The Application and Development of Electrochemical Hydride Generation in Atomic Spectrometry Analysis
-
摘要:
电化学氢化物发生法(EcHG)是原子光谱仪发展的一种实用气态进样技术。该技术通过采用电化学发生池内的电极反应代替传统化学还原的方法来生成氢化物和汞蒸气。与传统的化学法硼氢化钾(钠)-酸氢化物发生体系相比,EcHG技术仅需要支持电解质,氢化物(汞蒸气)在阴极室内发生后直接导入原子光谱仪的原子化器,在降低分析成本和溶液配制时间的同时,分析过程引入的空白值也大大降低,更加绿色环保。近年来,EcHG原子光谱分析已经从单一的元素总量测定发展到元素形态分析,从微量元素分析发展到痕量超痕量元素分析,发生元素涵盖了砷、硒、铅、镉、锡、锑、锗和汞,应用范围涉及食品、环境、烟草、饲料等实际样品。EcHG技术应用于原子荧光光谱分析,特征元素检出限能够达到0.1 μg/L级(汞为ng/L级);应用于原子吸收光谱与等离子体发射光谱分析,适用元素检出限能够达到μg/L级,相对标准偏差均小于10%,回收率在90%~110%之间。EcHG技术相关的机理研究也已经起步,这为该技术在原子光谱分析领域的应用提供了理论基础。但是,EcHG技术的分析范围目前仅限于部分元素的无机态,对元素的有机形态分析是本领域发展的难点之一。本文提出,关于电化学氢化物发生的机理研究、电化学流通池结构的优化、形态分析范围的拓展等将成为该技术的重要发展方向。
Abstract:Electrochemical hydride generation (EcHG) is an effective gas sampling method developed for atomic spectrometers. Electrode reactions are adopted in an electrochemical cell to generate hydride and mercury vapor in the cathode chamber for EcHG instead of traditional chemical reducing method. Compared with the traditional KBH4 (NaBH4)-acid chemical system, no other chemical reagents but the supporting electrolyte is needed for EcHG as electron transfer plays the reducing role instead of the reducing reagents. For EcHG, hydride and mercury vapor are directly led to the atomizer from the cathode chamber for determination. The analysis price and time for making up solutions are decreased in large degree meanwhile the blank value introduced from the analytic process is reduced remarkably for EcHG. Moreover, EcHG is lower pollution and more environmental friendly due to none chemical reagent used. Recently, rapid development has been made for atomic spectrometry analysis including Atomic Fluorescence Spectrometry (AFS), atomic Absorption Spectrometry (AAS), Atomic Emission Spectrometry (AES) coupled with electrochemical hydride generation. The analytical range for this technology has been extended to speciation analysis from only total amount of element analysis. The requirement for trace or even ultra trace detection has gradually been satisfied instead of merely micro-analysis. As for the analytical performance, most of the regular chemical hydride generated elements are covered, including As, Se, Pb, Cd, Sn, Sb, Ge and Hg. Generally, μg/L level can be achieved for the detecting limits of characteristic elements by EcHG coupled with AAS and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). While for EcHG-AFS, it can be reduced to 0.1 μg/L (ng/L level for mercury). The relative standard deviations are lower than 10%. The spiked recoveries are 90%-110% and determination results for standard matters are favorable. A series of real samples (foods, tobacco, fodder, etc) were successfully analyzed by this technique. The related study on mechanism has already started, by which theoretical support for this technique is supplied and it can also be found naturally. Nevertheless, the analytical range for this technique has been only focused on inorganic species of certain elements, and the organic species are still expected to be analyzed, which forms a hot and difficult spot in this area. Based on the previous studies, the mechanism for EcHG, the further configuration optimization of the electrolytic flow cell, and the extension of elemental speciation range will become the potential developing trends for this technique.
