• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

新疆额尔齐斯构造带哲兰德金矿白云母40Ar/39Ar同位素年龄及地质意义

刘国仁, 李彦, 王蕊, 王海培, 杨成栋, 陈琦, 祁世军

刘国仁, 李彦, 王蕊, 王海培, 杨成栋, 陈琦, 祁世军. 新疆额尔齐斯构造带哲兰德金矿白云母40Ar/39Ar同位素年龄及地质意义[J]. 岩矿测试, 2018, 37(6): 705-712. DOI: 10.15898/j.cnki.11-2131/td.201707130118
引用本文: 刘国仁, 李彦, 王蕊, 王海培, 杨成栋, 陈琦, 祁世军. 新疆额尔齐斯构造带哲兰德金矿白云母40Ar/39Ar同位素年龄及地质意义[J]. 岩矿测试, 2018, 37(6): 705-712. DOI: 10.15898/j.cnki.11-2131/td.201707130118
Guo-ren LIU, Yan LI, Rui WANG, Hai-pei WANG, Cheng-dong YANG, Qi CHEN, Shi-jun QI. 40Ar/39Ar Dating of Muscovite from the Zhelande Au Deposit, Irtysh Tectonic Zone, Xinjiang and Its Geological Implications[J]. Rock and Mineral Analysis, 2018, 37(6): 705-712. DOI: 10.15898/j.cnki.11-2131/td.201707130118
Citation: Guo-ren LIU, Yan LI, Rui WANG, Hai-pei WANG, Cheng-dong YANG, Qi CHEN, Shi-jun QI. 40Ar/39Ar Dating of Muscovite from the Zhelande Au Deposit, Irtysh Tectonic Zone, Xinjiang and Its Geological Implications[J]. Rock and Mineral Analysis, 2018, 37(6): 705-712. DOI: 10.15898/j.cnki.11-2131/td.201707130118

新疆额尔齐斯构造带哲兰德金矿白云母40Ar/39Ar同位素年龄及地质意义

基金项目: 

新疆维吾尔自治区2014年国家高层次人才特殊支持计划项目 

新疆维吾尔自治区天山英才培养工程项目;新疆维吾尔自治区2014年国家高层次人才特殊支持计划项目

新疆维吾尔自治区天山英才培养工程项目 

详细信息
    作者简介:

    刘国仁, 博士, 教授级高级工程师, 从事矿产勘查及成矿预测研究。E-mail:467355307@qq.com

  • 中图分类号: P597.3;P619.273

40Ar/39Ar Dating of Muscovite from the Zhelande Au Deposit, Irtysh Tectonic Zone, Xinjiang and Its Geological Implications

  • 摘要: 哲兰德金矿是额尔齐斯构造带上重要的造山型金矿,产出于韧性剪切带中,金矿化赋存于黄铁矿化闪长岩脉、含金石英脉和黄铁矿化千枚岩中,矿化与韧脆性剪切变形有关。沿剪切面理发育的白云母、绿泥石等新生矿物,为测定金矿形成时代提供了依据。本研究利用白云母40Ar/39Ar年代学手段,确定了韧性剪切带的形成时代和金成矿时代。结果表明白云母坪年龄为295.4±1.6 Ma,韧性剪切变形和金成矿作用发生在295 Ma,略早于多拉纳萨依金矿形成时间。结合前人资料认为,新疆额尔齐斯构造带造山型金矿形成于295~270 Ma。
    要点

    (1) 哲兰德金矿是典型的造山型金矿,金矿化与韧脆性剪切变形有关。

    (2) 白云母坪年龄为295.4±1.6 Ma,金成矿作用发生在295 Ma。

    (3) 额尔齐斯构造带造山型金矿形成于295~270 Ma。

    HIGHLIGHTS

    (1) The Zhelande gold deposit was a typical orogenic gold deposit. The Au mineralization is related to ductile shear deformation.

    (2) The plateau age of the muscovite was 295.4±1.6 Ma, suggesting that the gold mineralization occurred at about 295 Ma.

    (3) The orogenic gold deposits in the Irtysh tectonic belt formed at 295-270 Ma.

  • 银作为土壤背景值的一个重要指标,是土壤环境监测、矿产资源和地球化学调查的常规检测元素,准确测定银含量在环境保护、监测工作和矿产资源预测等方面具有很重要的现实意义。土壤和水系沉积物中银的丰度很低,一般在ng/g级别,主要测试方法有石墨炉原子吸收光谱法[1-2]、交流电弧-发射光谱法[3-5]、电感耦合等离子体质谱法(ICP-MS)[6-8]等。其中,石墨炉原子吸收光谱法每次只能测定单个元素,测量时间长,且存在基体效应,需要选择合适的基体改进剂,不适用于批量样品的测定;交流电弧-发射光谱法的检出限相对较高,测定范围较窄,只适用于银硼锡钼等少数几种元素的测定;ICP-MS具备多元素同时测定、干扰少、检出限低、线性范围宽的特点,是环境、地质、农业等部门检测银的一种重要手段。

    ICP-MS法在测定银元素时,银的两个天然同位素107Ag和109Ag分别受到91Zr16O+90Zr16O1H+93Nb14N+93Nb16O+91Zr16OH2+92Zr16OH+等多原子离子质谱干扰。土壤和水系沉积物样品中铌、锆的含量远高于银,这些干扰的存在使得ICP-MS法直接测定土壤和水系沉积物样品中的银还存在一定的问题[7]。单四极杆ICP-MS法主要采取两类方法消除这些质谱干扰:一是通过前处理过程分离基体或富集银元素,包括三种途径:①采用王水[9-10]、逆王水[11]不完全分解样品,减少铌、锆的溶出量,从而实现银与铌、锆分离,但因该方法不能破坏硅酸盐结构,故可能导致银元素无法完全溶出,使得这种方式在应用上有一定的局限性;②采用氨水[12]、磷酸[13-14]等沉淀剂处理消解液以分离银元素和干扰基体,有效地解决了铌、锆干扰的问题,但这类操作过程复杂,可能存在沉淀吸附现象,对沉淀剂的纯度有一定的要求以防引入污染;③采用泡塑[15]、P507树脂[16]选择性吸附富集消解液中银元素,实现银与干扰基体分离,但操作繁琐,流程较长,不利于大批量样品测试。二是在测试过程中采用干扰消除技术:①采用膜去溶技术[17]减少溶剂进入等离子体,有效地抑制氧化物或氢氧化物的产生,可将锆的氧化物和氢氧化物产率降低至0.0005%,并通过多种类型地质样品验证方法的可行性,但一般实验室不具备膜去溶设备,且该设备对样品基体的要求较高;②采用在线干扰方程进行校正[18-19]实现了土壤和水系沉积物中银的测定,但实际应用过程中干扰系数并不相同;③采用碰撞/反应技术[20-23]可降低质谱干扰对测定的影响,如王家恒等[20]采用单四极杆ICP-MS反应模式能将2mg/L的铌、锆混合溶液对银的干扰降低250多倍,但对干扰更严重的样品其消除干扰能力有限,碰撞模式会降低灵敏度且不适用于铌、锆干扰较强的样品,针对不同类型的样品可能需要选用不同的去除干扰方法。相比于单四极杆ICP-MS,电感耦合等离子体串联质谱仪(ICP-MS/MS)在碰撞反应池前增加了一组四极杆质量过滤器,能够利用第一组四极杆(Q1)进行质量筛选,有效地筛选目标离子进入碰撞/反应池(Q2),通过各种反应气体(氧气、氨气、甲烷等)与待测离子或干扰离子反应,再通过第二组四极杆质量过滤器(Q3)检测通过碰撞反应池产生的反应生成物,使得待测离子和干扰离子分离从而降低干扰[24-26]

