Effect of Exposure Levels and Exposure Time on Distribution of Cadmium Species in Indian Mustard (Brassica Juncea)
-
摘要: 螯合作用是植物对细胞内重金属耐受的主要方式之一,植物中螯合肽(PCs)在植物耐重金属毒害中的作用己有许多报道,但作用程度并未得出一致的结论,关于PCs是在镉刺激下直接合成还是以谷胱甘肽为底物合成同样存在争议。本文研究了胁迫浓度和胁迫时间对超积累植物印度芥菜(Brassica juncea)中镉形态分布的影响。印度芥菜幼苗分别用0.5、1.0、3.0、5.0、10.0 mg/L镉标准溶液胁迫24 h、48 h、72 h、96 h后收获,用体积排阻高效液相色谱-电感耦合等离子体质谱技术测定植物体根部和叶部中镉形态的含量。结果表明,在低胁迫浓度下(≤3.0 mg/L),植物叶中PCs-Cd的含量与胁迫浓度成正比;在高胁迫浓度下,PCs-Cd含量反而降低,根中PCs-Cd的含量持续增加,但叶中PCs-Cd总量高于根部,说明PCs在植物体内会由根部向叶部转移,从而提高了镉耐受性。在持续长时间胁迫下,PCs-Cd含量也降低,表明PCs在镉解毒机制中仅有短暂的作用;持续高浓度胁迫下,植物会引发其他机制来抵制Cd的毒性。研究认为PCs在镉解毒机制中的作用需要考虑胁迫时间和胁迫浓度这两个重要参数。Abstract: Chelation is one of the main ways to tolerate the heavy metals in the cells of plants. Phytochelatin (PCs) was reported to have detoxification and compartmentalization of heavy metals, but no accordant conclusion for its contribution. Whether the PCs were directly synthetized under the stimulation of Cd or synthetized by glutathione is still an unsolved issue. In this paper, a study is described examining the relationship between exposure levels, exposure time and Cd tolerance. Root and leaf samples were placed in 0.5, 1.0, 3.0, 5.0 and 10.0 mg/L Cd standard solutions and harvested after 24, 48, 72, 96 hours. The Cd species in the root and leaf samples were measured by using Size-Exclusion High-Performance Liquid Chromatography and Inductively Coupled Plasma-Mass Spectrometry. Results indicated that PCs-Cd contents were positively correlated with Cd exposure levels when the lower Cd exposure levels were less than 3.0 mg/L. Under the higher exposure levels, the contents of PCs-Cd were reduced, the PCs-Cd contents in root samples were continually increasing, but lower than those found in the leaf samples, which indicated that the PCs were transported from root to leaf with a higher tolerance of Cd. Increasing exposure time also reduced PCs-Cd production which indicated PCs may only have a temporary role in metal resistance. Under continuous higher exposure, plants may trigger other mechanisms that tolerate heavy metal toxicity. Our results suggest that concentration and time of exposure are important factors that must be taken into consideration when evaluating the true role of PCs in heavy metal detoxification.
-
Keywords:
- Indian mustard /
- cadmium species /
- exposure levels /
- exposure time /
- tolerance
-
镉对植物具有一定的毒害性,不仅能与蛋白质及酶活性中心的巯基结合,而且还能取代金属蛋白中的必需元素,导致生物结构的改变与酶活性的丧失,从而干扰细胞的正常代谢过程。为了减少其毒害效应,植物在长期进化中产生了多种抵抗重金属毒害的防御机制,并通过调控金属的吸收、积累、运输和耐受过程,在植物体内形成复杂的耐受机制[1-3]。
