Determination of Au and Pt in Geological Samples by Graphite Furnace Atomic Absorption Spectrometry with Concentrate and Extraction by Foam Plastics and Thiourea
-
摘要: 泡沫塑料常用于富集常规地质样品中的铂族元素,而富集后往往用高温灰化法解脱,此法操作繁琐,温度过高易使铂配合物分解为王水难以提取的不溶性残渣,导致测试结果不稳定、效率低;单独使用20 g/L硫脲溶液解脱,测试结果的重现性差。本文对此方法进行改进,采用50%王水封闭溶解试样,氯化亚锡还原,聚氨酯泡塑富集,20 g/L硫脲-20%盐酸溶液解脱,石墨炉原子吸收光谱法测定金和铂。在盐酸-氯化亚锡体系中,吸附温度为20℃,振荡时间为30 min时,金和铂的回收率均在95%以上,金和铂的检出限分别为0.23 ng/g和0.39 ng/g,精密度(RSD,n=10)分别为1.8%~10.3%和1.3%~13.3%。经国家一级标准物质验证,测定值和标准值基本相符。该方法泡塑解脱时无需高温灰化,用王水多次提取,在100℃沸水浴中即可一次完成,样品处理快捷。与高温灰化法相比,提取温度大为降低,分析流程简单,显著提高了单次测样量,且干扰小、空白值低,可以满足除王水难溶的铂矿种外大部分地质样品快速测定的需要。
-
关键词:
- 地质样品 /
- 金 /
- 铂 /
- 泡塑富集 /
- 石墨炉原子吸收光谱法
Abstract: Extraction by foam plastics is a common method to determine platinum group elements (PGEs) for most geological samples, however, the high temperature ashing method conducted to release Au and Pt, has complex processing. According to the insoluble residues for Pt in aqua regia, produced by the high temperature ashing method, the analysis results are unstable and produce low recovery rates. The unsatisfactory duplicate results were yielded by the sole use of 20 g/L thiourea as the elution solution. In this paper, this method was improved by decomposing the samples in 50% aqua regia in a closed system, reduced by SnCl2 and concentrated by foam plastics then eluted by 20 g/L thiourea solution-20% hydrochloric acid. Au and Pt were continuously determined by Graphite Furnace Atomic Absorption Spectrometry. The adsorption efficiency was stable under the oscillation time and the absorption temperature of 30 min and 20℃, respectively. The recovery rates of Au and Pt were both greater than 95%. The detection limits of the Au and Pt were 0.23 ng/g and 0.39 ng/g with RSD of 1.8%-10.3% and 1.3%-13.3% (n=10), respectively. The method has been verified by determination of national first grade standard material with satisfactory results. The extraction of foam plastics avoided the high-temperature ashing by being extracted