    本文探讨了采用ICP-MS/MS碰撞/反应技术消除铌、锆氧化物和氢氧化物对银测定的质谱干扰,选用三种气体(氦气、氧气、氨气)作为碰撞/反应气体,根据铌、锆对银的干扰情况和土壤及水系沉积物中三种元素的丰度选择合适的分析同位素,通过不同气体模式下m/z=109处银与铌、锆的氧化物和氢氧化物质谱行为及信号强度变化,研究了相应的干扰消除原理及效果并选择了合适的测定模式,优化气体流速考察了四种测定模式(氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式)的干扰消除程度并通过测定不同浓度铌、锆溶液进一步验证了四种模式消除干扰的效果。优化仪器条件后,比较了四种测定模式的检出限、灵敏度,并用土壤和水系沉积物国家标准物质进行了精密度、准确度验证实验,建立了采用不同模式准确分析土壤和水系沉积物中银含量的方法。

    NexION 5000型电感耦合等离子体串联质谱仪(美国PerkinElmer公司),进样系统包括PC3雾室制冷器、micro-flow雾化器、石英旋流雾室等。

    BSA-CW型万分之一分析天平(德国Sartorius公司);ST60型全自动石墨消解仪(中国普立泰科公司);Milli-Q型去离子水机(美国Millipore公司)等。

    1000mg/L银(Ag)、铌(Nb)、锆(Zr)、铑(Rh)标准溶液(国家有色金属及电子材料分析测试中心)。

    仪器调谐液:Be、Ce、Fe、In、Li、Mg、Pb、U的浓度均为200ng/L(美国PerkinElmer公司)。

    硝酸、盐酸、氢氟酸和高氯酸均为电子级(天津市风船化学试剂科技有限公司);去离子水(电阻率18.2MΩ·cm)。

    选取目标元素、干扰元素及干扰元素与目标元素比值均具有一定浓度梯度、样品性质有代表性的土壤标准物质GBW07403~GBW07405、GBW07407、GBW07451和水系沉积物标准物质GBW07302a、GBW07305a、GBW07309、GBW07311、GBW07375(中国地质科学院地球物理地球化学勘查研究所),其中银含量为0.040~4.4mg/kg,铌含量为6.2~64mg/kg,锆含量为87.6~500mg/kg;铌含量与银含量比值在8~1123倍之间,锆含量与银含量比值在48~7143倍之间。

    样品制备方法如下:称取0.1000g样品于50mL聚四氟乙烯消解管中,用去离子水润湿样品,加入5mL盐酸、10mL硝酸、5mL氢氟酸、1mL高氯酸,将消解管置于石墨消解仪上,先升温至120℃加热60min,再升温至160℃加热60min,最后升温至180℃加热至冒白烟,并蒸至白烟几乎冒尽,内溶物呈不流动状,趁热加入2%的硝酸溶液温热溶解残渣,冷却至室温后,用2%的硝酸溶液定容至50mL。同时做空白实验。

    产物离子扫描模式是指第一组四极杆设置一个固定的质荷比(m/z),使特定质荷比的离子进入碰撞/反应池与不同的气体发生作用;第二组四极杆质量过滤器扫描的是整个(或部分)质量范围,该模式可以用于研究所选前体离子与不同的气体发生作用后得到的反应产物离子。本实验采用该模式主要用于研究m/z=109处各种离子(109Ag+93Nb16O+91Zr16OH2+92Zr16OH+等)在不同气体条件(标准、氦气、氧气和氨气)下质谱行为及信号强度变化,从而确定选择合适的测量模式。

    ICP-MS/MS主要有两种测量模式:一种是原位质量模式(MS/MS),主要用于测量未与池气体反应的元素,检测具有初始质荷比的离子(Q1=Q3);另一种是质量转移模式(Mass-Shift),主要用于测量与池气体反应的元素,检测m/z值与其初始值不同的离子(Q1Q3),这两种模式均可搭配不同的碰撞/反应气体使用。本实验采用标准MS/MS模式、氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式和氨气Mass-Shift模式,比较不同测量模式下质谱干扰情况及消除效果,进行池气体流速优化和方法适用性研究。

    等离子体功率1600W;雾化气流速0.90L/min;雾室温度5.0℃;在线加入内标Rh,浓度为10μg/L;标准MS/MS模式、氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式和氨气Mass-Shift模式5种测量模式的参数见表 1,产物离子扫描模式除Q3设置为m/z =80~200外其他条件与上述测量模式相同。

    表  1  ICP-MS/MS仪器工作参数
    Table  1.  Working parameters of ICP-MS/MS instrument
    工作参数 标准MS/MS模式 氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式
    产物离子 109Ag+ 109Ag+ 109Ag+ 109Ag+ 109Ag17(NH3)2+
    Q1Q3(m/z) 109→109 109→109 109→109 109→109 109→143
    质量切割参数(RPq) 0.25 0.25 0.45 0.45 0.45
    池气体 - He O2 NH3 NH3
    气体流速(mL/min) - 7.0 2.6 1.8 1.8
    下载: 导出CSV 
    | 显示表格