螯合作用是植物对细胞内重金属耐受的主要方式之一,谷胱甘肽、草酸、苹果酸和柠檬酸盐等小分子物质,植物螯合肽(PCs)和金属巯基蛋白都能螯合重金属[4-5]。PCs是一种富含巯基的寡肽,结构通常为(-Glu-Cys)n-Gly(n等于2~11)[6]。PCs在植物耐重金属毒害中的作用已有许多报道,但用超积累植物所作的实验并未得出一致的结论[7-12]。通常认为,PCs对重金属耐受的机理是重金属离子进入植物体后,与细胞内的PCs结合形成复合物,然后转运到特定的细胞器(主要为液泡)进行区室化固定,进而防止其干扰细胞的新陈代谢。Wei等[13]研究表明,虽然在Cd胁迫下,PCs可能参与了Cd的长距离运输,PCs和GSH(或cys)与Cd的结合也有竞争。di Toppi等[14]指出,植物对不同浓度水平的镉的反应是一个非常复杂的现象,可能会有很多不同的机制同时起作用。然而,也有报道[15-16]指出PCs在金属耐受机制中仅有短暂的作用,与超积累植物的高耐受性并不总是相关。部分研究证实了植物络合素与Cd、Ni、Zn、Co和As的超积累无关[17-18]。例如,Ebbs等[19]研究显示,PCs的合成与超积累对Cd的超积累与耐性无关。同时,对Cd/Zn共超积累植物东南景天研究发现,超积累东南景天对重金属的耐性和积累与PCs无关,而推测GSH可在体内参与重金属解毒过程[20-21]。
关于PCs的合成机制同样存在争议。研究证明,PCs由谷胱甘肽(GSH)为底物的酶促反应合成[22]。关于GSH如何生成PCs,研究者普遍赞同由γ-谷氨酰半胱氨酸二肽基转肽酶,即植物螯合肽合成酶催化合成的观点。Grill等[23]通过蝇子草属(Silenecucubalis)细胞培养,以GSH为底物首次合成了PCs。但是,也有报道称PCs通常在超积累和非超积累植物的根部由Cd胁迫直接产生[18, 24]。
本文针对PCs在植物耐重金属毒害中的作用及PCs的合成机制开展研究,采用体积排阻高效液相色谱-电感耦合等离子体质谱(SEC-HPLC-ICPMS)技术[25-26]分析超积累植物印度芥菜(Brassica Juncea)不同部位Cd的含量,考察不同Cd胁迫浓度和胁迫时间条件下镉形态的分布规律,初步探讨了胁迫浓度、胁迫时间和镉耐受性之间的关系和PCs的合成机制。
1. 实验部分
1.1 仪器及主要试剂
Agilent 7500a型电感耦合等离子体质谱仪(美国Agilent公司)。工作参数:射频功率1350 W;采样深度5.7 mm;Babinton型雾化器;载气流速1.10 L/min;采样模式:时间分辨;采样时间2000 s;样品提升速率1 mL/min。
Agilent 1100型高效液相色谱仪(美国Agilent公司)。色谱柱:TSK-GEL G3000分离柱及TSK-GELTM PW保护柱,流速0.8 mL/min,进样量100 μL,自动进样。
水:去离子水再经Milli-Q装置纯化(电阻率>18 MΩ·cm)。
Cd标准溶液:用10 mmol/L EDTA配制1.14 mg/L的EDTA-Cd溶液,对Cd未知峰进行定量,使用时按需要逐级稀释。
流动相:配制10 mmol/L 三羟甲基氨基甲烷-盐酸(Tris-HCl)缓冲液,再加入0.1 mol/L NaCl,调节pH=7.5,用0.45 μm滤膜过滤,氮气鼓泡赶干净溶解氧。
1.2 植物培养
印度芥菜种子撒在珍珠岩上,用蛭石覆盖完全。放入周转箱内,周转箱内放少量水至没过箱底,外加少量Ca(NO3)2营养液(不超5 mmol/L)。蒙上实验用纱布,置于培养箱中,温度设置为28℃。待发育出两片子叶,取出,光照下培养。待长出的子叶完全伸展开,开始补加1/4营养液。待苗茁壮,开始间苗至周转箱。周转箱内放1/4营养液,5天后换全营养液培养。以后每3天更换一次营养液。植株长成后,用不同浓度的Cd标准溶液进行刺激。
1.3 样品处理
取一定量的Cd标准溶液培养的鲜叶片和根系样品,在液氮中浸泡后,于干净的玛瑙研钵中研磨。加入1.00 g干净石英砂、5.00 mL缓冲液,将样品研磨至浆状。磨碎后转移至10 mL离心管,用Tris-HCl清洗研钵,一并转移入离心管。在4℃离心10 min,转速为10000 r/min,上层清液转移入干净离心管置于冰箱(-70℃)保存。分析前,将样品从冰柜中取出,氮气保护下解冻,0.2 μm滤膜过滤后快速用SEC-HPLC-ICPMS分析。
2. 结果与讨论
2.1 镉形态的分离与检测
用文献[25]的分析检测方法,在实际样品中检测出4种镉形态,初步推断保留时间13.5 min处为Cys-Cd,10.2 min为GSH-Cd,8.8 min为(PC)2-Cd,7.8 min为(PC)3-Cd,谱图如图 1所示。为了考察PCs的合成机制及其在镉耐受性的作用,本工作重点研究了GSH-Cd、(PC)2-Cd和(PC)3-Cd的变化规律。
2.2 胁迫浓度对镉形态的影响
分别用0.5、1、3、5、10 μg/mL镉标准溶液进行刺激后,植物体内镉形态如图 2所示。可以看出,根中镉形态含量总和与刺激浓度呈正相关,随着刺激浓度的增大,根部镉形态浓度明显增大。而在叶中,刺激浓度为3 μg/mL时,镉浓度达到最大值,之后开始下降,至10 μg/mL时反而降至最低。说明PCs只有在低浓度镉胁迫下能够提高镉耐受性。
低浓度刺激时,根部的Cd以GSH-Cd形态为主;随着刺激浓度的增加,(PC)2-Cd和(PC)3-Cd逐渐增加。而在叶部,Cd的三种形态GSH-Cd、(PC)2-Cd、(PC)3-Cd均能检出,以(PC)2-Cd为主,但随着刺激浓度的变化,三种形态均先增大后减少。说明PCs一部分是由GSH转化生成,一部分是在镉的胁迫下直接产生。
2.3 胁迫时间对镉形态的影响
用相同浓度的镉溶液分别对植物连续刺激24、48、72、96 h,植物体内的镉形态分布如图 3所示。可以看出,随着刺激时间的增加,根中GSH-Cd浓度先迅速增加,72 h达到最高值,而后逐渐降低,96 h降至最低。(PC)2-Cd、(PC)3-Cd也是先迅速增加,而后缓慢降低,96 h降至最低。在叶片中,GSH-Cd、(PC)2-Cd、(PC)3-Cd浓度先迅速增加,48 h达到最高值,而后逐渐降低,96 h降至最低。
随着刺激时间的延长,叶片中GSH-Cd、(PC)2-Cd、(PC)3-Cd三种形态均能检出,但始终以(PC)2-Cd形态为主。根部也能检测出三种形态,刺激48 h、72 h时以GSH-Cd为主,但96 h时以(PC)2-Cd、(PC)3-Cd为主。同时,叶片中PCs-Cd要高于根部。
而刺激时间对Cd总量在植物不同部位的分布影响规律为:随着刺激时间增加,Cd含量持续增加,且根部远远大于叶片。PCs浓度的降低表明在植物耐镉机制中PCs起部分作用,受高浓度Cd胁迫时,其他机制可能会被激发。