several times with aqua regia and one time in 100℃ water bath which greatly simplified the chemical procedure. Compared with high-temperature ashing, the extraction temperature was greatly reduced, the analysis process was simple and the number of samples was significantly increased for each batch with less interferences and low blanks. The improved method met the needs of various testing of geological samples except for the insoluble Pt minerals by aqua regia. -
钛具有硬度高、无磁性、耐高温、抗腐蚀的优良特性,在飞机制造、海洋工程等领域被广泛利用。高纯度钛具有良好的可塑性[1],但当有杂质存在时变得脆而硬,因此需要对钛及钛合金中杂质元素的含量进行准确测定[2, 3],达到生产工艺中对杂质含量进行控制的目的。测定钛及钛合金中的杂质元素,现行国家标准方法是采用样品蒸发温度较高的直流电弧作为光源[4, 5, 6, 7],摄谱仪测定,需要经过显影、定影、测量黑度等步骤,操作繁琐,流程长,引入测量误差加大。
DC Arc原子发射光谱仪采用中阶梯光栅和电荷耦合器件(CCD),组成了全谱直读光谱仪(波长范围200~800 nm),能更大限度地获取光谱信息,便于进行光谱干扰和谱线强度空间分布同时测量。分析试样装入下电极的小孔中,上电极为圆锥形头,上下电极均为石墨电极,采用直流电弧阳极激发,在燃弧过程中元素依次进入分析间隙。本文通过选择合适的激发条件,确定分析线,在谱线波长校正后一次激发,建立了直流电弧(DC Arc)原子发射光谱同时测定钛及钛合金中锰锡铬镍铝钼钒铜锆钇10种微量杂质元素的分析方法。
1. 实验部分
1.1 仪器及主要试剂
Prodigy DC Arc 原子发射光谱仪(美国Leeman公司,电压220 V),检测器为电荷耦合器件(CCD);实验数据用Salsa软件处理。
钛基体:TiO2(光谱纯,国药集团化学试剂有限公司)。
缓冲剂:碳粉(光谱纯,国药集团化学试剂有限公司),氯化银(光谱纯,国药集团化学试剂有限公司)。
杂质元素:MnO2、SnO2、Al2O3、Ni2O3、Y2O3、ZrO2、CuO、V2O5、MoO3、Cr2O3均为光谱纯试剂。
1.2 样品制备
1.2.1 标准样品的制备
将一定量杂质元素光谱纯加入钛基体,采用逐级稀释法共制备5个标准样品,标准样品中各杂质元素的质量浓度依次为:0.001%、0.003%、0.01%、0.03%和0.06%。将标准样品与缓冲剂混合,磨匀,最后保存于干燥器中。
1.2.2 分析样品的制备
称量0.5000 g样品,置于100 mL烧杯中,加30 mL盐酸,在低温电炉上加热溶解,蒸干后转入干净瓷坩埚中,置于马弗炉中900℃灼烧1 h,使其完全转化为二氧化钛。称取0.4 g灼烧后的粉末样品与0.4 g缓冲剂混匀研磨,备用。
1.2.3 仪器测定
由于环境温度的改变、机械振动等因素会造成光学系统的漂移,在实验前需要对检测器波长位置进行校正。本实验中,用含有待测元素的纯物质(或氧化物)逐一扫描,以确保分析线积分区域的准确性。
将标准样品或分析样品填充于石墨电极中,设定电流强度、电流激发时间、仪器检测器的积分时间,直流电弧放电的功率正比于分析间隙的弧温长度和电流强度,因此,在检测过程中应严格控制电极间距,起弧后缓慢调节上下电极间距,使之能精确保持在3 mm。
实验中常用元素所选分析线见表 1,用直线或者二次曲线拟合光信号强度和浓度的工作曲线。
表 1 选用的分析线Table 1. The analytical wavelength of elements元素 分析波长(nm) 元素 分析波长(nm) Mn 257.610 260.569 Mo 317.035 281.615 Sn 286.333 283.999 V 318.341 292.403 Cr 302.156 284.984 Cu 324.754 213.598 Ni 341.477 305.082 Zr 284.852 327.305 Al 308.216 396.153 Y 332.788 360.073 2. 结果与讨论
2.1 分析线的选择