    银的两个天然同位素107Ag(51.8%)、109Ag(48.2%)其丰度相近、灵敏度相当且均受到不同程度的铌、锆氧化物或氢氧化物的质谱干扰。ICP-MS测试土壤和水系沉积物中银元素时,刘彤彤等[14]考虑到107Ag主要受到锆的干扰而109Ag同时受到铌、锆的干扰,选择107Ag作为分析同位素;而Guo等[21]考虑到锆的氧化物与氧气反应焓变大于0,氧气消除效果不佳,故选用109Ag作为分析同位素。为了考察铌、锆的氧化物或氢氧化物对不同银同位素测定的质谱干扰程度从而选择合适的分析同位素,ICP-MS/MS分析中在标准MS/MS模式下(Q1=Q3=107、109)分别引入1μg/L的银标准溶液、10mg/L的锆标准溶液和1mg/L的铌标准溶液,得到它们在m/z=107处的信号强度分别为146303cps、7215605cps和858cps,在m/z=109处的信号强度分别为131429cps、86679cps和1425361cps。由上述数据可推知,107Ag主要受到锆的氧化物和氢氧化物质谱干扰(91Zr16O+90Zr16O1H+等)和少量铌的氮化物质谱干扰(93Nb14N+),10mg/L的锆和1mg/L的铌在m/z=107处产生的干扰相当于50μg/L和0.006μg/L的银;109Ag主要受到铌的氧化物质谱干扰(93Nb16O+)和少量锆的氢氧化物质谱干扰(92Zr16OH+91Zr16OH2+等),1mg/L的铌和10mg/L的锆在m/z=109处产生的干扰相当于11μg/L和0.7μg/L的银,与徐进力等[23]报道的107Ag主要受到锆干扰而109Ag同时受到锆、铌干扰的结论相同。

    在《中国土壤地球化学参数》专著中[27],锆、铌、银元素在中国土壤背景值分别为257μg/g、16μg/g、0.066μg/g;在《应用地球化学元素丰度数据手册》中[28],锆、铌、银在总陆壳的丰度分别为146μg/g、10μg/g、0.057μg/g。考虑到土壤和水系沉积物样品中锆的丰度一般大于铌,且氢氧化物干扰程度低于氧化物,107Ag较109Ag受到锆、铌的干扰更为严重,本文在后续的实验中选用109Ag来考察不同测试模式下的质谱行为、干扰的消除程度及方法适用性研究。

    由2.1节可知,锆、铌的氧化物与氢氧化物对109Ag存在一定的干扰,土壤和水系沉积物中的铌、锆等含量远高于银的含量,这些多原子离子干扰导致ICP-MS无法准确测定样品中的银。王家恒等[20]、Guo等[21]采用单四极杆ICP-MS验证了氧气反应模式可有效地消除93Nb16O+91Zr16OH2+92Zr16OH+等对109Ag的质量重叠干扰,徐进力等[23]采用单四极杆ICP-MS验证了氦气(动能歧视作用)有效地抑制91Zr16O+90Zr16O1H+等对107Ag的质谱干扰,本实验考虑采用ICP-MS/MS研究不同的碰撞/反应气体消除这些质谱干扰。

    为了考察目标元素银及干扰元素铌、锆在不同气体条件下的信号强度及质谱行为,选择合适的测量模式来消除干扰,ICP-MS/MS采用产物离子扫描模式,在标准(无气体)、氦气、氧气、氨气条件下分别测定1μg/L的银标准溶液、10mg/L的锆标准溶液和1mg/L的铌标准溶液,设置Q1=109,使m/z=109的离子(109Ag+93Nb16O+91Zr16OH2+92Zr16OH+等)通过Q1进入碰撞/反应池中,Q3扫描m/z在80~200之间的所有质荷比的信号强度,得到目标元素和干扰元素在不同模式下的质谱扫描信号,主要产物离子及信号强度见图 1

    图  1  1μg/L银溶液(a)、1mg/L铌标准溶液(b)和10mg/L锆溶液(c)在不同模式下的主要产物离子和信号强度
    Figure  1.  Main product ions and signal intensives of 1μg/L Ag solution(a), 1mg/L Nb solution(b) and 10mg/L Zr solution(c) in different modes

    碰撞/反应池中的离子可与氦气发生碰撞,通过动能歧视或诱导解离来消除质谱干扰。由图 1可知,碰撞/反应池通入氦气后,银和铌与其在标准条件下相比,除了m/z=109处外并无其他信号出现,但由于受到碰撞而造成能量损失,银在m/z=109处信号强度下降了18倍(从标准条件下41662cps降低到氦气条件下2360cps),铌在m/z=109处信号强度下降了161倍(从551475cps降低到3421cps);锆与其在标准条件下相比,m/z=108、109处均出现了信号,其中m/z=108处信号可能是92Zr16OH+91Zr16OH2+等与氦气碰撞发生诱导解离产生92Zr16O+91Zr16OH+和氢原子,锆在m/z=109处信号强度下降了166倍(从26531cps降低到160cps)。相比于93Nb16O+91Zr16OH2+92Zr16OH+等多原子离子,109Ag+在氦气条件信号强度下降要小很多,主要是因为多原子离子体积更大,与氦气发生碰撞的几率越大,能量损失更多。徐进力等[23]研究发现单极杆ICP-MS在动能歧视模式下能降低锆、铌氧化物的产率,基本上消除了锆、铌氧化物对痕量银的多原子离子干扰,与本实验的结论相符。综上说明在氦气条件下可通过MS/MS模式(Q1=Q3=109)在一定程度上消除锆、铌氧化物和氢氧化物对银的干扰。

    氧气分子与碰撞/反应池中的分子离子团发生反应,使得Ag+与干扰离子团分离从而消除质量重叠干扰。由图 1可知,碰撞/反应池通入氧气后,银与其在标准条件下相比,除了m/z=109以外并无其他的信号出现,信号强度变化不大,说明Ag+不与氧气反应;铌在m/z=125、143、161处出现了信号,而m/z=109处信号消失,由化学键结合能数据[29]可知NbO和氧气的反应焓变小于0,可以自发地与氧结合:NbO++O2→NbO2++O (ΔHr=-0.63eV),结合图 1说明93Nb16O+可以与氧气反应,主要生成93Nb16O2+(m/z=125);锆在m/z=107、108、124、125、142、143、160、161处均出现了信号,且m/z=109处信号明显减小(387cps),推断91Zr16OH2+92Zr16OH+与氧气发生了电荷转移、加氧去氢等反应,生成了91Zr16OmHn+92Zr16OmHn+等分子离子团,与王家恒等[20]、Guo等[21]报道的单四极杆ICP-MS氧气反应模式反应机理相似。在氧气条件下,银在m/z=109处的信号强度变化不大,锆和铌在m/z=109处的信号强度明显减少甚至消失,说明氧气条件下可通过MS/MS模式(Q1=Q3=109)有效地消除锆、铌氧化物和氢氧化物对银的干扰。

