An Investigation on the Catalytic Degradation of Dyeing Wastewater with Fe-ZSM-5 Zeolite
-
摘要: 传统的Fenton均相亚铁盐催化剂处理染料废水,具有难以避免的二次污染和亚铁离子流失问题。分子筛催化剂相比传统催化剂具有高效环保的特点,在催化氧化染料废水领域有着良好的前景。本文通过液相离子交换法制备了Fe-ZSM-5非均相分子筛催化剂,替代传统的亚铁盐催化剂,应用X射线衍射对制备的Fe-ZSM-5分子筛催化剂进行表征,表明随离子交换次数的增加,Fe-ZSM-5催化剂负载的铁量上升,且较好地保持了分子筛结构,有利于提高亚铁离子的催化能力。通过实验确定了Fe-ZSM-5催化剂催化反应的最佳温度、pH值、Fe-ZSM-5的用量、反应时间等工艺参数,比较了Fe-ZSM-5催化剂和传统Fenton均相催化剂降解染料废水的脱色率和废水中铁离子的残留量,结果表明Fe-ZSM-5的脱色率达到98.5%,相比于Fenton均相催化剂的脱色率提升约3%;两种催化剂的铁离子残留量差别显著,Fe-ZSM-5催化剂处理的废水中只产生微量的Fe离子,可以认为Fe-ZSM-5非均相分子筛催化剂有效地解决了催化剂损耗和二次污染问题。
-
关键词:
- Fe-ZSM-5分子筛 /
- 液相离子交换法 /
- 均相亚铁盐催化剂 /
- 染料废水 /
- 脱色效果
Abstract: A homogeneous ferrous salt catalyst was used in the traditional Fenton oxidation technology for dyeing wastewater. However, it was difficult to avoid the secondary pollution and loss of ferrous ions. Zeolite catalysts, which are more efficient and environmentally friendly than conventional catalysts, have good prospects in the field of catalytic oxidation of dyeing wastewater. In this article, Fe-ZSM-5 zeolite catalyst was prepared by the liquid ion exchange method to replace the traditional ferrous salt catalyst and its catalytic effect was studied for wastewater treatment with the Fenton reagent. X-ray Diffraction was applied to study the characteristics of the Fe-ZSM-5 zeolite catalyst. The result indicated that the Fe-ZSM-5 well reserved the structures of a molecular sieve, which improved the catalytic effect. The effect of the number of ion exchanges and supported Fe on the structure of ZSM-5 zeolite is discussed in this paper. The treatment of dyeing wastewater by catalyzer of Fe-ZSM-5 and oxidant of H2O2 has been investigated under the optimal conditions of temperature, pH value, dosage of Fe-ZSM-5 and reaction time. Results show that Fe-ZSM-5 zeolite catalyst has excellent catalytic effect and the decolorization rate of the dye was to 98.5% under optimal conditions. The catalytic effect of the heterogeneous Fe-ZSM-5 was 3% higher than that of the traditional Fenton oxidation technology. Moreover, the residuals of Fe were significantly different between the two methods, which demonstrate that the heterogeneous Fe-ZSM-5 catalyzer efficiently overcame the problems of the catalyzer loss and secondary pollution. -