-
-
表 1 EcHG-AFS技术的应用研究
Table 1 Application study of EcHG-AFS technology
样品种类 分析元素 EcHG电化学流通池工作条件 分析性能 参考文献 土壤 Sb 阴极材料:铅,阳极材料:钛丝双阳极;电解电流密度0.5 A/cm2;支持电解质:0.5 mol/L硫酸;流速2.0 mL/min 方法检出限0.91 μg/L,相对标准偏差1.6%,线性范围1~300 μg/L [8] 土壤、
沉积物Ge 阴极材料:石墨管,阳极材料:铂丝;电解电流2 A;支持电解质:2.0 mol/L磷酸;流速0.5 mL/min 方法检出限0.67 μg/L,相对标准偏差1.7%,回收率在105%~110%之间 [9] 环境样品 Sb 阴极材料:铅,阳极材料:铂;电解电流1.8 A;支持电解质:中性磷酸盐缓冲体系;流速2.0 mL/min 方法检出限0.038 μg/L,相对标准偏差3.9%,回收率105% [10] 罐头、食品 Sn 阴极材料:聚苯胺修饰石墨电极,阳极材料:铂;电解电流2.5 A;支持电解质:阳极0.5 mol/L硫酸,阴极0.5 mol/L盐酸;流速7.8 mL/min 方法检出限1.2 ng/mL,相对标准偏差2.3%,回收率在92%~107%之间 [11] 土壤、饲料 As 阴极材料:铅,阳极材料:钛;电解电流3.5 A;支持电解质:0.4 mol/L硫酸;流速1.5 mL/min 100 μL进样量线性范围为0~120 μg/L,方法检出限0.64 μg/L,回收率在97%~103%之间,相对标准偏差2.0% [12] 头发 Hg 阴极材料:玻碳,阳极材料:铂;电解电流密度0.54 A/cm2;支持电解质:0.5 mol/L硫酸 方法检出限为1.2 ng/L,相对标准偏差1.8%,浓度小于5 μg/L线性良好 [13] 烟草 As、Sb 阴极材料:铅,阳极材料:铂;电解电流2 A;支持电解质:0.5 mol/L硫酸;流速0.5 mL/min As、Sb检出限分别为0.14 μg/L和0.20 μg/L,相对标准偏差分别为3.7%和1.8%,线性范围分别为0~500 μg/L和0~300 μg/L [14] 江水 As、Sb 电解电流1.8 A;支持电解质:0.1 mol/L NaOH;流速0.8 mL/min As检出限0.37 μg/L,Sb检出限0.32 μg/L;As相对标准偏差2.8%,Sb相对标准偏差3.1% [15] 表 2 EcHG-AAS的应用研究
Table 2 Application study of EcHG-AAS
样品种类 分析元素 EcHG电化学流通池的工作条件 分析性能 参考文献 实验室模拟
样品Se 阴极材料:铅,阳极材料:石墨;电解电流2.0 A;支持电解质:0.5 mol/L硫酸;流速1.5 mL/min 0~5 μg/mL浓度范围内线性良好,相对标准偏差4.4%,特征质量浓度0.0397 pg/mL,检出限0.084 pg/mL [26] 加标水样 Cd 阴极材料:锡-铅合金;支持电解质:0.025 mol/L盐酸;电解电流200 mA 0~20 ng/mL浓度范围内线性良好,检出限0.2 ng/mL,相对标准偏差3.1%,回收率104% [27] 牛肝、尿液 Pb 阴极材料:镉;电解电流0.8 A;阴极表面积0.3 mm2;支持电解质:0.05 mol/L盐酸 0.5~15 μg/L浓度范围内线性良好,特征质量浓度0.26 μg/L,检出限0.21 μg/L [28] 软饮用水
标准物质Cd 阴阳极室体积1 mL; 阴极材料:锡-铅合金,阳极材料: 铂; 支持电解质:阳极0.5 mol/L碳酸钠溶液,阴极0.02 mol/L氯化钠溶液;流速6.0 mL/min;电解电流100 mA 2~50 ng/mL浓度范围内线性良好,检出限0.61 ng/mL,相对标准偏差5.1% [29] 城市自来水 Cd 阴阳极室体积1 mL; 阴极材料:锡-铅合金(含铅37%),阳极材料:铂;流速6.0 mL/min;支持电解质:阳极0.5 mol/L碳酸钠溶液,阴极0.02 mol/L氯化钠溶液;电解电流100 mA 2~50 ng/mL浓度范围内线性良好,检出限0.51 ng/mL,相对标准偏差6.5% [30] 海洋沉积物 Sb 阴极材料:网状玻璃态碳,阳极材料:铂丝;支持电解质:阳极含10%盐酸羟胺的0.5 mol/L盐酸,阴极0.5 mol/L盐酸;流速5.4 mL/min; 电解电流0.5 A Sb回收率在92%~102%;在流动注射系统中加有螯合树脂柱,能够在400 mg/L离子浓度(高盐分)下检测ng/mL级的Sb [31] 纯锌 Tl 阴极材料:锡-铅合金,阳极材料: 铂; 流速6.0 mL/min;支持电解质:阳极0.5 mol/L碳酸钠溶液,阴极0.01 mol/L硫酸;电解电压20 V 1~250 ng/mL浓度范围内线性良好,检出限0.8 ng/mL,相对标准偏差4.2%,回收率100.5%。标准物质的测定值与标准值相符 [32] 饮用水、
