邻菲啰啉光度法测定高岭土中可溶铁和非可溶铁
Determination of Soluble and Insoluble Iron in Kaolin by Phenanthroline Spectrophotometry
-
摘要: 高岭土中铁的赋存状态和含量影响其白度和增白效果,因此快速准确地测定高岭土中不同种类的铁含量具有实际应用意义。高岭土中自由铁和结构铁定量分析困难,为此本文将高岭土中的铁分为可溶铁和非可溶铁两类。高岭土经盐酸酸溶处理后溶液中的铁含量为可溶铁含量,经氢氧化钠碱熔处理后溶液中的铁含量为总铁含量,非可溶铁含量由总铁含量减去可溶铁含量计算得出。采用邻菲啰啉光度法测定溶液中的铁含量,该方法的相对标准偏差小于5%,加样回收率范围在95%~105%,最低检测含量为1.06 μg/g。高岭土中的其他元素对铁的测定均没有干扰。所测得的可溶铁为大部分自由铁和少数结构铁。通过对高岭土中的可溶铁进行定量分析,可得知漂白工艺中可除去的最大铁含量。Abstract: The whiteness and whitening effect of kaolin are influenced by the status and content of iron in kaolin. It is meaningful in practical application to determine the contents of different species of iron in kaolin rapidly and accurately. However, it is difficult to analyze the contents of free and structural iron in kaolin. In this article, iron in kaolin is divided into soluble and insoluble iron. The soluble iron in kaolin can be obtained by leaching with hydrochloric acid, while the total iron is achieved by calcining with sodium hydroxide. The content of insoluble iron is equal to the content of total iron minus soluble iron. The phenanthroline spectrophotometry method is used to determine the content of iron. The relative standard deviation of this method is less than 5%, and sample recoveries range from 95% to 105%. The detection limit of iron is 1.06 μg/g. Other elements in kaolin did not interfere with iron determination by this method. Soluble iron was almost free iron with little structural iron in kaolin. The maximum content of removal iron for the whitening technique can be estimated by quantitative analysis of soluble iron in kaolin.
-
Keywords:
- kaolin /
- soluble /
- iron /
- Phenanthroline
-
-
张锡秋,方邺森,胡立勋.高岭土[M].北京: 轻工业出版社,1988: 14. Prasada M S,Reida K J,Murray H H. Kaolin: Processing, properties and applications [J].Applied Clay Science,1991, 6(2): 87-119. Prasada M S,Reida K J,Murray H H. Kaolin: Processing, properties and applications [J].Applied Clay Science,1991, 6(2): 87-119.
Chandrasekhar S, Ramaswamy S. Influence of mineral impurities on the properties of kaolin and its thermally treated products [J]. Applied Clay Science,2002(21): 133-142. Chandrasekhar S, Ramaswamy S. Influence of mineral impurities on the properties of kaolin and its thermally treated products [J]. Applied Clay Science,2002(21): 133-142.
程寿森.非金属矿的开发利用[J].岩矿测试,1992,11(1-2): 156 -161.
Bundy W M. The diverse industrial applications of kaolin [J]. The Clay Minerals Society,1990(1): 43-74. Bundy W M. The diverse industrial applications of kaolin [J]. The Clay Minerals Society,1990(1): 43-74.
Murray H H. Traditional and new applications for kaolin, smectite, and paligorskite: A general overview [J]. Applied Clay Science,2000(17): 207-221. Murray H H. Traditional and new applications for kaolin, smectite, and paligorskite: A general overview [J]. Applied Clay Science,2000(17): 207-221.
陈文瑞.我国陶瓷超级高岭土的开发与应用[J].中国陶瓷,2008,44(11): 59-62. Murray H H, Jessica E K. Engineered clay products for the paper industry [J]. Applied Clay Science,2005,29: 199-206. Murray H H, Jessica E K. Engineered clay products for the paper industry [J]. Applied Clay Science,2005,29: 199-206.
Bertolino L C, Rossi A M, Scorzelli R B, Torem M L. Influence of iron on kaolin whiteness: An electron paramagnetic resonance study [J]. Applied Clay Science,2010,49(3): 170-175. Bertolino L C, Rossi A M, Scorzelli R B, Torem M L. Influence of iron on kaolin whiteness: An electron paramagnetic resonance study [J]. Applied Clay Science,2010,49(3): 170-175.
Jepson W B. Structural iron in kaolinites and in asso-ciated ancillary minerals [M]. NATO Advanced Science Institutes Series,1988: 467-536. Jepson W B. Structural iron in kaolinites and in asso-ciated ancillary minerals [M]. NATO Advanced Science Institutes Series,1988: 467-536.
Schroeder P A, Pruett R J, Hurst V J. Effects of secon-dary iron phases on kaolinite 27Al MAS NMR spectra [J]. Clays and Clay Minerals,1998,46(4): 429-435. Schroeder P A, Pruett R J, Hurst V J. Effects of secon-dary iron phases on kaolinite 27Al MAS NMR spectra [J]. Clays and Clay Minerals,1998,46(4): 429-435.
陈永欣,阮贵武,谢毓群,蔡维专.电感耦合等离子体发射光谱法测定高岭土中杂质元素[J].岩矿测试,2008,27(6): 473-474. 蔡宏伟,王勤华,柳振作.微波消解光度法测定高岭土中的铁含量[J].陕西科技大学学报,2006,24(2): 63-65. 乔淑萍,张凤兰,高智.煤系高岭土中铁含量的测定[J].内蒙古工业大学学报,1999,18(2): 128-130. 王锦荣,周汉文,曾伟能,杨增良,柳婷,瞿思思.合浦高岭土矿物特征对白度的影响[J].中国非金属矿工业导刊,2010(3): 24-30. 李顺生,李鸿钧,赵景总.铁、钛对高岭土白度的影响[J].福州大学学报:自然科学版,1989,17(2): 73-76. 实用工业硅技术编写组.实用工业硅技术[M].北京: 化学工业出版社,2005: 191-193. 于瑞敏.过渡金属氧化物及化学漂白对高岭土白度影响规律的研究 .厦门: 厦门大学,2008: 5. 李中和,张典奎,叶卓麟. 陶瓷原料与瓷相分析[M]. 浙江: 浙江大学出版社,1989: 12. 陈国珍,黄贤智,刘文元,郑朱梓,王尊本.紫外-可见光分光光度法(下册)[M]. 北京: 原子能出版社,1987: 159. 陈国珍,黄贤智,刘文元,郑朱梓,王尊本.紫外-可见光分光光度法(上册)[M]. 北京: 原子能出版社,1983: 59-60. 吕宪俊.高岭土中染色物质的赋存形式及其漂白工艺的选择[J].中国非金属矿工业导刊,2004(4): 8-12. 姚林波.高岭石的结构缺陷、杂质元素存在形式及热转变研究[J]. 地质地球化学,1996(6): 118-122. 戴瑾.铁染高岭土的漂白及煅烧增白工艺研究 .厦门: 厦门大学,2009: 6.
计量
- 文章访问数: 1654
- HTML全文浏览量: 0
- PDF下载量: 1178