激光拉曼光谱分析作为一种非破坏性的分析方法,可以快速方便地对单个包裹体进行定性、半定量分析,现已成为流体包裹体研究的基本工具之一[1, 2]。近年来随着仪器精度的提高以及科研的需要,激光拉曼针对包裹体的定量分析的研究发展迅速。定量分析主要涉及包裹体的气[3, 4, 5, 6, 7]、液相[8, 9, 10, 11, 12, 13, 14, 15]以及同位素[16, 17, 18, 19, 20]等化学组成分析以及包裹体的内压[21, 22, 23, 24]、密度[25, 26]、有机质热成熟度[27, 28]等物理参数的获取。而作为包裹体重要成分的各种无机和有机气相组分,由于其一般具有较强的拉曼活性,在拉曼谱图上表现出尖锐而特征的谱峰,因此被认为是进行拉曼定量分析的重要研究对象[29]。国内外学者对包裹体中常见的C-H-O-N-S体系的气相组分开展了比较广泛的定量研究[3, 4, 5, 6, 7],取得了显著的成果。由于气相组分的拉曼定量分析与分子性质、温度、压力、仪器性能等诸多因素有关[3, 4, 29],造成前人结果存在比较明显的差异,难以相互借用,如李维华等[5]与Wopenka等[30]测定的SO2的定量因子有近5倍的差别。因此在进行气相成分的定量分析之前,需要利用一系列混合气体标样对仪器进行标定。前人一般使用商用钢瓶装混合气进行仪器标定[3, 4, 5],虽然上述标样易于购置、配比准确,却存在气体组成单一无法调节、费用高、需要经常更换钢瓶等缺点。如按10%的梯度对10%~90%的两种气体的混合物进行标定,需要购置9瓶钢瓶气轮换使用,并且钢瓶气一定的使用期限,超过期限需要重新购置。针对上述不足,本文提出了一种在线配置不同浓度和压力条件下混合气体标样的方法,以实现快速准确地对激光拉曼探针进行标定及测定气体拉曼定量因子的研究目的。
1. 在线标样制备装置和在线标样的制备
为了实现混合气体标样的制备,本次研究搭建了一套在线标样制备装置(图 1)。该装置可以同时接入三路钢瓶气体,每路钢瓶气分别连接一个减压阀用于控制气体的输出压力;利用带有刻度和活塞的体积转移器量取实验所需体积的气体并将量取的气体注入高压容器中进行混合;增压泵用于对高压容器中的混合气体进行增压;真空泵用于对装置进行抽真空;装置的输出端与石英毛细管相连接;管路中安装有真空表以及压力表用于监控系统的真空度以及线路中气体的压力值;线路中还设有两个排气孔用于排气及管路清洗。
实验所用的钢瓶气为高纯气体,浓度≥99.999%;毛细管规格为内径0.1 mm,外径0.3 mm,表面涂有一层聚酰亚胺保护膜,厚度约0.025 mm(美国Polymicro Technologies公司)。激光拉曼分析的仪器为Renishaw Invia型激光拉曼光谱仪(英国Renishaw公司),使用Ar+激光器,波长为514 nm,光谱分辨率为2 cm-1。
在线混合气体标样制备的实验步骤如下。
(1) 打开阀门1~6、8、10,关闭阀门7、9、11,打开真空泵对管路、体积转移器及高压容器抽真空,待真空表读数≤10Pa时,关闭真空泵。
(2) 关闭阀门2~4、6、8、10,打开气瓶1的减压阀并调节至实验所需压力值,用体积转移器量取实验所需气体体积。
(3) 关闭阀门1、5、气瓶1的减压阀,打开阀门6、8,将体积转移器中的气体转移至高压容器中。
(4) 关闭阀门8,打开阀门1~6、8、10,对系统抽真空,待真空表读数≤10Pa时,关闭真空泵。
(5) 重复步骤(2)~(4),量取实验所需体积及压力条件下的气体2并注入到高压容器中,使气体1和2充分混合。
(6) 关闭阀门6,打开阀门8、11,利用高压容器中的混合气体对管路进行清洗。
(7) 关闭阀门11,打开阀门9,打开电动增压泵,对高压容器中的气体进行增压,待达到实验所需的气体压力时,停止增压并进行激光拉曼分析,然后继续增压至下一个压力点并进行拉曼分析。
2. 结果与讨论
2.1 在线样品准确性验证
为了验证制样方法的准确性及重复性,将本研究制备的70% N2+30% CO2的在线标样与购置于大连大特气体公司生产的同等浓度的商用标样,在10 MPa条件下分别进行了激光拉曼分析。结果表明,本次研究制备的混合气体与商用钢瓶装标样具有相似的峰形(图 2)。利用英国Renishaw公司出品的Wire3.0软件对上述拉曼谱图进行了分析,结果表明本方法制备的混合气体与商用标样具有相似的CO2与N2的相对峰高以及相对峰面积值,其相对误差小于4%,并具有较好的重现性,能够满足实验要求。
2.2 CH4及CO2相对拉曼定量因子的测定
在测定单个包裹体气体组成方面,国内外多沿用“相对拉曼定量因子”的方法,即通常将N2的定量因子定为1.00,其他气体与N2进行比较,得到相对拉曼定量因子[3, 4]。本次研究分别对拉曼峰面积及峰高计算了相对拉曼定量因子,具体公式如下:
式中,Ag为气体g的拉曼峰面积;AN2为N2的拉曼峰面积;Cg为气体g的摩尔分数;CN2为N2的摩尔分数;Hg为气体g的拉曼峰高;HN2为N2的拉曼峰高;Fgr代表以峰面积为参考值时气体g相对于N2的拉曼定量因子;Ggr代表以峰高为参考值时气体g相对于N2的拉曼定量因子。
为了测定CO2以及CH4的相对拉曼定量因子,在室温、5 MPa和10 MPa压力条件下,分别制备了N2摩尔分数为30%、50%和70%的N2-CO2混合气体标样以及N2-CH4混合气体标样。