自来水Zn 阴极材料:锡-铅合金,阳极材料: 铂丝;阴极表面积1.0 cm2;阴极室体积10 mL;支持电解质:阴极0.02 mol/L盐酸,阳极0.5 mol/L碳酸钠溶液;电解电流110 mA 在高达300 ng/mL线性范围内线性关系良好;检出限11 ng/mL,相对标准偏差5.0%,标准物质的测定值与标准值相符 [33] 表 3 EcHG-ICP(MIP/MPT)-AES的应用研究
Table 3 Application study of EcHG-ICP(MIP/MPT)-AES
样品种类 分析元素 等离子体
类别EcHG电化学流通池
工作条件分析性能 参考文献 标准溶液 Se MIP 阴极材料:玻碳,阳极材料:铂;支持电解质0.15 mol/L硫酸; 电解电流10 mA; 流速2.5 mL/min 元素在高达1 μg/mL浓度范围内线性关系良好,检出限0.6 ng/mL,相对标准偏差小于2% [50] 水、沉积物 As MPT 4种阴、阳极室体积不同电解池;阴极材料:玻碳、碳纤维材料,阳极材料:铂;电解电流9.4 mA~3.5 A;支持电解质硫酸;流速2.0~2.5 mL/min 检出限在13~68 ng/mL之间,其中商品化电解池线性范围达2000 ng/mL,Pd预富集后检出限达1.7 ng/mL,标准物质的测定值与标准值相符 [51] 海洋沉积物 As、Se、Sb、
Sn、GeICP 阴极材料:网状玻璃态碳、铅粒,阳极:铂丝;支持电解质:阳极2 mol/L硫酸,阴极0.05 mol/L盐酸;流速5.5 mL/min;电解电流0.5~3 A 元素在10~500 ng/mL浓度范围内线性良好,检出限除Sn外,其他元素均小于10 ng/mL,相对标准偏差均小于10% [52] 电镀液
自来水As、Sb MIP 阴极材料:纤维状碳,阳极:铂;支持电解质:阳极2 mol/L硫酸,阴极0.05 mol/L盐酸;流速5.5 mL/min;电解电流0.5~3 A 在高达5 μg/mL浓度范围内As、Sb线性关系良好,As、Sb检出限分别为6 ng/mL、7 ng/mL,相对标准偏差2%~6%,As的回收率为96%±106%,Sb的回收率96%±101% [53] 污泥、天然水 Hg MIP 电极材料:阴极铂,阳极铂;支持电解质:阳极1 mol/L硫酸,阴极2 mol/L硫酸;电解电压10 V;流速1.75 mL/min 元素在3.7~300 ng/mL浓度范围内线性良好,检出限1.1 ng/mL,相对标准偏差5.1%,回收率101.2% [54] 注:元素Hg分析采用电化学冷蒸气发生-微波诱导等离子体发射光谱法(EcVG-MIP-AES)。 -
[1] Rie R R, Rikke V H, Erik H L, Jens J S.Development and validation of an SPE HG-AAS method for determination of inorganic arsenic in samples of marine origin[J].Analytical and Bioanalytical Chemistry, 2012, 403(10):2825-2834. doi: 10.1007/s00216-012-6006-7
[2] Rauret G, Rubio R, Padró A.Arsenic speciation using HPLC-HG-ICP-AES with gas-liquid separator[J].Fresenius' Journal of Analytical Chemistry, 1991, 340(3):157-160. doi: 10.1007/BF00324472
[3] Sayago A, Beltránand R, Josú L, Ariza G. Hydride generation atomic fluorescence spectrometry(HG-AFS) as a sensitive detector for Sb(Ⅲ) and Sb(Ⅴ) speciation in water[J].Journal of Analytical Atomic Spectrometry, 2000,15(4):423-428. doi: 10.1039/A910303L
[4] Holak W. Gas-sampling technique for arsenic determi-nation by atomic absorption spectrophotometry[J].Analytical Chemistry, 1969, 41:1712. doi: 10.1021/ac60281a025
[5] 邓勃,迟锡增,刘明钟,李玉珍.应用原子吸收与原子荧光光谱分析[M].北京:化学工业出版社,2003:38-41. [6] 李淑萍,郭旭明,黄本立,胡荣宗,王秋泉,李彬.电化学氢化物发生法的进展及其在原子光谱分析中的应用[J].分析化学,2001,29(8):967-970. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200108029.htm [7] Francisco L, Eduardo B, Juan R C. Electrochemical hydride generation as a sample-introduction technique in atomic spectrometry: Fundamentals, interferences, and applications[J]. Analytical and Bioanalytical Chemistry, 2007, 388:743-751. doi: 10.1007/s00216-006-1037-6
