Determination of Major Elements in Silicate Samples with High Content Strontium and Barium by X-ray Fluorescence Spectrometry
-
摘要: 用百分总和检查硅酸盐岩石全分析数据的质量是分析工作者的传统做法,但对于微量元素含量较高的样品,采用X射线荧光光谱法(XRF)进行测定,如果不考虑微量元素的含量及其对主量元素基体效应的影响,往往会使主量元素含量更加偏离真实值。本文针对Sr、Ba含量较高的硅酸盐样品,通过人工配制标准样品,扩大了Sr、Ba校准曲线的定量范围,主量元素校准中加入Sr、Ba的基体校正系数,达到了主量元素定量更加准确可靠的实际效果。采用此方法分析国家标准物质,各主量元素的精密度(RSD)均小于2%;分析不参加回归的标准物质和人工配制的标准样品,主量元素的测量值与标准值(或参考值)基本一致。该方法可以满足硅酸盐的测定要求,主量元素各项结果的加和能够达到《地质矿产实验室测试质量管理规范》的一级标准(99.3%~100.7%)。Abstract: Traditionally, the percentage sum method is used to check the data quality of total analysis of constituents for silicate rock. For samples with a high content of trace elements, the contents of major elements obtained by X-ray Fluorescence Spectrometry (XRF) will deviate from the true values, regardless of trace elements, as will its corresponding matrix effect to the major element. The method described in this paper improves the accuracy of major element content in silicate samples with a high content of Sr and Ba, through extending the calibration curve′s quantitative range of Sr and Ba by Chinese National Standard Materials and artificial standard materials, and applying a matrix correction coefficient of Sr and Ba to the major element calibration procedure. The validity of the method was substantiated by analyzing the national standard materials; the relative standard deviations (RSD) of major elements were less than 2%. Additionally, analysis results of major elements of national standard materials and artificial standard materials, which do not participate in regression were basically in accordance with reference contents. The method can be used to satisfy the analysis of silicate rock and the sum results of all major elements meet the standard of specification of testing quality management for geological laboratories (99.3% to 100.7%).
-
Keywords:
- silicate /
- major elements /
- strontium /
- barium /
- X-ray Fluorescence Spectrometry
-
