• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

联合脱氮法用于硝酸盐污染地下水修复的机理研究

黄国鑫, 高云鹤, Howard Fallowfield, Huade Guan, 刘菲

黄国鑫, 高云鹤, Howard Fallowfield, Huade Guan, 刘菲. 联合脱氮法用于硝酸盐污染地下水修复的机理研究[J]. 岩矿测试, 2012, 31(5): 855-862.
引用本文: 黄国鑫, 高云鹤, Howard Fallowfield, Huade Guan, 刘菲. 联合脱氮法用于硝酸盐污染地下水修复的机理研究[J]. 岩矿测试, 2012, 31(5): 855-862.
HUANG Guo-xin, GAO Yun-he, Howard Fallowfield, Huade Guan, LIU Fei. Mechanism Study on a Combined Denitrification Approach for Nitrate-Contaminated Groundwater Remediation[J]. Rock and Mineral Analysis, 2012, 31(5): 855-862.
Citation: HUANG Guo-xin, GAO Yun-he, Howard Fallowfield, Huade Guan, LIU Fei. Mechanism Study on a Combined Denitrification Approach for Nitrate-Contaminated Groundwater Remediation[J]. Rock and Mineral Analysis, 2012, 31(5): 855-862.

联合脱氮法用于硝酸盐污染地下水修复的机理研究

基金项目: 

中央高校基本科研业务费专项资金(2010ZD13)

国家水体污染控制与治理重大专项(2008ZX07424-002-002)

Mechanism Study on a Combined Denitrification Approach for Nitrate-Contaminated Groundwater Remediation

  • 摘要: 地下水硝酸盐已经成为了世界性环境和健康问题。目前针对硝酸盐的化学还原脱氮、自养脱氮、异养脱氮等单一脱氮方法研究较多;联合脱氮体系包括化学还原、自养脱氮和异养脱氮三种脱氮途径,综合了单一脱氮法的优点,但研究甚少。本研究通过静态批试验,采用零价铁、甲醇和混合菌液研究了联合脱氮法的脱氮能力、脱氮产物、脱氮途径及脱氮机理。结果表明,5 d后单一的零价铁化学还原、自养脱氮和异养脱氮的去除率分别为5.79%、14.30%和63.03%;而联合脱氮的去除率接近100%,去除效果显著优于单一的化学还原脱氮、自养脱氮或异养脱氮。在联合脱氮法体系中,零价铁化学还原、自养脱氮未引起亚硝酸盐积累,而异养脱氮造成了亚硝酸盐积累;化学还原、自养脱氮和异养脱氮引起的铵盐增量均<0.6 mg/L,绝大部分硝酸盐未被还原成铵盐,进而省去了后续除铵工艺;零价铁化学还原、自养脱氮、异氧脱氮三者发生协同作用,表现于在厌氧环境下,零价铁发生腐蚀,产生阴极氢和二价铁,为自养脱氮菌提供了电子供体,从而促进了自养脱氮;异养脱氮不仅占主导地位,而且还会产生CO2,CO2被自养脱氮菌作为无机碳源加以利用,从而提高了体系中自养脱氮能力。这种协同作用表现为联合脱氮法的去除率增加,而在单一的异养脱氮或自养脱氮体系中则无法形成这一良性过程。实验表明联合脱氮法是一种潜在的有效可行的地下水原位修复方法。
  • 黄国鑫,刘菲,秦晓鹏,陈鸿汉,金爱芳.铁炭复配修复地下水中NO3--N的条件研究 [J].环境工程学报, 2010, 4(2): 259-263.
    Zhang W L, Tian Z X, Zhang N, Li X Q. Nitrate pollution of groundwater in northern China [J]. Agriculture, Ecosystems & Environment, 1996, 59(3): 223-231.

    Zhang W L, Tian Z X, Zhang N, Li X Q. Nitrate pollution of groundwater in northern China [J]. Agriculture, Ecosystems & Environment, 1996, 59(3): 223-231.

    黄国鑫,刘菲,秦晓鹏,辛晓华,金爱芳.铁炭联用修复硝酸盐污染地下水 [J].水处理技术, 2010, 36(5): 70-73.
    黄园英,秦臻,刘丹丹,王晓春.纳米铁还原脱氮动力学及其影响因素 [J].岩矿测试, 2011, 30(1): 53-58.
    Choe S H, Ljestrand H M, Khim J. Nitrate reduction by zero-valent iron under different pH regimes [J]. Applied Geochemistry, 2004, 19(3): 335-342.