[8] 侯逸众,申屠超,范云场,朱岩,陈梅兰.土壤中锑的双阳极电化学氢化物发生-原子荧光光谱法测定[J].分析测试学报,2009,28(1):109-111. http://www.cnki.com.cn/Article/CJFDTOTAL-TEST200901027.htm [9] 张王兵,淦五二,苏庆德,林祥钦.石墨管阴极电化学氢化物发生原子荧光法测定锗[J].分析化学,2005,33(10):1449-1451. doi: 10.3321/j.issn:0253-3820.2005.10.024 [10] 张王兵.电化学氢化物发生原子荧光法测定环境样品中的锑[J].应用化学,2009,26(6):738-741. http://www.cnki.com.cn/Article/CJFDTOTAL-YYHX200906028.htm [11] 姜宪娟,淦五二.聚苯胺修饰电极-电化学氢化物发生原子荧光光谱法测定食品中锡含量[J].分析试验室,2012,31(3):101-104. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201203027.htm [12] 申屠超,侯逸众,范云场,朱岩.双阳极电化学氢化物发生原子荧光光谱法测定砷[J].分析化学,2008,36(11):1592-1596. doi: 10.3321/j.issn:0253-3820.2008.11.029 [13] Li X, Wang Z H. Determination of mercury by intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry[J]. Analytica Chimica Acta, 2007, 588(2):179-183. doi: 10.1016/j.aca.2007.02.003
[14] 淦五二,张王兵,苏庆德.电化学氢化物发生原子荧光法同时测定砷和锑[J].分析化学, 2005, 33(5):687-689. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200505033.htm [15] Zhang W B, Yang X A, Dong Y P, Chu X F. Application of alkaline mode electrochemical hydride generation for the detection of As and Sb using atomic fluorescence spectrometry[J].Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(7):571-578. doi: 10.1016/j.sab.2010.06.003
[16] 张王兵.电化学氢化物发生.原子荧光法测定环境样品中的Se(Ⅳ)和Se(Ⅵ)[J].分析试验室, 2009,28(5):83-85. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200905024.htm [17] 侯逸众,范云场,朱岩,陈梅兰,申屠超.离子色谱-双阳极电化学氢化物发生-原子荧光光谱法测定当归中Sb(Ⅲ)和Sb(Ⅴ)[J].分析试验室,2009, 28(10):38-40. doi: 10.3969/j.issn.1000-0720.2009.10.010 [18] 申屠超,侯逸众,范云场,朱岩.离子色谱-双阳极电化学氢化物发生-原子荧光光谱法测定Ⅰ型牙髓失活材料中的砷形态[J].分析化学, 2009, 37(2):263-266. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200902027.htm [19] Shen T C, Fan Y C, Hou Y Z, Wang K X, Zhu Y.Arsenic species analysis by ion chromatography-bianode electrochemical hydride generator-atomic fluorescence spectrometry[J].Journal of Chromatography A, 2008,1213(1):56-61. doi: 10.1016/j.chroma.2008.10.016
[20] 祖文川.电化学冷蒸气发生-原子荧光光谱联用对有机汞的检测研究[D].北京:北京师范大学,2009. [21] Kozak L, Rudnicka M, Niedzielski P.Determination of inorganic selenium species in dietary supplements by hyphenated analytical system HPLC-HG-AAS[J].Food Analytical Methods, 2012,5(6):1237-1243. doi: 10.1007/s12161-012-9365-y