研究绿松石的矿料来源对于了解古代先民的活动范围、开采运输能力和考古文化联系等问题都具有重要的意义[1-6]。而它的来源问题一直是考古学界关注而又悬而未决的问题,如何能够正确鉴定绿松石矿料来源成为当务之急,显然这一问题的解决有赖于对绿松石矿物和结构特征等诸多方面的深入研究。前人主要从成分或者结构分别对我国一些产地的绿松石进行了研究和总结,但是并没有形成一个绿松石地域特征的划分体系。在前人的研究中,通过X射线衍射 (XRD) 物相分析对绿松石的结构进行分析,在成分分析上通常采用高分辨电感耦合等离子体质谱仪 (ICP-MS)、拉曼光谱来研究不同产地绿松石的谱线特征。为了进一步研究不同产地绿松石的产地特征,本文采用ICP-MS、扫描电镜、XRD、红外吸收光谱等现代测试方法[7]分析来自不同地区绿松石的成分,尤其是分析微量元素和稀土元素的种类和含量,同时对结构特征也进行了分析,从而为古绿松石来源的无损鉴定[8]提供一定的借鉴作用。
1. 样品特征及分析方法
1.1 样品描述
选取湖北竹山县秦古镇和安徽马鞍山绿松石为研究样品,其特征和形貌见表 1和图 1。
表 1 绿松石样品特征Table 1. Characteristics of turquoise samples样品 产地 描述 CL-1 湖北竹山县秦古镇 蓝灰色,结构致密,黑色物质相间分布 CL-2 湖北竹山县楼台乡 淡绿色,围岩含较多铁矿 CL-3 湖北竹山县溢水镇 淡蓝绿色,结构松散 CL-4 安徽马鞍山 浅蓝色,被围岩包裹 1.2 分析仪器
采用能谱仪 (EDAX)、GeoLas 2005激光剥蚀系统和Agilent 7500a等离子体质谱仪 (美国Agilent公司) 进行成分分析。激光能量70 mJ,频率8 Hz,激光束斑直径32 μm。
采用PW3373/10型X射线衍射仪 (日本理学株式会社) 进行物相分析。
采用AVATAR-370DTGS傅里叶变换红外光谱仪 (Nicolet) 进行矿物基团分析。
采用JSM-350CF型环境扫描电子显微镜 (荷兰FEI公司) 进行微观形貌和结构特征分析。
2. 分析与讨论
2.1 化学成分分析
X射线能谱分析绿松石样品中氧化物含量见表 2。湖北竹山县 (CL-1) 和安徽马鞍山地区 (CL-4) 的绿松石主成分中都含有一定量的Fe和微量的SiO2,其中竹山县样品CL-2和CL-3还含有一定量的S,两地的绿松石成分都与理论值[9]相比存在一定的偏离,这可能与所选样品为绿松石原石有关,因为原石中所含围岩矿物的成分会影响绿松石的主要元素含量。
表 2 X射线能谱分析绿松石中氧化物含量Table 2. Main chemical compositions of oxides in turquoise samples by EDAX analysis样品编号 wB/% Al2O3 SiO2 P2O5 Fe2O3 CuO SO3 CL-1 41.60 0.88 42.20 1.73 13.60 - CL-2 35.31 0.57 42.23 14.36 5.99 1.54 CL-3 46.41 2.65 40.56 1.50 7.56 1.32 CL-4 40.00 0.51 39.63 3.36 16.50 - 理论值 36.84 - 34.12 - 9.57 - 绿松石样品的微量元素含量见表 3。秦古绿松石 (CL-1) 中Na、Mg、Si、Ca、Sc、Ti、V、Cr、Mn、Co、Zn、Sr、Mo、Sb和Ba元素的含量与马鞍山绿松石存在较大的差异,这与绿松石矿的地质特征紧密相关。竹山县绿松石主要的伴生矿物有多水高岭石、水铝英石、明矾石、石英、方解石、蓝铜矿和孔雀石等,而马鞍山绿松石矿床成矿围岩中富含磷灰石,并伴有铜矿体[10],所以在一定程度上来讲上述微量元素的存在也是这些伴生矿物引入的。
表 3 等离子体质谱分析绿松石中微量元素含量Table 3. Chemical compositions of micro-amount of elements in turquoise samples by ICP-MS元素 wB/(μg·g-1) CL-1 CL-4 Y 0.464 0.707 Zr 0.320 0.390 Nb 0.021 0.003 Mo 147.234 0.018 Ag 0.116 0.052 Cd 0.726 0.019 In 0.192 1.684 Sn 2.159 1.555 Sb 76.300 0.651 Li 0.115 0.139 Be 5.326 6.078 B 2.650 1.073 Na 69.630 184.435 Mg 1.651 8.220 Si 282.623 507.143 K 214.616 327.047 Ca 0.000 13.092 Sc 2.647 13.645 Ti 78.346 27.745 