    氨气分子具有孤对电子,具有高反应活性,可以与大部分元素发生络合反应[30]。王振伟等[29]报道了ICP-MS/MS利用氨气在线消除90Zr16O1H+91Zr16O+93Nb16O+92Zr16O1H+等多原子离子对银测定的干扰,1mg/L的锆、铌溶液在107Ag、109Ag处产生的干扰基本能完全消除,但对干扰消除机理缺乏进一步研究。本实验采用Q1过滤除m/z=109外的其他离子,通过生成产物离子推断可能的干扰消除反应。由图 1可知,在氨气条件下,与标准条件下相比,银在m/z=109、126、143、160处均出现信号,说明Ag+可以与氨分子发生络合反应,生成109Ag17(NH3)+109Ag17(NH3)2+109Ag17(NH3)3+等氨基团簇离子,其中109Ag17(NH3)2+(m/z=143)是主要产物离子,m/z=109处仍存在较强的信号强度;铌在质量轴上m/z=109、158、175处出现了信号,m/z=109处的信号明显减小(33cps),说明93Nb16O+可以与氨发生络合反应生成93Nb17NH316(NH2)3+93Nb17(NH3)216(NH2)3+等氨基团簇离子,其中m/z=175的氨基团簇离子是主要产物离子;锆在m/z=109、143、160、175、176、177处均出现了信号,m/z=109处的信号强度明显减小(80cps),说明91Zr16OH2+92Zr16OH+可以和氨发生络合反应生成91Zr14Nm1Hn+92Zr14Nm1Hn+等氨基团簇离子。氨气条件下,银在m/z=109、143处存在较强的信号,锆和铌在m/z=109处信号强度明显减少,锆在m/z=143处虽有信号但信号强度较小(40cps),说明氨气条件下可通过MS/MS模式(Q1=Q3=109)或者Mass-Shift模式(Q1=109,Q3=143)消除锆、铌氧化物和氢氧化物对银的干扰,与Eduardo等[31]报道在氨气条件下,ICP-MS/MS测定107Ag可选用MS/MS模式(Q1=Q3=107)或者Mass-Shift模式(Q1=107,Q3=141)消除干扰的结论相符。

    综上,氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式均能在一定程度上消除锆、铌氧化物和氢氧化物对银的干扰,可通过优化实验条件进一步研究不同模式具体的干扰消除效果。

    在ICP-MS/MS的碰撞/反应模式下,干扰消除程度主要与池气体流速有关,流速的改变既会影响干扰元素的反应进行程度,也会影响银元素的信号强度[26]。实验采用背景等效浓度(BEC)作为条件优化的评价标准,以1mg/L铌和10mg/L锆混合溶液作为基体空白溶液模拟土壤干扰基体,1μg/L银、1mg/L铌和10mg/L锆混合溶液作为基体加标溶液,在不同模式下,通过改变池气体流速,观察基体空白溶液、基体加标溶液信号强度和背景等效浓度的变化情况,以便确定最佳池气体流速,结果如图 2所示。

    图  2  (a) 氦气MS/MS模式、(b)氧气MS/MS模式、(c)氨气MS/MS模式、(d)氨气Mass-Shift模式下池气体流速对基体空白溶液、基体加标溶液信号强度和背景等效浓度的影响
    Figure  2.  Effects of cell gas flow rate on signal intensities of matrix blank solutions, matrix spiked solutions and BEC by (a) helium MS/MS mode, (b) oxygen MS/MS mode, (c) ammonia MS/MS mode, and (d) ammonia Mass-Shift mode

    在氦气MS/MS模式下,氦气流速在0.5~7.0mL/min范围内,由于受到动能歧视的影响,随着氦气流速的增加,基体空白溶液和基体加标溶液中的各种离子与氦气碰撞加剧,能量损失加大而导致信号强度逐渐降低,背景等效浓度呈现先升高后降低的趋势,当氦气流速达到7.0mL/min时,BEC降低至0.431μg/L,相比于标准MS/MS模式干扰程度(11.7μg/L)下降了20倍以上。

    在氧气MS/MS模式下,氧气流速在0.5~3.0mL/min范围内,93Nb16O+91Zr16OH2+92Zr16OH+等干扰多原子离子与氧气发生反应,基体空白溶液和基体加标溶液的信号强度随着氧气流速的增加而逐渐降低,背景等效浓度呈下降趋势;当氧气流速大于1.5min/L后,背景等效浓度趋于稳定,在氧气流速达到2.6mL/min时,BEC降至最低(7.60ng/L),相比于标准MS/MS模式干扰程度下降了1500多倍。Zhang等[32-33]报道了单四极杆ICP-MS优化氧气流速为2.7mL/min时,BEC降到0.02~0.03μg/L,与单四极杆ICP-MS反应模式相比,ICP-MS/MS消除干扰能力更强。

    在氨气MS/MS模式下,氨气流速在0.3~2.0mL/min范围内,由于氨气分子与93Nb16O+91Zr16OH2+92Zr16OH+等干扰多原子离子反应速率大于与109Ag+的反应速率,基体空白溶液信号强度随着氨气流速的增加而迅速降低,基体加标溶液信号强度缓慢降低,背景等效浓度呈下降趋势;当氨气流速增加到1.1mL/min时,背景等效浓度下降速率变缓,当氨气流速增加到1.8mL/min时,BEC降到最低(7.39ng/L),相比于标准MS/MS模式干扰程度下降了1500多倍。与Naoki等[34]报道ICP-MS/MS采用氨气原位质量模式测定109Ag时,10mg/L的铌、锆混合溶液的BEC可降到0.006μg/L的结论相符。

