elements in soil by inductively coupled plasma-mass spectrometry with microwave digestion[J].Modern Chemical Industry, 2015, 35(1):175-177. http://d.old.wanfangdata.com.cn/Periodical/xdhg201501043
李自强, 李小英, 钟琦, 等.电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J].岩矿测试, 2016, 35(1):37-41. doi: 10.15898/j.cnki.11-2131/td.2016.01.007 Li Z Q, Li X Y, Zhong Q, et al.Determination of Cr, Cu, Cd and Pb in soil samples by inductively coupled plasma-mass spectrometry for an investigation of heavy metal pollution[J].Rock and Mineral Analysis, 2016, 35(1):37-41. doi: 10.15898/j.cnki.11-2131/td.2016.01.007
国家环境保护局.中国元素土壤背景值[M].北京:中国环境科学出版社, 1990. National Environmental Protection Agency.Background Value of Elements in Chinese Soil[M].Beijing:China Environmental Science Press, 1990.
贾婷, 贾洋洋, 余淑娟, 等.闽东某钼矿周边农田土壤钼和重金属的污染状况[J].中国环境监测, 2015, 31(1):45-49. doi: 10.3969/j.issn.1002-6002.2015.01.009 Jia T, Jia Y Y, Yu S J, et al.Pollution of molybdenum and heavy metals of the soils and rice near a molybdenum mining site in Eastern Fujian[J].Environmental Monitoring in China, 2015, 31(1):45-49. doi: 10.3969/j.issn.1002-6002.2015.01.009
王斐, 黄益宗, 王小玲, 等.江西钨矿周边土壤重金属生态风险评价:不同评价方法的比较[J].环境化学, 2015, 34(2):225-233. http://d.old.wanfangdata.com.cn/Periodical/hjhx2015020005 Wang F, Huang Y Z, Wang X L, et al.Ecological risk assessment of heavy metals in surrounding soils of tungsten ores:Comparison of different evaluation methods[J].Environmental Chemistry, 2015, 34(2):225-233. http://d.old.wanfangdata.com.cn/Periodical/hjhx2015020005
卓静, 朱延年.秦岭主脊区年降水量空间插值最优方法研究[J].干旱区地理, 2017, 40(3):555-563. http://d.old.wanfangdata.com.cn/Periodical/ghqdl201703009 Zhuo J, Zhu Y N.Spatial interpolation methods of annual average precipitation on Qinling Mountains[J].Arid Land Geography, 2017, 40(3):555-563. http://d.old.wanfangdata.com.cn/Periodical/ghqdl201703009
贾悦, 崔宁博, 魏新平, 等.基于反距离权重法的长江流域参考作物蒸散量算法适用性评价[J].农业工程学报, 2016, 32(6):130-138. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201606018 Jia Y, Cui N B, Wei X P, et al.Applicability evaluation of different algorithm for reference crop evapotrans-piration in Yangtze River Basin based on inverse distance weighted method[J].Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6):130-138. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201606018
李凯, 赵华甫, 吴克宁, 等.土壤重金属Cd污染指数的适宜插值方法和合理采样数量研究[J].土壤通报, 2016, 47(5):1056-1064. http://d.old.wanfangdata.com.cn/Periodical/trtb201605006 Li K, Zhao H F, Wu K N, et al.Suitable interpolation method and reasonable sampling quantity of Cd pollution index in soil[J].Chinese Journal of Soil Science, 2016, 47(5):1056-1064. http://d.old.wanfangdata.com.cn/Periodical/trtb201605006
解恒燕, 张深远, 侯善策, 等.降水量空间插值方法在小样本区域的比较研究[J].水土保持研究, 2018, 25(3):117-121. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201803020 Xie H Y, Zhang S Y, Hou S C, et al.Comparison research on rainfall interpolation methods in small sample areas[J].Research of Soil and Water Conservation, 2018, 25(3):117-121. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201803020