Cs 0.011 0.004 Ba 1597.627 Li Hf 0.015 0.020 Ta 0.017 0.008 W 0.662 0.039 Tl 0.172 0.011 Pb 0.345 2.230 Bi 0.008 0.131 Th 0.000 0.173 U 67.272 0.984 V 310.534 25.235 Cr 325.871 5.927 Mn 0.000 0.221 Co 1.313 27.831 Ni 0.768 0.857 Zn 1584.435 147.116 Ga 19.476 10.371 Ge 0.214 0.340 Rb 0.364 0.597 Sr 19.249 3.431 从矿床学的角度来分析,竹山县的绿松石矿体赋存于寒武系硅质泥质板岩中,并且它的矿化与铀的矿化分布一致,广泛分布有铀-钒-钡矿化层,这就造成了产于竹山县的绿松石在U、V、Ba元素上远大于马鞍山地区绿松石。而马鞍山地区绿松石矿的成矿围岩为富钠的碱钙性岩石,其中龙王山组富含K2O,大王山组及次火山岩相对富含Na2O,而K2O的含量也较高[11],因此在碱性元素上马鞍山地区的绿松石含量普遍高于竹山地区。
任何矿石都是在某一地质历史时期,由某种地质作用在特定的地质环境中形成的。由于稀土元素 (REEs) 的离子半径和化学行为存在细微的差别,造成了不同地质作用过程中轻重稀土元素发生分馏[12-13],上述诸方面的差异均不可避免地体现在不同产地的绿松石矿中。根据REEs的指示作用可以通过讨论绿松石稀土元素的富化和亏损等对不同产地的绿松石作出鉴别,测定结果见表 4。
表 4 等离子体质谱分析绿松石稀土元素含量Table 4. Chemical compositions of REEs in turquoise samples by ICP-MS元素 wB/(μg·g-1) CL-1 CL-4 La 0.005 0.052 Ce 0.069 0.128 Pr 0.027 0.008 Nd 0.039 0.159 Sm 0.038 0.059 Eu 0.035 0.019 Gd 0.246 0.160 Tb 0.013 0.025 Dy 0.110 0.185 Ho 0.016 0.041 Er 0.051 0.090 Tm 0.016 0.030 Yb 0.080 0.168 Lu 0.011 0.019 由两地区样品稀土配分模式图 (图 2),两样品中Gd都显示正异常,但在稀土配分形式上存在一定的相似性。CL-1和CL-4的稀土元素总量均较低,分别变化于0.005~0.246 μg/g、0.008~0.185 μg/g,二者轻稀土总量均小于重稀土总量,明显富集重稀土,配分曲线向右上角倾斜。样品CL-1显示强烈的Nd负异常,CL-1和CL-4出现Pr反向,La的含量也相差较大。马鞍山绿松石CL-4配分曲线,Eu显示负异常,而Eu的负异常特征是马鞍山地区绿松石中经常可以看到的[14]。这种稀土含量特征可能与两地的克拉克值 (即每一种化学元素在地壳中所占的平均比值) 分布有关。
综上所述,绿松石由于成矿背景和地质条件不同,竹山与马鞍山地区绿松石虽然主要成分含量基本一致,但在微量元素含量存在较大差别;两地区绿松石的稀土元素均富集重稀土,二者的稀土配分模式图出现Pr反向,马鞍山地区的绿松石表现出Eu负异常;马鞍山绿松石的结晶程度优于竹山绿松石。
2.2 X射线衍射物相分析
为确定不同产地不同颜色的绿松石是否其内部结构[15]也发生变化,特别对绿松石样品进行XRD物相分析,测得的XRD图谱和数据见图 3,结果表明,样品CL-2为铁绿松石,其XRD分析结果与上述的主成分分析相一致。对照JCPDS卡片,显示样品CL-1、CL-3和CL-4的衍射谱线、矿物组分与绿松石理论谱线相吻合。绿松石样品CL-1、CL-3和CL-4的主要粉晶衍射数据分别为0.3666 nm (100)、0.3664 nm (100),二者基本相同。但马鞍山绿松石 (CL-4) 衍射峰的强度比竹山县绿松石 (CL-1、CL-3) 高,如图 4所示,说明马鞍山绿松石 (CL-4) 晶体的结晶程度优于CL-1和CL-3。从样品的外观 (见图 1) 和硬度来看,样品CL-2、CL-3所受风化程度较大,所以其衍射峰相对于CL-1和CL-4而言小些。
2.3 红外光谱分析