在仪器软件谱线库中可直接选择待测元素较为灵敏的特征谱线作为分析线,在此过程中应注意避免谱线干扰。谱线干扰主要有以下四类。
第一类:钛作为基体元素的谱线干扰。如V 318.398 nm有Ti 318.398 nm干扰,Cu 327.396 nm有Ti 327.405 nm干扰。
第二类:钛合金中添加的化学成分元素干扰。现行产品标准[8]中涉及70多个钛合金牌号。除工业纯钛外,其他各种钛合金中均添加不同的少量化学成分元素,主要化学元素为V、Cr、Zr、Al、Sn、Mo、Pd、Ni、Fe、W、Ta、Mn、Ru,这些元素含量虽然低(0.1%~15%),但在光谱测定过程中会产生干扰。在不同钛合金产品检测过程中,应依据牌号具体分析各种谱线干扰,如TC1、TC2、TA21中有Mn干扰,TC25中有W干扰,TC4中Al、V干扰。
第三类:铁谱线干扰。铁在TC23、TB3、TB4、TB6、TC6、TC10等合金中为添加元素(含量范围0.2%~2%),在工业纯钛、TA10、TA11、TA20、TB11、TC4、TC4ELI、TC11等合金中为杂质元素(含量<0.4%),其国家标准检测方法为光度法和原子吸收光谱法[9],应用直流电弧原子发射光谱法对光谱杂质含量进行检测的过程中也需要考虑Fe谱线的干扰。
第四类:杂质元素之间的干扰。如分析线Al 308.216 nm有V 308.211 nm干扰。
常用的分析线列于表 1。
2.2 电极规格
在直流电弧中,从阴极发射出的电子在电场作用下,高速轰击阳极,在阳极端产生一个白热的亮点,称为阳极斑点,阳极斑点具有很高的温度,有利于样品的蒸发。电极形状影响样品的蒸发,电极样品孔壁厚,电极头温度较低,电极装样孔深,孔底温度较低,有利于利用分馏效应。此外,在相同电流条件下杯型电极比普通电极的相电极头温度高,因此,易挥发性物质宜用厚壁深孔电极蒸发,而难挥发性物质宜用浅孔薄壁细颈杯形电极。本文所用电极为一种浅孔薄壁细颈杯形电极,规格如图 1所示。
2.3 电流强度的选择
直流电弧放电的功率正比于分析间隙的弧柱长度和电流强度,因此在分析中可以通过提高电流强度提高放电功率,从而提高电极头温度使样品被充分蒸发。电极头温度直接测量较难实现。较高的电极头温度有利于样品孔内样品的蒸发,增加元素进入电弧的几率从而增强谱线强度,可以通过样品谱线强度间接考察电极头温度。
本文考察了电流为4、6、8、10、12、14、16、18 A时,谱线的强度变化,如图 2所示。图 2a为Mn 257.610 nm谱线强度随电流强度变化曲线图,当谱线强度增加到最高值10 A后,随着电流强度的增加,谱线强度信号有降低的趋势。可能随着电流强度的增加,影响元素激发的因素作用明显。V、Sn、Cr、Al与Mn的变化趋势类似。图 2b为Ni 341.477 nm谱线强度随电流强度变化曲线图。当谱线强度增加到最高值10 A后,随着电流强度的增加,谱线强度在一定范围波动,强度变化较小,Y、Cu、Mo、Zr与Ni变化趋势类似。Cu、V、Ni、Cr、Y在激发电流10 A时到达最大值;Al、Sn、Mn、Mo在激发电流8 A时达到最大值;Zr较难激发,在激发电流为14 A时达到最大。综合考虑各元素分析线的信号强度,本文选择激发电流为10 A。
2.4 激发时间的影响
用直流电弧激发试样,以信号积分强度为纵坐标,以电流持续时间为横坐标,绘制元素的时序曲线。元素以不同速率分若干次进入弧柱,在300 s以后,所有元素谱线积分强度趋于稳定,图 3中仅截取前200 s积分信号强度,可以清楚地看到各元素受激发的顺序,Al 396.153 nm最先受到激发,Zr 327.305 nm、Zr 284.852 nm、Cr 302.156 nm和Sn 317.502 nm均是容易蒸发元素,其信号都很强,Mn 257.610 nm、Mn 279.827 nm、Ni 341.477 nm、Cu 213.598 nm和Cr 284.325 nm随后蒸发。在激发时间为50~80 s时,各元素谱线积分强度增加较快,开始以极快的速度进入电弧间隙,因此电流激发时间和信号积分时间均设定为50 s。
2.5 缓冲剂的影响
按照钛及钛合金国家产品标准方法要求,需要对10个杂质元素的含量同时进行检测[2]。V、Sn、Cr、Al、Mn、Cu、Mo、Ni分析线灵敏度高,易选择,且光谱干扰小,易建立工作曲线。Zr和Y是难被检测元素,Zr属于难熔金属元素,很难被激发。Y元素谱线干扰多,2个元素的谱线强度都很弱。随着浓度增加,谱线强度增加小,致使工作曲线斜率小,增大了样品检测误差。因此在选择缓冲剂时,重点考察Zr和Y的光谱发射峰,以建立较好的工作曲线。