3. 结语
本工作利用已建立的SEC-HPLC-ICPMS分析方法测定超积累植物印度芥菜叶片和根中的镉形态,并研究了胁迫浓度和胁迫时间对镉形态分布的影响。研究表明,植物体内镉的形态及含量与胁迫浓度和胁迫时间密切相关,且形态之间会相互转化,说明PCs在镉解毒机制中仅有短暂的作用;持续高浓度胁迫下,植物会引发其他机制来抵抗镉的毒性。也证实了PCs一部分是由GSH转化生成,一部分是在镉的胁迫下直接产生。因此认为,研究植物螯合肽在镉解毒机制中的作用需要考虑胁迫浓度和胁迫时间这两个重要参数。
-
Clemens S, Palmgren M G, Kramer U. A long way ahead: Understanding and engineering plant metal accumulation [J].Trends in Plant Science,2002,7(7): 309-315. doi: 10.1016/S1360-1385(02)02295-1
Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants [J].Biochimie,2006, 88(11): 1707-1719. doi: 10.1016/j.biochi.2006.07.003
Hall J L. Cellular mechanisms for heavy metal detoxification and tolerance [J].Journal of Experimental Botany, 2002, 53(366): 1-11.
Yang X E, Feng Y, He Z L, Stoffella P J. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation [J].Journal of Trace Elements in Medicine and Biology, 2005,18(4): 339-353. doi: 10.1016/j.jtemb.2005.02.007
Belcastro M, Marino T, Russo N, Toscano M. The role of glutathione in cadmium ion detoxification: Coordination modes and binding properties—A density functional study[J].Journal of Inorganic Biochemistry, 2009, 103(1): 50 57. doi: 10.1016/j.jinorgbio.2008.09.002
Küpper H, Lombi E, Zhao F J, McGrath S P. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri [J].Planta, 2000, 212(1): 75-84. doi: 10.1007/s004250000366
Salt D E, Prince R C, Pickering I J. Chemical speci-ation of accumulated metals in plants: Evidence from X-ray absorption spectroscopy[J].Microchemical Journal,2002, 71(2-3): 255-259. doi: 10.1016/S0026-265X(02)00017-6
Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann J L, Traverse A, Marcus M A, Manceau A. Forms of Zinc accumulated in the hyperaccumulator Arabidopsis halleri [J].Plant Physiology,2002,130(4): 1815-1826. doi: 10.1104/pp.007799
Sarret G, Willems G, Isaure M P, Marcus M A, Fakra S C, Frérot H, Pairis S, Geoffroy N, Manleau A, Saumitou-Laprade P. Zinc distribution and speciation in Arabidopsis halleri x Arabidopsis lyrata progenies present-ing various zinc accumulation capacities [J].New Phytologist, 2009, 184(3): 581-595. doi: 10.1111/nph.2009.184.issue-3
Callahan D L, Baker A J, Kolev S P, Wedd A G. Metal ion ligands in hyperaccumulating plants [J].Journal of Biological Inorganic Chemistry, 2006,11(1): 2-12. doi: 10.1007/s00775-005-0056-7
Haydon M J, Cobbett C S. Transporters of ligands for essential metal ions in plants [J].New Phytologist, 2007, 174(3): 499-506. doi: 10.1111/nph.2007.174.issue-3
Rauser W E. The role of thiols in plants under metal stress[M]//Brunold C,eds. Sulphur Nutrition and Sulphur Assimilation in Higher Plants. Switzerland: Paul Haupt Bern, 2000: 169-183.