    在氨气Mass-Shift模式下,氨气流速在0.3~2.0mL/min范围内,基体空白溶液信号强度随着氨气流速的增加而逐渐降低,基体加标溶液信号强度先降低后增加[氨气流速增加有利于109Ag17(NH3)2+的生成],背景等效浓度呈下降趋势;当氨气流速增加至1.0mL/min时,背景等效浓度趋于稳定,在氨气流速增至1.8mL/min时,BEC降至最低(5.78ng/L),相比于标准MS/MS模式干扰程度下降了2000多倍。

    综上,氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式均能有效地降低干扰,其中氦气MS/MS模式降低干扰能力较弱,1mg/L铌和10mg/L锆混合溶液对银的干扰只能降低20多倍;氧气MS/MS模式和氨气MS/MS模式降低干扰能力较强,干扰可降低1500多倍;氨气Mass-Shift模式降低干扰能力最强,高达2000余倍。

    为了进一步验证四种测量模式消除干扰的效果,实验在氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式下分别引入不同浓度的锆溶液(10~1000mg/L)和铌溶液(1~1000mg/L)进行分析,分析结果见表 2

    表  2  不同浓度的锆、铌溶液在不同测量模式下对109Ag干扰情况
    Table  2.  Interference effects of different concentrations of Zr and Nb solutions on 109Ag in different measurement modes
    溶液类型 锆或铌溶液浓度
    (mg/L)
    109Ag测定值(μg/L)
    氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式
    锆溶液 10.0 0.013 0.006 0.006 0.005
    50.0 0.061 0.008 0.007 0.007
    100 0.140 0.019 0.022 0.020
    500 1.047 0.035 0.030 0.030
    1000 2.432 0.050 0.047 0.046
    铌溶液 1.00 0.441 0.000 0.000 0.000
    5.00 2.630 0.005 0.007 0.003
    10.0 4.960 0.009 0.011 0.005
    50.0 26.542 0.036 0.037 0.013
    100 43.441 0.077 0.074 0.026
    500 411.726 0.472 0.356 0.128
    1000 978.826 1.006 0.780 0.261
    下载: 导出CSV 
    | 显示表格

    表 2测定结果可知,随着两种溶液浓度分别增加,四种模式在109Ag处产生的干扰均存在增大的趋势,说明随着干扰物浓度的增加,干扰消除的效果存在一定程度地减弱,赵志飞等[26]在采用氧气反应模式-ICP-MS/MS法测定土壤中的镉时也发现随着锆、钼浓度的增加,由于反应不完全会造成干扰消除不完全。本实验表明,当锆溶液浓度大于100mg/L后,氦气MS/MS模式下在109Ag处产生的干扰大于0.140μg/L,这对于土壤和水系沉积物中痕量银测定的影响已经不可忽略;而当锆溶液浓度大于1000mg/L后,其他三种模式只从0.005μg/L增加到0.050μg/L,对银测定的影响尚可接受,进一步证明了氧气和氨气消除锆的干扰能力更强。1mg/L以上铌溶液在氦气MS/MS模式下于109Ag处产生的干扰已经大于0.441μg/L,干扰已不可忽略;当铌溶液浓度增加到500mg/L后,氧气MS/MS模式下干扰增加到0.472μg/L,氨气MS/MS模式下增加到0.356μg/L,氨气Mass-Shift模式下增加到0.128μg/L,此时三种模式下500mg/L铌溶液已明显影响银的定量,相比之下氨气Mass-Shift模式下干扰最小,说明其降低干扰能力最佳,和上文结论一致。

    考虑到土壤和水系沉积物消解液中铌、锆浓度一般在几十个μg/L到几个mg/L范围内(按0.1g样品消解定容至50mL计算),在这个范围内四种模式均能一定程度地消除干扰,可用于方法适用性研究。

    在实验条件优化下,ICP-MS/MS在不同的模式下直接测定银标准系列溶液,以银的质量浓度为横坐标,银元素与内标元素(Rh)的质谱强度比值为纵坐标进行线性回归,得到不同模式下的标准曲线方程;按样品分析步骤制备12份空白溶液,ICP-MS/MS分别在氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式和氨气Mass-Shift模式下进行测定,计算样品空白测定结果的标准偏差(SD),以3倍标准偏差计算得到不同模式下的方法检出限。实验结果表明,四种模式下的线性相关系数均大于0.999,线性关系良好,检出限分别为0.005mg/kg、0.002mg/kg、0.003mg/kg和0.003mg/kg,均低于石墨炉原子吸收光谱法[1-2]和地质行业标准《区域地球化学样品分析方法第11部分:银、硼和锡量测定交流电弧-发射光谱法》(DZ/T 0279.11—2016)的检出限,与单四极杆ICP-MS法[8-10]的检出限相当,测定下限以4倍检出限计,能够满足当前土壤和水系沉积物检测的需求。四种模式下灵敏度分别为7131cps·(μg/L)-1、74179cps·(μg/L)-1、6255cps·(μg/L)-1、13327cps·(μg/L)-1,均能满足测试需求。氦气碰撞造成Ag+动能损失,导致氦气MS/MS模式灵敏度较低;Ag+可与氨气发生络合反应而不与氧气反应,导致氨气MS/MS模式和氨气Mass-Shift下灵敏度不如氧气MS/MS模式。

    选取具有一定浓度梯度、干扰元素、样品性质有代表性的土壤和水系沉积物有证标准物质共10个,按照制定的样品分析方法对每个标准物质分析6次,计算相对标准偏差(RSD)和相对误差。由表 3可知,氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式和氨气Mass-Shift模式下银元素的测定结果的RSD分别在1.5%~6.3%、1.4%~8.3%、1.4%~5.9%和0.7%~8.2%之间,精密度良好。氧气MS/MS模式、氨气MS/MS模式和氨气Mass-Shift模式下标准物质的测定值均在标准值的范围内,相对误差分别在-7.6%~7.2%、-15.0%~10.0%、-12.5%~8.6%之间,说明这些模式有良好的准确性,可用于土壤和水系沉积物中银的测定;氦气MS/MS模式下测定值的相对误差在-1.4%~84.3%之间,铌、锆干扰较严重的标准样品测试结果偏差较大(如GBW07304、GBW07307、GBW07302a),说明采用氦气模式消除铌、锆氧化物和氢氧化物的质谱干扰能力较弱,与图 2结论一致,氦气MS/MS模式仅适合测定铌、锆干扰较轻的土壤和水系沉积物样品。