碳粉是常用的光谱缓冲剂,有导电性,能够稳定孤焰,其作用是使各类钛合金样品的组成趋于一致并且容易控制蒸发和激发条件,减小合金基体化学成分的变化对被测元素谱线强度的影响,有利于提高分析结果的准确度。实验发现单纯使用碳粉作缓冲剂,元素Y的三条浓度曲线(曲线1:0.003%;曲线2:0.01%;曲线3:0.03%)很难被激发,其分析线信号较弱,且随着元素浓度的增加,信号变化不大(见图 4a)。如果在碳粉中加入氯化银载体可以促进Y的蒸发,在相同的电流强度(10 A)激发条件下,谱线信号明显增加(见图 4b),工作曲线的线性较好。一般经验认为氯化银可以使难挥发的难熔金属元素(如Zr、Ti)转变为易挥发的氯化物[10],改善蒸发条件,提高这些元素的谱线强度。但是图 5却显示出相反的结论,元素Zr的三条浓度曲线(曲线1:0.003%;曲线2:0.01%;曲线3:0.03%)由于使用氯化银不仅引入氯离子,同时也引入了银离子,所以降低了电离温度及电弧温度(碳粉的电弧温度更高)[11],从而降低了Zr元素激发的几率,这是Zr分析线的信号没有增强反而降低的原因。且碳粉有利于Zr元素分析,氯化银有利于Y元素分析。本实验中使用氯化银和碳粉的混合物作缓冲剂(m氯化银:m碳粉=1:1),工作曲线见图 6。
2.6 工作曲线
取少量1.3.1 节配制的5个标准样品,各杂质元素浓度依次为0.001%、0.003%、0.01%、0.03%和0.06%。每个浓度的标准样品平行测定3次,取其平均值。用一次或二次方程拟合,在表 1所列的分析线中,每一个元素选用一条分析线,并按谱线信号强度分为两组,建立工作曲线。所有元素的标准曲线良好,线性相关系数均在0.972~0.999(见表 2)。
表 2 各元素分析线工作曲线的回归方程及相关系数Table 2. The regression equations and correlation coefficients of the working curves for analytical lines元素 回归方程 相关系数 Mn y=-9×109 x2+1×109 x+2×106 0.9975 Sn y=5×108 x+2×105 0.9983 Cr y=-1×109 x2+2×108 x+3×105 0.9958 Ni y=1×108 x+3×105 0.9943 Al y=8×107 x+5×105 0.9716 Mo y=-8×108 x2+1×108 x+3×105 0.9962 V y=-6×108 x2+7×107 x+3×104 0.9988 Cu y=1×107 x+2×105 0.9840 Zr y=8×108 x+2×105 0.9962 Y y=-4×108 x2+1×107 x+4×104 0.9986 2.7 方法精密度和准确度
采用加标回收的方法评价方法的精密度和准确度,加标量为0.020%,平行测定5次,分析结果见表 3。回收率在90.0%~110.0%之间。直流电弧弧柱在电极表面上不定地游动,导致样品蒸发与弧柱内组成随时间发生变化,测定结果的相对标准偏差(RSD)最大值为 13.0%,平均值为8.0%,重现性与其他分析方法相比较差,但是可以达到光谱常规分析精密度≤20%的要求[10, 11, 12]。
表 3 方法回收率与精密度Table 3. Recovery and precision tests of the method元素 含量(%) 回收率(%) RSD(%) 本底值 加入量 测定值 Mn 0.020 0.020 0.042 110.0 7.0 Sn 0.019 0.020 0.041 110.0 8.0 Cr 0.020 0.020 0.041 105.0 11.0 Ni 0.020 0.020 0.038 90.0 6.0 Al 0.019 0.020 0.038 95.0 7.0 Mo 0.020 0.020 0.041 110.0 7.0 V 0.019 0.020 0.041 110.0 5.0 Cu 0.019 0.020 0.037 90.0 5.0 Zr 0.021 0.020 0.043 110.0 13.0 Y 0.018 0.020 0.039 105.0 12.0 3. 结语
以直流电弧为激发光源,以CCD为检测器,应用DC Arc直流电弧原子发射光谱仪对钛及钛合金中多种杂质元素进行检测。实验确定了合适的分析线,选择激发电流为10 A,电流持续时间50 s,用氯化银和碳粉的混合物作缓冲剂,以浅孔薄壁细颈杯形电极作工作电极进行阳极激发,通过一次曝光,可实现10种杂质元素的同时检测。元素的检测范围为0.001%~0.06%,回收率为90.0%~110.0%,相对标准偏差在15%以内,本方法适用于钛及钛合金中杂质元素的快速测定。
-
表 1 仪器工作条件
Table 1 Working parameters of the instrument