在上述标样的激光拉曼谱图(图 3)中能清晰地辨识出N2、CO2以及CH4的拉曼特征峰。气体的拉曼峰强度随浓度以及压力的增加而增加,信噪比随着压力由5 MPa增加到10 MPa增大约一倍。
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
虽然CO2在1286 cm-1附近以及1386 cm-1附近出现两个峰值,但是由于1286 cm-1附近的峰强度要小于1386 cm-1附近峰强度。因此本文仅针对CO2在1386 cm-1附近的峰计算了相对拉曼定量因子。
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
求得CH4和CO2相对拉曼定量因子之后,便可以对包裹体中CH4和CO2的相对含量进行计算,具体计算公式如下:
3. 地质样品应用
选取四川金沙岩孔剖面,震旦系的藻云岩样品进行应用研究。该样品溶洞发育,被后期亮晶白云石充填。溶洞充填的亮晶白云石中发育气液两相盐水包裹体。选取个体较大并且靠近样品表面的包裹体,对其气泡进行激光拉曼分析,结果表明包裹体的气泡主要由CH4和CO2组成(图 6)。
利用wire3.0对图 6中两个包裹体的拉曼相关参数进行求解,并分别利用公式(3) 和(4) 对包裹体a和b中的CH4和CO2摩尔浓度进行了计算,得到包裹体中CH4的摩尔分数为27.60%~31.63%,CO2的摩尔分数为68.37%~72.40%(表 1)。上述结果表明,利用本文所求得的拉曼定量因子F和G所得到计算的结果基本一致(两者的绝对偏差在2.5%以内);包裹体a和b气相组成较接近,可能为同期捕获的产物。
表 1 包裹体样品分析结果Table 1. The analytical composition of gas in fluid inclusions包裹体 ACO2 HCO2 ACH4 HCH4 CCH4(%) CCO2(%) 据公式(3) 据公式(4) 据公式(3) 据公式(4) 包裹体a 3461.54 594.541 17891.2 4115.24 31.63 31.25 68.37 68.75 包裹体b 3137.87 732.481 14694.8 4251.27 29.54 27.60 70.46 72.40 4. 结语
本文利用自主搭建的在线标样制备装置,对N2-CH4以及N2-CO2进行在线混合增压,制备了N2摩尔浓度为30%、50%和70%,压力为5 MPa和10 MPa的N2-CH4以及N2-CO2混合气体在线标样。通过与商用混合钢瓶气体标样对比表明,该方法所使用的装置操作简单,制备的混合气体具有较高的准确性及重现性,能够方便、准确地对拉曼光谱仪进行标定,实现了不同压力和浓度条件下气体的相对拉曼定量因子的测定。通过对CH4及CO2的相对定量因子测定表明,气体压力在5~10 MPa的范围时,定量因子不受压力变化的影响,为固定值。地质样品应用表明,本方法可以方便、灵活、准确地按任意比例将两瓶及两瓶以上纯气体钢瓶样品进行混合及增压,弥补了商用钢瓶装混合气体标样费用高、气体组成单一固定等不足。
由于本次研究仅在5 MPa和10 MPa两个压力点进行了分析,因此对于相对定量因子在 < 5 MPa及 > 10 MPa压力条件下的变化规律还有待于进一步研究。另外由于缺乏已知气体组成的人工合成包裹体标样,对于本方法在包裹体应用中的误差范围还有待于进一步研究。
-
表 1 均相Fenton试剂和非均相Fe-ZSM-5催化剂的比较
Table 1 Comparison of decoloration effect with Fenton and Fe-ZSM-5 zeolite
催化剂 催化剂用量ρ/
(g·L-1)残留Fe离子浓度ρ(Fe)/
(g·L-1)脱色率/% Fenton 均相催化剂 0.79 600×10-6 95.2 Fe-ZSM-5非均相
分子筛催化剂0.79 2×10-6 98.5 -
石油化学工业部化工设计院.污染环境的工业有害物[M].北京:石油化学工业出版社, 1976: 247-253. 李金英,杨春维. 水处理中的高级氧化技术[J].科技导报, 2008,26(16):88-92. doi: 10.3321/j.issn:1000-7857.2008.16.020 黄仲涛.工业催化[M].北京:化学工业出版社, 1994: 45. Nogueira R F, Trovó A G, Mode D F.Solar photo-degradation of dichloroacetic acid and 2,4-dichloro-phenol using an enhanced photo-fenton process[J]. Chemosphere, 2002, 48: 385-391. doi: 10.1016/S0045-6535(02)00099-1
Katsumata H, Kawabe S, Kaneco S, Suzuki T, Ohta K. Degradation of bisphenol A in water by the photo-Fenton reaction [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004,162: 297-305. doi: 10.1016/S1010-6030(03)00374-5