    表  3  不同测量模式下方法准确度和精密度
    Table  3.  Accuracy and precision tests of the method by different measurement modes
    标准物质编号 银标准值
    (mg/kg)
    Nb/Ag Zr/Ag 氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式
    银测定平均值
    (mg/kg)
    RSD
    (%)
    相对误差
    (%)
    银测定平均值
    (mg/kg)
    RSD
    (%)
    相对误差
    (%)
    银测定平均值
    (mg/kg)
    RSD
    (%)
    相对误差
    (%)
    银测定平均值
    (mg/kg)
    RSD
    (%)
    相对误差
    (%)
    GBW07403 0.091±0.007 102 2703 0.096 2.4 5.5 0.094 2.2 3.3 0.095 3.1 4.4 0.093 2.6 2.2
    GBW07404 0.070±0.011 543 7143 0.115 3.0 64.3 0.075 4.0 7.2 0.077 3.8 10.0 0.076 4.6 8.6
    GBW07405 4.4±0.4 5 62 4.42 1.5 0.5 4.41 1.4 0.3 4.31 2.8 -2.1 4.40 2.4 0
    GBW07407 0.057±0.011 1123 5579 0.105 4.9 84.3 0.053 4.2 -7.1 0.051 5.1 -10.6 0.055 5.6 -3.6
    GBW07451 0.074±0.006 208 3446 0.073 5.0 -1.4 0.074 2.7 0 0.072 4.2 -2.8 0.070 2.8 -5.5
    GBW07302a 0.040±0.011 1000 3550 0.072 4.7 80.0 0.038 8.3 -5.0 0.034 5.9 -15.0 0.035 7.5 -12.5
    GBW07305a 0.63±0.06 27 437 0.652 3.3 3.5 0.629 1.8 -0.2 0.626 1.4 -0.7 0.628 0.7 -0.4
    GBW07309 0.089±0.010 202 4157 0.088 3.1 -1.2 0.086 1.8 -3.4 0.083 2.9 -6.8 0.087 3.6 -2.3
    GBW07311 3.2±0.4 8 48 3.20 2.0 0 3.21 1.4 0.4 3.18 1.6 -0.7 3.28 2.2 2.5
    GBW07375 0.040±0.004 155 2190 0.043 6.3 7.5 0.037 4.5 -7.6 0.038 5.6 -5.0 0.037 8.2 -7.5
    注:Nb/Ag和Zr/Ag分别为标准样品中铌和锆的含量与银含量的比值。
    下载: 导出CSV 
    | 显示表格

    本文采用氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式测定土壤和水系沉积物中的银,分别研究了银、铌、锆三种元素在不同模式下的质谱行为,探讨了不同碰撞/反应模式消除铌、锆的氧化物及氢氧化物对银元素测定的质谱干扰情况,在优化各模式下的气体流速后,其干扰分别降低了20、1500、1500、2000多倍。同时,对四种模式的方法适用性进行了研究,这四种模式的精密度和检出限均能满足测试需求。氦气MS/MS模式灵敏度和干扰消除能力均较弱,应用于实际样品测试时需谨慎,不适用于铌、锆含量高的样品。其他三种模式均可满足土壤和水系沉积物中银元素测定的需求:氨气MS/MS模式灵敏度较弱,干扰消除能力适中;氧气MS/MS模式灵敏度最佳,干扰消除能力适中;氨气Mass-Shift模式灵敏度适中,干扰消除能力最佳。本研究为土壤和水系沉积物中银元素测定提供了多种方便、准确的方法,无需复杂前处理过程,提高了分析效率并可实现多元素同时测定。

    本研究在前人工作的基础上进一步探讨了不同碰撞/反应模式下铌、锆氧化物和氢氧化物的干扰消除机理和消除效果,实验中以1mg/L铌溶液、10mg/L锆溶液模拟土壤或水系沉积物中干扰基体,优化池气体流速,采用背景等效浓度评价干扰消除程度。同时也研究了四种模式对不同浓度铌、锆溶液的抗干扰能力,实验发现不同模式对极限浓度干扰物的消除能力并不相同。当实际样品消解液中铌、锆溶液浓度远大于本文实验条件时,可通过背景等效浓度重新评价各种模式的干扰消除程度,结合前处理富集分离和优化仪器参数进一步降低干扰,得到更准确的结果。

  • 图  1   哲兰德金矿区地质略图[15]

    Figure  1.   Simplified geological map of the Zhelande Au deposit[15]

    图  2   哲兰德金矿矿化特征

    a—闪长岩中含金白云母绿泥石英脉;b—白云母镜下特征;c—含金石英脉;d—含金硅化千枚岩。

    Figure  2.   Characteristics of mineralization in the Zhelande Au deposit

    图  3   哲兰德金矿白云母40Ar/39Ar年龄谱及等时线图

    Figure  3.   40Ar/39Ar age spectra and isochron of muscovite from the Zhelande Au deposit

    表  1   哲兰德金矿中白云母40Ar/39Ar阶段升温加热分析

    Table  1   Results of 40Ar/39Ar stepwise heating dating for muscovite from the Zhelande Au deposit

    ZLD14-2白云母;样品质量(W)=10.68 mg;J=0.003493
    T(℃) (40Ar/ 39Ar)m (36Ar/39Ar)m (37Ar/ 39Ar)m (38Ar/39Ar)m 40Ar(%) F 39Ar(×10-14 mol) 39Ar累积(%) 年龄±1σ(Ma)
    700 75.1437 0.1149 0.0000 0.0347 54.81 41.1860 0.09 0.53 242.5±5.5
    770 63.5889 0.0428 0.0000 0.0210 80.09 50.9296 0.34 2.48 295.4±3.5
    820 57.4390 0.0242 0.1561 0.0176 87.55 50.2933 0.57 5.77 292.0±2.8
    860 58.9824 0.0260 0.0000 0.0175 86.94 51.2802 0.84 10.58 297.2±2.8
    900 55.6024 0.0159 0.0418 0.0155 91.55 50.9075 2.51 24.96 295.3±2.7
    930 52.5392 0.0065 0.0962 0.0138 96.35 50.6258 1.33 32.60 293.7±2.7
    960 52.8558 0.0067 0.0000 0.0138 96.26 50.8793 2.32 45.90 295.1±2.7
    1000 53.8169 0.0096 0.0000 0.0141 94.75 50.9893 1.26 53.14 295.7±2.7
    1040 53.6039 0.0086 0.0000 0.0140 95.24 51.0540 1.84 63.67 296.0±2.7
    1080 52.2438 0.0041 0.0000 0.0132 97.69 51.0359 3.76 85.24 295.9±2.7
    1120 52.2407 0.0036 0.0307 0.0133 97.94 51.1470 1.92 96.26 296.6±2.7
    1160 55.5188 0.0166 0.2049 0.0157 91.19 50.6375 0.38 98.46 293.8±3.0
    1400 63.0620 0.0388 0.0000 0.0190 81.80 51.5818 0.27 100.00 298.9±3.1
    tT=295.3 Ma;tP=295.4±1.6 Ma;ti=296.0±3.0 Ma
    注:表中下标m代表质谱测定的同位素比值;F=40Ar*/39Ar,是指放射性成因40Ar和39Ar比值;tT=总气体年龄;tP=坪年龄;ti=反等时线年龄。
    下载: 导出CSV
  • 袁霞, 陈文, 张斌, 等.西天山望峰金矿床绢云母40Ar/39Ar年龄及矿床成因研究[J].矿床地质, 2017, 36(1):57-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201701004

