Abstract:
Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) analysis is one of the most popular methods for isotope geochronology of zircon. This technique was applied to accurately and rapidly demonstrate the age heterogeneities within a single zircon crystal. In this review the main stages of the evolution of this
in situ microanalysis technique, including laser ablation system, ICP-MS, U-Pb dating methodology of zircon and applications are summarized. The influences from the laser device, ablation cell, laser ablation parameters (laser wavelength, laser pulse duration, ambient gas and crater size), quadrupole and magnetic sector ICP-MS on the precision and accuracy of U-Pb dating data are discussed. The quantitative calibration with natural zircon age standards and other standards, single U/Pb ratios calculation, correction for common Pb and simultaneous determinations of U-Pb age and trace element compositions are also introduced in this paper. At present, there are numerous zircon U-Pb geochronlogical applications for tracing sedimentary provenance studies and dating magmatic events by LA-ICP-MS.