    Choe S H, Ljestrand H M, Khim J. Nitrate reduction by zero-valent iron under different pH regimes [J]. Applied Geochemistry, 2004, 19(3): 335-342.

    Liu H, Jiang W, Wan D, Qu J. Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water [J]. Journal of Hazardous Materials, 2009, 169(1-3): 23-28.

    Liu H, Jiang W, Wan D, Qu J. Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water [J]. Journal of Hazardous Materials, 2009, 169(1-3): 23-28.

    Matěj V, iinská S, Krejěí J, Janoch T. Biological water denitrification—A review [J]. Enzyme and Micro- bial Technology, 1992, 14(3): 170-83.

    Matěj V, iinská S, Krejěí J, Janoch T. Biological water denitrification—A review [J]. Enzyme and Micro- bial Technology, 1992, 14(3): 170-83.

    Shrimali M, Singh K P. New methods of nitrate removal from water [J].Environmental Pollution,2001,112(3): 351-359.

    Shrimali M, Singh K P. New methods of nitrate removal from water [J].Environmental Pollution,2001,112(3): 351-359.

    Van Rijn J, Tal Y, Schreier H J. Denitrification in recirculating systems: Theory and applications [J]. Aquacultural Engineering, 2006, 34(3): 364-376.

    Van Rijn J, Tal Y, Schreier H J. Denitrification in recirculating systems: Theory and applications [J]. Aquacultural Engineering, 2006, 34(3): 364-376.

    黄国鑫, Fallowfield H, Guan H, 刘菲.粒状铁与甲醇支持的生物-化学联用法去除富氧地下水中硝酸盐 [J].环境生态学报, 2012, 21(4): 726-732.
    Westerhoff P, James J. Nitrate removal in zero-valent iron packed columns [J]. Water Research, 2003,37(8): 1818-830.

    Westerhoff P, James J. Nitrate removal in zero-valent iron packed columns [J]. Water Research, 2003,37(8): 1818-830.

    Rodríguez-Maroto J M, García-Herruzo F, García-Rubio A, G mez-Lahoz C, Vereda-Alonso C. Kinetics of the chemical reduction of nitrate by zero-valent iron [J]. Chemosphere, 2009, 74(6): 804-809.

    Rodríguez-Maroto J M, García-Herruzo F, García-Rubio A, G mez-Lahoz C, Vereda-Alonso C. Kinetics of the chemical reduction of nitrate by zero-valent iron [J]. Chemosphere, 2009, 74(6): 804-809.

    王淑莹,殷芳芳,侯红勋,许春生,彭永臻,王伟.以甲醇作为外碳源的生物反硝化 [J].北京工业大学学报, 2009, 35(11): 1521-526.
    Gómez M A, González-López J, Hontoria-García E. Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter [J]. Journal of Hazardous Materials, 2000, B80(1-3): 69-80.

    Gómez M A, González-López J, Hontoria-García E. Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter [J]. Journal of Hazardous Materials, 2000, B80(1-3): 69-80.

    Kim H, Seagren E A, Davis A P. Engineered bioretention for removal of nitrate from stormwater runoff [J]. Water Environment Research, 2003, 75(4): 355-367.

    Kim H, Seagren E A, Davis A P. Engineered bioretention for removal of nitrate from stormwater runoff [J]. Water Environment Research, 2003, 75(4): 355-367.

    Schipper L A, Barkle G F, Vojvodic-Vukovic M. Maximum rates of nitrate removal in a denitrification wall [J]. Journal of Environmental Quality, 2005, 34(4): 1270-1276.

    Schipper L A, Barkle G F, Vojvodic-Vukovic M. Maximum rates of nitrate removal in a denitrification wall [J]. Journal of Environmental Quality, 2005, 34(4): 1270-1276.

    Siantar D P, Schreier C G, Chou C S, Reinhard M. Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts [J].Water Research,1996,30(10): 2315-2322.

    Siantar D P, Schreier C G, Chou C S, Reinhard M. Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts [J].Water Research,1996,30(10): 2315-2322.