    Yuan X, Chen W, Zhang B, et al.40Ar/39Ar age of sericite and genetic study of Wangfeng gold deposit, West Tianshan Mountains[J].Mineral Deposits, 2017, 36(1):57-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201701004

    杨富全, 秦纪华, 刘锋, 等.新疆准噶尔北缘玉勒肯哈腊苏铜(钼)矿区韧性剪切变形时代——来自白云母和黑云母Ar-Ar年龄的约束[J].大地构造与成矿学, 2013, 37(1):1-10. doi: 10.3969/j.issn.1001-1552.2013.01.001

    Yang F Q, Qin J H, Liu F, et al.Ar-Ar dating of the ductile shear zones in the Yulekenhalasu Cu-(Mo) ore deposit[J].Geotectonica et Metallogenia, 2013, 37(1):1-10. doi: 10.3969/j.issn.1001-1552.2013.01.001

    Yang F Q, Liu F, Li Q, et al.In situ LA-MC-ICP-MS U-Pb geochronology of igneous rocks in the Ashele Basin, Altay orogenic belt, Northwest China:Constraints on the timing of polymetallic copper mineralization[J].Journal of Asian Earth Sciences, 2014, 79:477-496. doi: 10.1016/j.jseaes.2013.10.022

    朱乔乔, 谢桂青, 蒋宗胜, 等.湖北金山店大型矽卡岩型铁矿热液榍石特征和原位微区LA-ICPMS U-Pb定年[J].岩石学报, 2014, 30(5):1322-1338. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201405010

    Zhu Q Q, Xie G Q, Jiang Z S, et al.Characteristics and in situ U-Pb dating of hydrothermal titanite by LA-ICPMS of the Jingshandian iron skarn deposit, Hubei Province[J].Acta Petrologica Sinica, 2014, 30(5):1322-1338. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201405010

    杨成栋, 杨富全, 吴玉峰.新疆阿尔泰萨尔朔克金多金属矿区岩浆活动-剪切变形时限——锆石U-Pb和绢云母40Ar/39Ar测年证据[J].地质论评, 2016, 62(3):631-648. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201603008

    Yang C D, Yang F Q, Wu Y F.Timing of magmatic activity-shearing deformation from the Sarsuk polymetallic gold depositon the southern margin of Altay, Xinjiang:Constraints from zircon U-Pb and sericite 40Ar/39Ar dating[J].Geological Review, 2016, 62(3):631-648. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201603008

    Zhou Q F, Qin K Z, Tang D M, et al.LA-ICP-MS U-Pb zircon, columbite-tantalite and 40Ar-39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China[J].Geological Magazine, 2018, 155(3):707-728. doi: 10.1017/S0016756816001096

    侯淋, 唐菊兴, 林彬, 等.西藏东窝东矿床矿化蚀变过程元素迁移及绢云母40Ar-39Ar年代学及其地质意义[J].岩矿测试, 2017, 36(4):440-449. doi: 10.15898/j.cnki.11-2131/td.201612050179

    Hou L, Tang J X, Lin B, et al.Element migration during alteration and 40Ar/39Ar dating of sericite from the Dongwodong deposit, Tibet and its geological significance[J].Rock and Mineral Analysis, 2017, 36(4):440-449. doi: 10.15898/j.cnki.11-2131/td.201612050179

    高允, 孙艳, 赵芝, 等.内蒙古武川县赵井沟铌钽多金属矿床白云母40Ar-39Ar同位素年龄及地质意义[J].岩矿测试, 2017, 36(5):551-558. doi: 10.15898/j.cnki.11-2131/td.201612290190

    Gao Y, Sun Y, Zhao Z, et al.40Ar-39Ar dating of muscovite from the Zhaojinggou Nb-Ta polymetallic depositin Wuchuan county of Inner Mongolia and its geological implications[J].Rock and Mineral Analysis, 2017, 36(5):551-558. doi: 10.15898/j.cnki.11-2131/td.201612290190

    Golestani M, Karimpour M H, Shafaroudi A M, et al.Geochemistry, U-Pb geochronology and Sr-Nd isotopes of the Neogene igneous rocks, at the Iju porphyry copper deposit, NW Shahr-e-Babak, Iran[J].Ore Geology Reviews, 2018, 93:290-307. doi: 10.1016/j.oregeorev.2018.01.001

    Liu L J, Zhou T F, Zhang D Y, et al.S isotopic geochemistry, zircon and cassiterite U-Pb geochronology of the Haobugao Sn polymetallic deposit, Southern Great Xing'an Range, NE China[J].Ore Geology Reviews, 2018, 93:168-180. doi: 10.1016/j.oregeorev.2017.12.008

    闫升好, 陈文, 王义天, 等.新疆额尔齐斯金成矿带的40Ar/39Ar年龄及其地质意义[J].地质学报, 2004, 78(8):500-506. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200404009

    Yan S H, Chen W, Wang Y T, et al.40Ar/39Ar dating and its significance of the Ertix gold metallogenic belt in the Altay Orogen, Xinjiang[J].Acta Geologica Sinica, 2004, 78(8):500-506. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200404009

    闫升好, 滕荣丽, 王义天, 等.新疆布尔根含金剪切带的40Ar/39Ar年龄及其地质意义[J].中国地质, 2006, 33(3):648-655. doi: 10.3969/j.issn.1000-3657.2006.03.023

    Yan S H, Teng R L, Wang Y T, et al.40Ar/39Ar dating of the Bu'ergen gold-bearing shear zone on the southern margin of the Altay Mountains, Xinjiang, and its significance[J].Geology in China, 2006, 33(3):648-655. doi: 10.3969/j.issn.1000-3657.2006.03.023

    刘协鲁, 王义天, 胡乔青, 等.陕西凤太矿集区柴蚂金矿床成矿时代的40Ar/39Ar年龄证据[J].矿床地质, 2018, 37(1):163-174.