[22] Macedo S M, de Jesus R M, Garcia K S, Hatje V, de Queiroz A F S, Antonio F, Ferreira S L C.Determination of total arsenic and arsenic(Ⅲ) in phosphate fertilizers and phosphate rocks by HG-AAS after multivariate optimization based on Box-Behnken design[J].Talanta, 2009,80(2):974-979. doi: 10.1016/j.talanta.2009.08.025
[23] Óscar M N, Raquel D G, Adela B B, José A C, José M F,Pilar B B.Determination of total selenium and selenium distribution in the milk phases in commercial cow's milk by HG-AAS[J].Analytical and Bioanalytical Chemistry, 2005, 381(6):1145-1151. doi: 10.1007/s00216-004-3010-6
[24] Jutta F, Michael K, William S.Direct determination of arsenic in acid digests of plant and peat samples using HG-AAS and ICP-SF-MS[J].Analytica Chimica Acta, 2005, 530(2):307-316. doi: 10.1016/j.aca.2004.09.077
[25] Schloske L, Waldner H, Marx F.Optimisation of sample pre-treatment in the HG-AAS selenium analysis[J].Analytical and Bioanalytical Chemistry,2002,372(5-6):700-704. doi: 10.1007/s00216-001-1229-z
[26] 刘文涵,单胜艳,张丹,韩雯雯.流通式电化学氢化物发生法原子吸收测定硒的研究[J].分析测试学报, 2005, 24(5):69-71. http://www.cnki.com.cn/Article/CJFDTOTAL-TEST200505018.htm [27] Arbab-Zavara M H, Chamsaza M, Youssefib A, Aliakbari M.Electrochemical hydride generation atomic absorption spectrometry for determination of cadmium[J].Analytica Chimica Acta, 2005,546(1):126-132. doi: 10.1016/j.aca.2005.05.011
[28] Sáenz M, Fernández L, Domínguez J, Alvarado J.Electrochemical generation of volatile lead species using a cadmium cathode: Comparison with graphite, glassy carbon and platinum cathodes[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2012, 71-72:107-111. doi: 10.1016/j.sab.2012.03.009
[29] Arbab-Zavara M H, Chamsaza M, Youssefib A,Aliakbari M.Flow injection electrochemical hydride generation atomic absorption spectrometry for the determination of cadmium in water samples[J].Microchemical Journal, 2013, 108:188-192. doi: 10.1016/j.microc.2012.10.017
[30] Arbab-Zavara M H, Chamsaza M, Youssefib A,Aliakbari M.Multivariate optimization on flow-injection electrochemical hydride generation atomic absorption spectrometry of cadmium[J].Talanta, 2012,97(15):229-234.