    Della R C, Belgiorno V, Meric S. Cotton-supported heterotrophic denitrification of nitrate-rich drinking water with a sand filtration post-treatment [J]. Water South Africa, 2005, 31(2): 229-236.

    Della R C, Belgiorno V, Meric S. Cotton-supported heterotrophic denitrification of nitrate-rich drinking water with a sand filtration post-treatment [J]. Water South Africa, 2005, 31(2): 229-236.

    Daniels L, Belay N, Rajagopal B S, Weimer, P J. Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons[J]. Science, 1987, 237(4814): 509-511.

    Daniels L, Belay N, Rajagopal B S, Weimer, P J. Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons[J]. Science, 1987, 237(4814): 509-511.

    Della R C, Belgiorno V, Meric S. An heterotrophic/autotrophic denitrification(HAD) approach for nitrate removal from drinking water [J]. Process Biochemistry, 2006, 41(5): 1022-1028.

    Della R C, Belgiorno V, Meric S. An heterotrophic/autotrophic denitrification(HAD) approach for nitrate removal from drinking water [J]. Process Biochemistry, 2006, 41(5): 1022-1028.

    Till B A, Weathers L J, Alvarez P J J.Fe(0)-supported autotrophic denitrification [J]. Environmental Science and Technology, 1998, 32(5): 634-639.

    Till B A, Weathers L J, Alvarez P J J.Fe(0)-supported autotrophic denitrification [J]. Environmental Science and Technology, 1998, 32(5): 634-639.

    Ergas S J, Reuss A F. Hydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor [J]. Journal of Water Supply Research and Technology-Aqua, 2001, 50(3): 161-171.

    Ergas S J, Reuss A F. Hydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor [J]. Journal of Water Supply Research and Technology-Aqua, 2001, 50(3): 161-171.

    Weber K A, Pollock J, Cole K A, O'Connor S M, Achenbach L A, Coates J D. Anaerobic nitrate-dependent iron(Ⅱ) bio-oxidation by a novel lithoauto-trophic betaproteobacterium, Strain 2002 [J]. Applied and Environment Microbiology, 2006, 72(1): 686-694.

    Weber K A, Pollock J, Cole K A, O'Connor S M, Achenbach L A, Coates J D. Anaerobic nitrate-dependent iron(Ⅱ) bio-oxidation by a novel lithoauto-trophic betaproteobacterium, Strain 2002 [J]. Applied and Environment Microbiology, 2006, 72(1): 686-694.

    Fernndez-Nava Y, Marañn E, Soons J, Castrillón L. Denitrification of high nitrate concentration wastewater using alternative carbon sources [J]. Journal of Hazardous Materials, 2010, 173: 682-688.

    Fernndez-Nava Y, Marañn E, Soons J, Castrillón L. Denitrification of high nitrate concentration wastewater using alternative carbon sources [J]. Journal of Hazardous Materials, 2010, 173: 682-688.

    Chang C, Tseng S, Huang H. Hydrogenotrophic denitri-fication with immobilized Alcaligenes eutrophus for drinking water treatment [J]. Bioresource Technology, 1999, 69(1): 53-58.

    Chang C, Tseng S, Huang H. Hydrogenotrophic denitri-fication with immobilized Alcaligenes eutrophus for drinking water treatment [J]. Bioresource Technology, 1999, 69(1): 53-58.

    Lee J W, Lee K H, Park K Y, Maeng S K. Hydro-genotrophic denitrification in a packed bed reactor: Effects of hydrogen-to- water flow rate ratio [J]. Bioresource Technology, 2010, 101(11): 3940-3946.

    Lee J W, Lee K H, Park K Y, Maeng S K. Hydro-genotrophic denitrification in a packed bed reactor: Effects of hydrogen-to- water flow rate ratio [J]. Bioresource Technology, 2010, 101(11): 3940-3946.

    Lee K, Rittmann B E. Applying a novel autohydrogeno-trophic hollow-fiber membrane biofilm reactor for denitrification of drinking water [J]. Water Research, 2002, 36(8): 2040-2052.

    Lee K, Rittmann B E. Applying a novel autohydrogeno-trophic hollow-fiber membrane biofilm reactor for denitrification of drinking water [J]. Water Research, 2002, 36(8): 2040-2052.

计量
  • 文章访问数:  1749
  • HTML全文浏览量:  0
  • PDF下载量:  1367
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-29

目录

    /

    返回文章
    返回