    Liu X L, Wang Y T, Hu Q Q, et al.Evidence of 40Ar/39Ar age data for ore-forming time of Chaima gold deposit in Fengtai ore concentration area, Shaanxi Province[J].Mineral Deposits, 2018, 37(1):163-174.

    李光明, 沈远超, 刘铁兵, 等.新疆阿尔泰南缘托库孜巴依金矿成矿演化:石英脉系、同位素地球化学及其Ar-Ar年代学证据[J].矿床地质, 2007, 26(1):15-32. doi: 10.3969/j.issn.0258-7106.2007.01.002

    Li G M, Shen Y C, Liu T B, et al.Metallogenic evolutiong of Tuokuzibayi gold deposit in Southern Altay, North Xinjiang:Evidence from characteristics of quartz vein systems, isotopic geochemistry and Ar-Ar chronology[J].Mineral Deposits, 2007, 26(1):15-32. doi: 10.3969/j.issn.0258-7106.2007.01.002

    周能武, 郭新成, 何桂林.新疆哈巴河地区托库孜巴依金矿区两类含矿脉岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报, 2012, 31(5):707-715. doi: 10.3969/j.issn.1671-2552.2012.05.007

    Zhou N W, Guo X C, He G L.LA-ICP-MS zircon U-Pb ages of two types of ore-bearing dykes in the Tuokuzibayi gold ore district in Habahe ares of Xinjiang and their geological significance[J].Geological Bulletin of China, 2012, 31(5):707-715. doi: 10.3969/j.issn.1671-2552.2012.05.007

    Groves D I, Goldfarbb R J, Gebre-Mariam M, et al.Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J].Ore Geology Reviews, 1998, 13:7-27. doi: 10.1016/S0169-1368(97)00012-7

    陶世旭, 潘杰, 张彦锋.哈巴河县哲兰德金矿地质特征及成因分析[J].地球, 2016(4):135. http://www.cnki.com.cn/Article/CJFDTOTAL-COLO201804081.htm

    Tao S X, Pan J, Zhang Y F.Geology and origin of the Zhelande Au deposit in the Habahe county[J].Earth, 2016(4):135. http://www.cnki.com.cn/Article/CJFDTOTAL-COLO201804081.htm

    柴凤梅, 欧阳刘进, 董连慧, 等.新疆阿舍勒铜锌矿区英云闪长岩年代学及地球化学[J].岩石矿物学杂志, 2013, 32(1):41-52. doi: 10.3969/j.issn.1000-6524.2013.01.003

    Chai F M, Ouyang L J, Dong L H, et al.Geochronology and genesis of tonalities from the Ashele Cu-Zn deposit on the southern margin of Altay, Xinjiang[J].Acta Petrologica et Mineralogica, 2013, 32(1):41-52. doi: 10.3969/j.issn.1000-6524.2013.01.003

    Ludwig K R.User's Manual for Isoplot/ex, v2.49:A Geochronological Toolkit for Microsoft Excel[M].Geochronological Center Special Publication, 2001:1-58.

    陈文, 张彦, 金贵善, 等.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据[J].岩石学报, 2006, 22(4):867-872. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604010

    Chen W, Zhang Y, Jin G S, et al.Late Cenozoic episodic uplifting in southeastern part of the Tibetan plateau-Evidence from Ar-Ar thermochornology[J].Acta Geologica Sinica, 2006, 22(4):867-872. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604010

    陈文, 张彦, 赵海滨, 等.新疆东天山红山金矿成矿时代研究[J].中国地质, 2006, 33(3):632-640. doi: 10.3969/j.issn.1000-3657.2006.03.021

    Chen W, Zhang Y, Zhao H B, et al.Mineralization age of the Hongshan gold deposit, East Tianshan, Xinjiang[J].Geology in China, 2006, 33(3):632-640. doi: 10.3969/j.issn.1000-3657.2006.03.021

    Zhang C L, Santosh M, Zou H B, et al.Revisiting the 'Irtish tectonic belt':Implications for the Paleozoic tectonic evolution of the Altai orogen[J].Journal of Asian Earth Sciences, 2012, 52:117-133. doi: 10.1016/j.jseaes.2012.02.016

    吴玉峰, 杨富全, 刘锋, 等.新疆阿舍勒铜锌矿区脆韧性剪切带中绢云母40Ar/39Ar年代学及其地质意义[J].地球学报, 2015, 36(1):121-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201501019

    Wu Y F, Yang F Q, Liu F, et al.40Ar-39Ar dating of sericite from the brittle ductile shear zone in the Ashele Cu-Zn ore district, Xinjiang[J].Acta Geoscientica Sinica, 2015, 36(1):121-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201501019

    Laurent-Charvet S, Charvet J, Monie P, et al.Late Paleozoic strike-slip shear zones in eastern central Asia (NW China):New structural and geochronological data[J].Tectonics, 2003, 22(2):1-24. doi: 10.1029/2001TC901047/full

    刘飞, 王镇远, 林伟, 等.中国阿尔泰造山带南缘额尔齐斯断裂带的构造变形及意义[J].岩石学报, 2013, 29(5):1811-1824. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201305024

    Liu F, Wang Z Y, Lin W, et al.Structure deformation and tectonic significance of Erqis fault zone in the southern margin of Chinese Altay[J].Acta Petrologica Sinica, 2013, 29(5):1811-1824. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201305024

  • 期刊类型引用(0)

    其他类型引用(1)

图(3)  /  表(1)
计量
  • 文章访问数:  2056
  • HTML全文浏览量:  465
  • PDF下载量:  31
  • 被引次数: 1
出版历程
  • 收稿日期:  2017-07-12
  • 修回日期:  2018-04-29
  • 录用日期:  2018-06-10
  • 发布日期:  2018-10-31

目录

/

返回文章
返回