[31] Bolea E, Arroyo D, Laborda F, Castillo J R.Determination of antimony by electrochemical hydride generation atomic absorption spectrometry in samples with high iron content using chelating resins as on-line removal system[J]. Analytica Chimica Acta, 2006, 569(1-2):227-233. doi: 10.1016/j.aca.2006.03.076
[32] Arbab-Zavar M H, Chamsaza M, Yousefib A, Ashraf N.Electrochemical hydride generation of thallium[J].Talanta, 2009, 79:302-307. doi: 10.1016/j.talanta.2009.03.052
[33] Arbab-Zavar M H, Chamsaza M, Yousefib A, Aliakbari M.Evaluation of electrochemical generation of volatile zinc hydride by heated quartz tube atomizer atomic absorption spectrometry[J].Analytical Sciences, 2012, 28:717-722. doi: 10.2116/analsci.28.717
[34] Mahboubeh M.Determination of cadmium in environmental sample by electrochemical hydride generation electrothermal atomic absorption with in situ trapping in graphite tube atomizer[J].Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2011, 2(2):910-919.
[35] Mahboubeh M, Raham S. Electrochemical hydride generation of tin (Ⅱ) and its determination by electrothermal atomic absorption spectrometry with in situ trapping in the graphite tube atomizer[J].Toxicological & Environmental Chemistry,2011, 93(7):1332-1340.
[36] Šíma J, Rychlovsky P.Electrochemical selenium hydride generation with in situ trapping in graphite tube atomizers[J].Spectrochimica Acta Part B: Atomic Spectroscopy, 2003,58(5):919-930. doi: 10.1016/S0584-8547(03)00035-1
[37] 李勋,戚绮,薛珺,朱亚晋.电化学氢化物发生与原子吸收光谱联用对鲜牛奶中无机砷的形态分析[J].食品研究与开发,2007,28(11):121-123. doi: 10.3969/j.issn.1005-6521.2007.11.037 [38] 李勋,戚绮,薛珺,张晏杰.电化学氢化物发生-原子吸收光谱法测定不同价态的无机砷[J].理化检验(化学分册),2007,43(12):1027-1029. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH200712011.htm [39] Li X, Jia J, Wang Z H.Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry[J].Analytica Chimica Acta,2006, 560(1-2):153-158. doi: 10.1016/j.aca.2005.12.054
[40] Pyell U, Dworschak A, Nitschke F, Neidhart B.Flow injection electrochemical hydride generation atomic absorption spectrometry (FI-EHG-AAS) as a simple device for the speciation of inorganic arsenic and selenium[J].Fresenius' Journal of Analytical Chemistry,1999,363:495-498. doi: 10.1007/s002160051232
[41] Denkhaus E, Beck F, Bueschle P, Gerhard R, Golloch A.Electrolytic hydride generation atomic absorption spectrometry for the determination of antimony, arsenic, selenium, and tin-mechanistic aspects and figures of merit[J].Fresenius' Journal of Analytical Chemistry, 2001,370:735-743. doi: 10.1007/s002160100718
[42] 张丽娟,赵丽巍,刘勤华,李敏晶,陈焕文,张寒琦,金钦汉,赵陆陆.在线分离富集微波等离子体发射光谱法测定Cd,Cu,Zn[J].吉林大学自然科学学报,2000(2):101-103. http://www.cnki.com.cn/Article/CJFDTOTAL-JLDX200002026.htm [43] 李永生,赵博,孙旭辉.流动注射等离子体炬原子发射光谱峰宽定量法[J].光谱学与光谱分析,2009,29(9):2560-2564. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200909066.htm [44] Savio M, Pacheco P H, Martinez L D, Smichowski P, Gil R A.Optimization of methods to assess levels of As, Bi, Sb and Se in airborne particulate matter by FI-HG-ICP-OES[J].Journal of Analytical Atomic Spectrometry, 2010, 25(8):1343-1347. doi: 10.1039/c003864d
[45] Tyburska A, Jankowski K, Ramsza A, Reszke E, Strzele M, Andrzejczuk A.Feasibility study of the determination of selenium, antimony and arsenic in drinking and mineral water by ICP-OES using a dual-flow ultrasonic nebulizer and direct hydride generation[J].Journal of Analytical Atomic Spectrometry,2010, 25(2):210-214. doi: 10.1039/B916729C
[46] Elena P V, Adela B B, Pilar B B.Use of lanthanum hydroxide as a trapping agent to determine of hydrides by HG-ICP-OES[J].Journal of Analytical Atomic Spectrometry, 2005, 20(12):1344-1349. doi: 10.1039/b509718e