绿松石为含铜、铝和水的磷酸盐,OH、H2O及PO43-基团的振动模式和频率决定了绿松石红外光谱的主要特征[16]。图 4显示,竹山绿松石与马鞍山绿松石所表现出的红外吸收谱带特征基本相同,但绿松石晶体的结晶程度以及所受风化程度不同导致一些微小的差异。由绿松石中ν (OH) 伸缩振动致红外吸收锐谱带主要位于3511 cm-1、3459 cm-1处,而ν (MFe,Cu-H2O) 伸缩振动致红外吸收谱带则出现在3291 cm-1、3076 cm-1处,样品CL-3和CL-4的水区谱带被由吸附水ν (H2O) 伸缩振动致红外吸收舒宽谱带明显包络致使该区吸收谱带不够突出。由δ (H2O) 弯曲振动致红外吸收谱带位于1648 cm-1处。从图 4可以看出,由δ (H2O) 弯曲振动致红外吸收谱带与文献[17-19]报道的δ (H2O) 弯曲振动致红外吸收弱谱带存在一定的差异,可能是由于绿松石样品中水的结晶比较好所致。
由磷酸根基团伸缩振动致红外吸收谱带为:ν3 (PO4) 伸缩振动致红外吸收谱带位于1172 cm-1、1104 cm-1、1055 cm-1处,而δ (OH) 弯曲振动致红外吸收弱谱带出现在837 cm-1、787 cm-1处,由PO43-基团ν4 (PO4) 弯曲振动致红外吸收谱带主要位于645 cm-1、577 cm-1、482 cm-1处。这与文献[12]中天然绿松石的吸收谱带存在一定范围的偏差,可能是由于所选绿松石原石的结晶程度不完全所致。
2.4 微观形貌分析
样品CL-1、CL-2、CL-3和CL-4的扫描电子显微镜照片如图 5所示,5000倍下绿松石样品都呈现出鳞片状结构或针状结构,质地细腻。
3. 结语
通过两地绿松石的成分和结构特征对比,可以进一步分析不同产地绿松石的成矿背景,并且与古代著名绿松石产地的地质条件进行分析比对,进而可以从矿物成因的角度对古绿松石的产地进行判断,这就可以从源头上解决古绿松石的产地问题。
根据测试结果得出以下结论。
(1) 在成分上,两地绿松石的主要化学成分基本一致,而微量元素含量有一定的区别,尤其是稀土元素的含量具有显著的地域特征。由于在测试化学成分上所采用的仪器和方法都属于无损鉴定,因此在以后的研究中可以通过测试化学成分来标定各个产地绿松石的产地特点,从而为古绿松石产地的无损鉴定形成一个标准体系。
(2) 在结构上,两地的绿松石具有特征的绿松石谱线特征,并且马鞍山地区的样品结晶程度优于竹山县样品。
(3) 在形貌上,两地绿松石表现出质地细腻的特性。其中马鞍山绿松石具有明显的鳞片状集合体微观形貌结构,而竹山县绿松石呈现细鳞片状或针状结构。
绿松石可以采用X射线衍射和红外光谱以及扫描电镜进行鉴定。绿松石成分上的区别,尤其是某些微量元素和稀有元素含量上的差别可以用于判别地域,这些差别与绿松石矿的成矿背景有关。所以只有深入了解不同地区绿松石的成矿背景,才能为绿松石的产地划分提供依据。本文采用的测试化学成分的方法都是可以应用于古绿松石地域判别的无损鉴定。
不同产地的绿松石具有不同的矿物和结构特征,而且这些特征可以在不破坏绿松石外观的基础上来进行分析和判断。通过分析现代不同产地绿松石的特征能够得出绿松石的地域体系。这将对古绿松石的产地划分有很大的帮助,从而进一步推断出考古挖掘出来的古物的产地。
致谢: 本项工作得到了国家地质实验测试中心詹秀春研究员的指导和帮助,谨致谢意! -
表 1 XRF仪器分析条件
Table 1 Working conditions of the elements by XRF
元素及谱线 分析晶体 准直器/μm 探测器 电压
U/kV电流
i/mA2θ/(°) PHD范围 峰值 背景1 背景2 Na Kα PX1 550 Flow 32 100 27.8950 -1.8918 2.1214 22~82 Mg Kα PX1 550 Flow 32 100 23.0778 -1.8768 2.1788 20~78 Al Kα PE 002 550 Flow 32 100 144.9836 2.9372 -1.2496 21~76 Si Kα PE 002 550 Flow 32 100 109.1424 -2.3160 1.7938 26~76 P Kα Ge 111 550 Flow 32 100 141.0290 -1.3964 2.8040 23~78 S Kα Ge 111 550 Flow 32 100 110.7464 -1.5162 1.4708 16~74 K Kα LiF 200 150 Flow 32 100 136.7348 -1.1732 2.2190 26~74 Ca Kα LiF 200 150 Flow 32 100 113.1632 -0.8730 1.6258 28~70 Ti Kα LiF 200 150 Flow 40 90 86.2152 -0.6326 0.8640 26~75 Mn Kα LiF 200 150 Duplex 55 66 62.9988 -0.7194 0.7868 13~72 Fe Kα LiF 200 150 Duplex 55 66 57.5302 -0.7132 