薛勇,蒋宝军. Fenton法在污水处理中的应用和研究进展[J].中国资源综合利用, 2011, 29(8): 60-62. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS201108045.htm 王建信.超声-Fenton氧化技术降解水中苯酚和对硝基苯酚的研究[D].上海:同济大学,2004. 白蕊,李巧玲,李建强,郝晏. Fenton法及类Fenton法在污水处理方面的研究与应用[J].化工科技, 2010, 18(6): 69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-JKGH201006017.htm Esther F, Tibor C, Gyula O. Removal of synthetic dyes from wastewater: A review [J]. Environment Inter-national, 2004, 30(7): 953-971. doi: 10.1016/j.envint.2004.02.001
Kasiri M B, Aleboyeh H, Aleboyeh A. Degradation of acid blue 74 using Fe-ZSM-5 zeolite as a heterogeneous photo-fenton catalyst [J]. Applied Catalysis B: Environ-mental, 2008, 84(1-2): 9-15. doi: 10.1016/j.apcatb.2008.02.024
李赫咺,项寿鹤,吴德明,刘月亭,张晓森,刘述铨.ZSM-5沸石分子筛合成的研究[J].高等学校化学学报, 1981, 2(4): 517-519. http://cdmd.cnki.com.cn/Article/CDMD-10335-1013303272.htm 杨少华,崔英德,陈循军,涂星.ZSM-5沸石分子筛的合成和表面改性研究进展[J].精细石油化工进展, 2003, 4(4): 47-50. http://www.cnki.com.cn/Article/CJFDTOTAL-JXSI200304017.htm 张玉荣,杨鸿鹰.分子筛ZSM-5的改性研究进展[J].化学工程与装备, 2011(9): 185-187. http://www.cnki.com.cn/Article/CJFDTOTAL-FJHG201109058.htm 任瑞霞,刘姝,宋雯雯,刘海莲. ZSM-5分子筛的合成与应用[J].化工科技, 2011, 19(1): 55-60. http://cdmd.cnki.com.cn/Article/CDMD-10749-1016269961.htm 薛宁,刘晴居,沈贵.负载金属离子ZSM-5分子筛膜脱除苯并噻吩-二苯并噻吩的性能[J].南京工业大学学报:自然科学版,2011, 33(4): 63-67. http://www.cnki.com.cn/Article/CJFDTOTAL-NHXB201104015.htm 范闽光,李斌,张飞跃,张少龙,李景林.Cu/HZSM-5分子筛上乙醇芳构化的在线分析及其催化活性的评价[J].分析化学, 2010, 38(4): 517-521. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201004017.htm 常立亚,何凯,王婧,黄伟,李哲.Fe-Mo/ZSM-5蜂窝催化剂上NOx的催化还原性能[J].煤炭转化,2011,34(1): 62-64, 77. 佟惠娟,李工.含铁和钒的ZSM-5型分子筛的合成、表征及催化性能[J].石油化工高等学校学报,2002,15(2): 33-36. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHX200202007.htm 张春雷,郭兴巴图,李爽,袁艺.HZSM-5结晶度和晶粒度对甲烷无氧芳结构化催化剂性能的影响[J].催化学报,1998, 19(6): 549-582. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA806.026.htm 王锋,贾鑫龙,胡津仙,任杰,李永旺,孙予罕.形貌、晶粒大小不同的ZSM-5分子筛的表征及催化性能的研究[J].分子催化, 2003, 17(2): 140-145. http://www.cnki.com.cn/Article/CJFDTOTAL-FZCH200302012.htm 陈忠林,朱洪平,邹洪波,王海鸥,韩帮军.Fenton试剂处理水中有机物的特性及其应用[J].黑龙江大学自然科学学报, 2005, 22(2): 204-207. http://www.cnki.com.cn/Article/CJFDTOTAL-HLDZ200502011.htm 武汉大学.分析化学实验[M].北京:高等教育出版社, 1985: 354-358.