[47] Suárez C A, Giné M F. A reactor/phase separatorcoupling capillary electrophoresis to hydride generation and inductively coupled plasma optical emission spectrometry (CE-HG-ICP-OES) for arsenic speciation[J].Journal of Analytical Atomic Spectrometry, 2005, 20(12):1395-1397. doi: 10.1039/b508081a
[48] Pohl P, Lesniewicz A, Zyrnicki W.Determination of As, Bi, Sb and Sn in conifer needles from various locations in Poland and Norway by hydride generation inductively coupled plasma atomic emission spectrometry[J].International Journal of Environmental Analytical Chemistry, 2003, 83(11):963-970. doi: 10.1080/03067310310001608731
[49] Moyano S, Wuilloud R G, Olsina R A, Gásquez J A, Martinez L D.On-line preconcentration system for bismuth determination in urine by flow injection hydride generation inductively coupled plasma atomic emission spectrometry[J].Talanta, 2001, 54(2):211-219. doi: 10.1016/S0039-9140(01)00310-1
[50] Schermer S, Jurica L, Paumard J, Beinrohr E, Matysik F M, Broekaert J A C.Optimization of electrochemical hydride generation in a miniaturized electrolytic flow cell coupled to microwave-induced plasma atomic emission spectrometry for the determination of selenium[J].Fresenius' Journal of Analytical Chemistry, 2001, 371:740-745. doi: 10.1007/s002160101040
[51] Özmen B, Matysik F M, Bings N H, Broekaert J A C.Optimization and evaluation of different chemical and electrochemical hydride generation systems for the determination of arsenic by microwave plasma torch optical emission spectrometry[J].Spectrochimica Acta Part B: Atomic Spectroscopy, 2004, 59:941-950. doi: 10.1016/j.sab.2004.04.006
[52] Boleaa E, Labordaa F, Castilloa J R, Sturgeon R E.Electrochemical hydride generation for the simultaneous determination of hydride forming elements by inductively coupled plasma-atomic emission spectrometry[J].Spectrochimica Acta Part B: Atomic Spectroscopy, 2004, 59(4):505-513. doi: 10.1016/j.sab.2004.01.005
[53] Pohla P, Zapata I J, Bings N H.Optimization and comparison of chemical and electrochemical hydride generation for optical emission spectrometric determination of arsenic and antimony using a novel miniaturized microwave induced argon plasma exiting the microstrip wafer[J].Analytica Chimica Acta, 2008, 606(1,7):9-18.
[54] Červeny V, Horváth M, Broekaert J A C.Determination of mercury in water samples by electrochemical cold vapor generation coupled to microstrip microwave induced helium plasma optical emission spectrometry[J].Microchemical Journal, 2013,107:10-16. doi: 10.1016/j.microc.2012.05.023
[55] Arbab-Zavara M H, Chamsaza M, Youssefib A,Aliakbari M.Mechanistic aspects of electrochemical hydride generation for cadmium[J].Analytica Chimica Acta, 2006,576(2):215-220. doi: 10.1016/j.aca.2006.06.015
[56] Martin A A, Nicolas H B, Pawel P, Jos A C B.Investigation of electrochemical hydride generation coupled to microwave plasma torch optical emission spectrometry for the determination of arsenic: Analytical figures of merit, interference studies and applications to environmentally relevant samples[J].International Journal of Environmental Analytical Chemistry, 2008, 88(9):625-636. doi: 10.1080/03067310801983765
[57] Machado L F R, Jacintho A O, Menegario A A, Zagatto E A G, Gine M F.Electrochemical and chemical processes for hydride generation in flow injection ICP-MS: Determination of arsenic in natural waters[J].Journal of Analytical Atomic Spectrometry, 1998, 13(12): 1343-1346. doi: 10.1039/A806383D
[58] Bings N H, Stefánka Z, Mallada S R.Flow injection electrochemical hydride generation inductively coupled plasma time-of-flight mass spectrometry for the simultaneous determination of hydride forming elements and its application to the analysis of fresh water samples[J].Analytica Chimica Acta, 2003, 479(2):203-214. doi: 10.1016/S0003-2670(02)01526-X