5A分子筛吸附混合溶剂洗脱-气相色谱-同位素质谱分析土壤中正构烷烃单体碳同位素
Specific Carbon Isotopic Analysis of n-Alkanes in Soils by Gas Chromatography-Isotope Ratio Mass Spectrometry with 5A Molecular Sieve Adsorption and Mixed Solvent Elution
-
摘要: 利用5A分子筛吸附,环己烷-正戊烷混合溶剂洗脱分离富集正构烷烃,用气相色谱法测定正构烷烃含量,气相色谱-气体同位素质谱(GC-C-IRMS)测定土壤样品中正构烷烃单体碳同位素。实验优化了5A分子筛用量和洗脱剂的比例,需要络合的正构烷烃的量与分子筛加入量呈线性关系,络合x mg的正构烷烃,需加入2.75x g分子筛,络合环己烷-正戊烷最佳比例为9∶91。探讨了络合过程中5A分子筛对不同链长正构烷烃的络合规律,短链正构烷烃被5A分子筛优先吸附,长链正构烷烃的络合相对滞后。正构烷烃的络合洗脱回收率为44%~72%,精密度(RSD,n=6)为4%~8%;正构烷烃单体碳同位素分析精度为0.04‰~0.38‰(1σ)。采用5A分子筛净化混合溶剂洗脱方法,分析加油站附近的实际土壤样品,未分峰基本消除,获得良好的净化效果,满足正构烷烃单体碳同位素分析的要求。Abstract: n-alkanes were concentrated after separating by a 5A molecular sieve and extracted by a mixture solvent of cyclohexane and n-pentane. In this study, the amount of 5A molecular sieve and the ratios of cyclohexane and n-pentane were optimized as 2.76 g and 9∶91, respectively. It was discovered that short carbon chain n-alkanes were readily absorbed by a 5A molecular sieve, compared to the long carbon chain n-alkanes. The complexation efficiency is higher for long carbon chain n-alkanes than that of short carbon chain n-alkanes with enough 5A molecular material at higher temperature. In this study, n-alkanes contents were determined by Gas Chromatography (GC) and compound specific carbon isotope ratios of individual n-alkanes in soil were measured by Gas Chromatography-Isotope Ratio Mass Spectrometry (GC-IRMS).The recoveries of n-alkanes ranged from 44% to 72‰ with a precision of 4%-8%. The accuracies of compound specific carbon isotopes of n-alkanes ranged from 0.04‰ to 0.38‰ (1σ). The 5A molecular sieve procedure was used to analyse soil samples around a gas station. The results indicate that almost all of the unseparated and interference peaks were eliminated and the purification of n-alkanes met the requirements of stable carbon isotope analysis.
-
-
张杰,贾国东.植物正构烷烃及其单体氢同位素在古环境研究中的应用[J].地球科学进展, 2009,24(8):874-881. 郑艳红,程鹏,周卫建.正构烷烃及单体碳同位素的古植被与古气候意义[J].海洋地质与第四纪地质,2005,25(1):99-104. 王晓华,石丽明,刘美美,孙青,储国强.古气候古环境研究中类脂化合物单体同位素分析[J].岩矿测试,2008,27(6):435-440. Huang Y, Lockheart M J, Collister J W. Molecular and isotopic biogeochemistry of the Miocene Clarkia Formation: Hydrocarbons and alcohols[J]. Organic Geochemistry,1995,23:785-801. Huang Y, Lockheart M J, Collister J W. Molecular and isotopic biogeochemistry of the Miocene Clarkia Formation: Hydrocarbons and alcohols[J]. Organic Geochemistry,1995,23:785-801.
李钜源.单分子烃碳同位素分析方法及影响因素探讨[J].地球学报,2004,25(2):109-113. Tolosa I, Ogrinc N. Utility of 5Å molecular sieves to measure carbon isotope ratios in lipid biomarkers[J]. Journal of Chromatography A,2007, 1165(1-2):172-181. Tolosa I, Ogrinc N. Utility of 5Å molecular sieves to measure carbon isotope ratios in lipid biomarkers[J]. Journal of Chromatography A,2007, 1165(1-2):172-181.
Ficken K J, Barber K E, Eglinton G. Lipid biomarker, δ13C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millennia[J]. Organic Geochemistry,1998,28(3-4):217-237. Ficken K J, Barber K E, Eglinton G. Lipid biomarker, δ13C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millennia[J]. Organic Geochemistry,1998,28(3-4):217-237.
Nott C J, Xie S C, Avsejs L A, Maddy D, Chambers F M, Evershed R P. n-alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation[J]. Organic Geochemistry,2000, 31(2-3): 231-235. Nott C J, Xie S C, Avsejs L A, Maddy D, Chambers F M, Evershed R P. n-alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation[J]. Organic Geochemistry,2000, 31(2-3): 231-235.
Eglinton G, Hamilton R G. Leaf epicuticular waxes [J]. Science, 1967,156:322-335. Eglinton G, Hamilton R G. Leaf epicuticular waxes [J]. Science, 1967,156:322-335.
Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to postglacial environmental change[J]. Freshwater Biology, 1973, 3(3): 259-265. Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to postglacial environmental change[J]. Freshwater Biology, 1973, 3(3): 259-265.
O'Leary M H. Biochemical basis of carbon isotope fractionation: Stable isotopes and plant carbon-water relations[M]. San Diego: Academic Press, 1993: 19-28. O'Leary M H. Biochemical basis of carbon isotope fractionation: Stable isotopes and plant carbon-water relations[M]. San Diego: Academic Press, 1993: 19-28.
朱雷,史权.吸附法分离饱和烃组分在石油地球化学中的应用[J].石油大学学报:自然科学版,1999,23(2):30-34. Grice K, de Mesmay R, Glucina A, Wang S. An improved and rapid 5A molecular sieve method for gas chromatography isotope ratio mass spectrometry of n-alkanes (C8-C30+) [J]. Organic Geochemistry, 2008, 39(3): 284-288. Grice K, de Mesmay R, Glucina A, Wang S. An improved and rapid 5A molecular sieve method for gas chromatography isotope ratio mass spectrometry of n-alkanes (C8-C30+) [J]. Organic Geochemistry, 2008, 39(3): 284-288.
杜丽,李立武,孟仟祥,房玄,丁万仁,王广.饱和烃经5A分子筛络合前后单体烃碳同位素分析对比研究[J].沉积学报,2005, 23(4):747-752. 王传远,车桂美,盛彦清,李延太,秦志江.碳同位素在溢油鉴定中的应用研究[J].环境污染与防治, 2009, 31(7):21-24. 石丽明,刘美美,王晓华,孙青,储国强.加速溶剂萃取提取土壤中正构烷烃的方法研究[J].岩矿测试, 2010, 29(2):104-108. Chikaraishi Y, Naraoka H. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants [J]. Phytochemistry, 2003, 63(3): 361-371. Chikaraishi Y, Naraoka H. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants [J]. Phytochemistry, 2003, 63(3): 361-371.
Chikaraishi Y, Naraoka H. δ13C and δD relationships among three n-alkyl compound classes (n-alkanoic acid,n-alkane and n-alkanol) of terrestrial higher plants[J]. Organic Geochemistry, 2007,38(2):198-215. Chikaraishi Y, Naraoka H. δ13C and δD relationships among three n-alkyl compound classes (n-alkanoic acid,n-alkane and n-alkanol) of terrestrial higher plants[J]. Organic Geochemistry, 2007,38(2):198-215.
计量
- 文章访问数: 1842
- HTML全文浏览量: 0
- PDF下载量: 1378