0.8854 16~69 Cr Kα LiF 200 150 Duplex 55 66 69.3652 -0.6454 0.7386 12~73 Ni Kα LiF 200 150 Duplex 55 66 48.6588 -0.5898 0.8294 18~70 Sr Kα LiF 200 150 Scint 55 66 25.1218 -0.5610 0.7542 22~78 Ba Lα LiF 200 150 Flow 40 90 87.2046 0.6376 - 33~71 Rh KαC LiF 200 150 Scint 55 66 18.4474 - - 26~78 表 2 各元素校准曲线范围
Table 2 Concentration range of elements in the calibration curve
元素 wB/% Na2O 0.01~7.16 MgO 0.008~41.03 Al2O3 0.10~29.26 SiO2 0.62~90.36 P2O5 0.003~0.946 K2O 0.01~7.48 CaO 0.10~53.83 TiO2 0.004~7.69 MnO 0.0039~0.322 Fe2O3 0.155~24.75 SrO 0.0029~2.17 BaO 0.0010~1.49 表 3 方法检出限
Table 3 Detection limit of elements
元素 检出限/(μg·g-1) Na2O 59.22 MgO 38.77 Al2O3 12.88 SiO2 91.36 P2O5 13.13 K2O 24.29 CaO 22.34 TiO2 28.26 MnO 8.52 Fe2O3 6.05 SrO 2.13 BaO 37.18 表 4 方法精密度
Table 4 Precision tests of the method
元素 GBW 07111(n=10) GBW 07131(n=10) wB/% RSD/% wB/% RSD/% Na2O 4.08 0.40 < 0.1 - MgO 2.79 0.31 1.42 0.41 Al2O3 16.79 0.41 1.13 1.02 SiO2 59.83 0.43 6.30 0.51 P2O5 0.34 0.52 0.12 0.90 K2O 3.52 0.27 0.41 0.47 CaO 4.71 0.19 47.37 0.29 TiO2 0.75 0.32 0.047 5.82 MnO 0.095 0.71 0.091 1.04 Fe2O3 6.08 0.21 0.74 0.54 SrO 0.14 0.80 0.055 2.34 BaO 0.21 1.58 1.46 0.43 表 5 分析结果与参考值比对
Table 5 Comparison of analytical results and proposed values in samples
wB/% 元素 GBW 07111 HC-Ba1 HC-Sr2 HC-Sr3 测量值 标准值 测量值 标准值 测量值 标准值 测量值 标准值 Na2O 4.07 4.05 0.027 0.056 0.058 0.060 4.02 3.99 MgO 2.80 2.81 0.74 0.77 0.079 0.080 2.77 2.77 Al2O3 16.69 16.56 2.32 2.33 3.45 3.44 16.37 16.31 SiO2 59.79 59.68 48.46 48.32 88.52 88.27 58.77 58.76 P2O5 0.34 0.34 0.17 0.17 0.22 0.21 0.34 0.33 SO3 0.03 0.03 0.59 0.60 0.21 0.21 0.03 0.03 K2O 3.49 3.50 0.53 0.53 0.64 0.64 3.46 3.45 CaO 4.68 4.72 23.99 24.23 0.28 0.29 4.63 4.65 TiO2 0.74 0.77 0.16 0.15 0.26 0.25 0.74 0.76 MnO 0.094 0.094 0.055 0.055 0.020 0.020 0.094 0.093 Fe2O3 6.09 6.07 1.98 1.98 3.15 3.15 6.00 5.98 SrO 0.15 0.14 0.03 0.03 1.62 1.63 1.18 1.22 BaO 0.22 0.21 0.74 0.75 0.022 0.016 0.21 0.21 表 6 高含量的微量元素Sr、Ba对主量元素结果的影响
Table 6 Effect of Sr and Ba on major elements determination