Wei Z G, Wong J W, Zhao H Y, Zhang H J, Li H X, Hu F. Separation and determination of heavy metals associated with low molecular weight chelators in xylem saps of Indian mustard (Brassica juncea)by size exclusion chromatograph and atomic absorption spectrometry [J].Biological Trace Element Research, 2007, 118(2): 146-158. doi: 10.1007/s12011-007-0022-z
di Toppi L S, Gabrielli R. Response to cadmium in higher plants[J].Environmental and Experimental Botany, 1999, 41(2): 105-130. doi: 10.1016/S0098-8472(98)00058-6
Leopold I, Schmide J, Neuman D, Günther D. Phytoche-latins and heavy metal tolerance[J].Phytochemistry, 1999, 50(8): 1323-1328. doi: 10.1016/S0031-9422(98)00347-1
Piechalack A, Tomaszewska B, Baralkiewicz D, Malecka A. Accumulation and detoxification of lead ions in legumes[J].Phytochemistry, 2002, 60(2): 153-162. doi: 10.1016/S0031-9422(02)00067-5
Zhao F J, Wang J R, Barker J H A, Schat H, Bleeker P M, McGrath S P. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata [J].New Phytologist, 2003, 159(2): 403-410. doi: 10.1046/j.1469-8137.2003.00784.x
Verbruggen N, Hermans C, Schat H. Molecular mechan-isms of metal hyperaccumulation in plants [J].New Phytologist, 2009, 181(4): 759-776. doi: 10.1111/j.1469-8137.2008.02748.x
Ebbs S, Lau I, Ahner B, Kochian L. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescenes (J. and C. Presl) [J].Planta,2002, 214(4): 635-640. doi: 10.1007/s004250100650
Sun Q, Ye Z H, Wang X R, Wong M H. Increase of glutathione in mine population of Sedum alfredii: A Zn hyperaccumulator and Pb accumulator [J].Phytochemistry, 2005,66(20): 2549-2556.
Sun Q, Ye Z H, Wang X R, Wong M H. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyper-accumulator Sedum alfredii [J].Journal of Plant Physiology,2007, 164(11): 1489-1498. doi: 10.1016/j.jplph.2006.10.001
Cobbett C S. A family of phytochelatin synthase genes from plant fungal and animal species[J].Trends in Plant Science, 1999, 4(9): 335-337. doi: 10.1016/S1360-1385(99)01465-X
Grill E, Winnacker E L, Zenk M H. Phytochelatins: The principal heavy-metal complexing peptides of higher plants [J].Science, 1985, 230(4726): 674-676. doi: 10.1126/science.230.4726.674
Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker P M. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes [J].Journal of Experimental Botany, 2002,53(379): 2381-2392. doi: 10.1093/jxb/erf107
Yang H X, Liu W, Li B, Wei W, Zhang H J, Chen D Y.Speciation analysis of Cadmium in Indian mustard (Brassica Juncea) by size exclusion chromatography- high performance liquid chromatography-inductively coupled plasma mass spectrometry (SEC-HPLC-ICP-MS) [J].Chinese Journal of Analytical Chemistry,2009,37(10): 1511-1514. doi: 10.1016/S1872-2040(08)60137-1
杨红霞,刘崴,李冰,魏巍,张惠娟,陈登云.体积排阻高效液相色谱-电感耦合等离子体质谱法同时测定印度芥菜(Brassica Juncea)中镉铜锌形态[J].岩矿测试,2010, 29(1): 9-13.