wB/% 元素 样品1 样品2 样品3 样品4 加入Sr、
Ba校正不加入Sr、
Ba校正加入Sr、
Ba校正不加入Sr、
Ba校正加入Sr、
Ba校正不加入Sr、
Ba校正加入Sr、
Ba校正不加入Sr、
Ba校正Na2O 3.62 3.58 3.65 3.61 4.16 4.12 3.99 3.95 MgO 4.21 4.16 3.42 3.37 3.89 3.84 3.39 3.35 Al2O3 15.45 15.25 14.80 14.6 15.14 14.95 14.97 14.8 SiO2 48.70 48.05 48.35 47.64 49.55 48.88 49.14 48.53 P2O5 1.22 1.20 1.17 1.15 1.21 1.19 1.19 1.18 K2O 3.46 3.40 3.58 3.5 3.00 2.93 3.24 3.18 CaO 4.70 4.61 5.96 5.83 4.58 4.48 5.74 5.64 TiO2 2.80 2.72 2.70 2.62 2.72 2.63 2.70 2.62 MnO 0.17 0.16 0.17 0.16 0.17 0.16 0.16 0.15 Fe2O3 9.88 9.24 9.17 8.51 9.58 8.98 9.13 8.57 SrO 0.21 0.21 0.28 0.28 0.77 0.77 0.22 0.22 BaO 2.22 2.19 2.47 2.44 1.99 1.96 2.09 2.06 LOI 3.28 3.28 3.97 3.97 3.27 3.27 3.82 3.82 总和 99.92 98.05 99.69 97.68 100.03 98.16 99.78 98.07 -
凌进中.关于硅酸盐全分析百分总和的讨论[J].分析测试学报,1987,6(1): 64-66. http://www.cnki.com.cn/Article/CJFDTOTAL-TEST198701018.htm 李国会.熔片法X射线荧光光谱测定多种类型地质样品中14个主次要元素[J].光谱学与光谱分析,1989,9(1): 66-71. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN198901018.htm 李国会,卜维,樊守忠.熔融法X射线荧光光谱法测定硅酸盐样品中的硫等20个元素[J].光谱学与光谱分析,1994, 14(1): 105-110. 李国会,王晓红,王毅民.X射线荧光光谱法测定大洋多金属结核中多种元素[J].岩矿测试,1998,17(3): 197-201. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS803.008.htm 罗立强,梁国立,马光祖,吉昂,郭常霖.地质样品中岩性自动分类X射线荧光光谱分析研究[J].分析科学学报,1996,13(3): 553-558. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKX603.003.htm 陶光仪,卓尚军,吉昂.提高X射线荧光理论计算相对强度准确度的研究[J].分析化学, 1998, 26(11): 1350-1354. doi: 10.3321/j.issn:0253-3820.1998.11.015 卓尚军,陶光仪,殷之文,吉昂.X射线荧光光谱理论强度计算中激发因子的选择[J].化学学报, 2001, 59(1): 129-132. http://www.cnki.com.cn/Article/CJFDTOTAL-HXXB200101022.htm 罗立强,甘露,吴晓军,吉昂,梁国立.神经网络基本参数算法校正非线性基体效应[J].分析试验室,2001,20(1): 1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200101000.htm 詹秀春,梁国立,陈永君.基本参数X射线荧光光谱法分析贵金属合金样品[J].现代仪器,1999(5): 16-24. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYI199905003.htm 詹秀春,陈永君,杨啸涛,樊兴涛.电热型X荧光分析熔样机的研制及性能测试[J].岩矿测试,2004,23(3): 221-224. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200403014.htm
计量
- 文章访问数: 3196
- HTML全文浏览量: 457
- PDF下载量: 21