元素 波长
λ/nm进样量
V/μL干燥 灰化 原子化 除残 θ/℃ t/s θ/℃ t/s θ/℃ t/s θ/℃ t/s Au 242.8 20 120 20 800 15 1900 3 2400 3 Pt 265.9 40 120 30 1200 15 2850 3 2950 3 表 2 正交试验因素
Table 2 The factors of orthogonal experimental
水平 振荡时间(因素A)
t/min吸附温度(因素B)
θ/℃1 20 10 2 30 20 3 40 30 表 3 解脱方法对金铂回收率的影响
Table 3 Effect of desorption method on the recovery of Au and Pt
解脱方法 解脱条件 回收率/% 温度θ/℃ 时间t/min Au Pt 高温灰化 600 40 95.7 95.0 2 g/L硫脲-2%盐酸溶液 100 30 97.3 96.2 2 g/L硫脲溶液 100 30 93.3 90.8 表 4 方法准确度和精密度
Table 4 Accuracy and precision tests of the method
标准物质
编号w(Au)/(ng·g-1) 相对偏差/% RSD/% w(Pt)/(ng·g-1) 相对偏差/% RSD/% 标准值 测量值 校正值 标准值 测量值 校正值 GBW 07288 0.9 0.87 0.88 12.7 2.1 0.26 0.24 0.23 11.5 13.3 GBW 07289 10 9.78 9.76 -2.40 10.3 1.6 1.52 1.51 5.62 2.5 GBW 07290 1.1 1.26 1.24 11.7 9.3 6.4 6.45 6.43 0.47 1.3 GBW 07291 4.3 4.23 4.25 -1.16 2.2 58 56.6 56.8 -2.07 7.4 GBW 07293 45 43.7 43.9 -2.44 1.8 440 416 418 -5.00 4.0 GBW 07294 1.8 2.03 2.01 9.78 5.4 14.7 13.8 13.5 -0.14 1.9 -
孙文军.二苯硫脲泡塑富集-原子吸收光谱法连续测定化探样品中金和银[J].岩矿测试,2012,31(5): 829-833. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201205015.htm 贾双琳,况云所.聚氨酯泡沫塑料富集ICP-MS测定化探样品中微量金[J].分析试验室,2010,29(5): 101-104. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2010S1032.htm 李小红,储溱,张蕾,丁莹,方金东.泡沫塑料富集-电感耦合等离子体质谱法测定地质样品中痕量金[J].资源环境与工程,2006,20(3): 329-331. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH200505007.htm 孙晓玲,于兆水,张勤.泡沫塑料吸附富集-石墨炉原子吸收光谱法测定地球化学样品中超痕量金[J].岩矿测试,2002,21(4): 266-270. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200204005.htm 郭玉珍.泡沫塑料富集原子吸收法测定金[J].新疆有色金属,1997(2): 40-42. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ2005Z100U.htm 张彦斌,程忠洲,李华.硫脲树脂富集-电感耦合等离子体质谱法测定地质样品中的超痕量金、银、铂、钯[J].分析试验室,2006,25(7): 105-108. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200607028.htm 郑浩,李红,曾扬,马龙.阴离子交换树脂-活性炭动态吸附无火焰原子吸收法测定矿石中的微量金铂钯[J].岩矿测试,2005,24(4): 299-302. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200504013.htm 来雅文,段太成,甘树才,曹淑琴,郭锦勇,李静.C-410树脂分离富集-电感耦合等离子体质谱法测定地质样品中的金铂、钯[J].分析化学,2002,30(11): 1363-1366. doi: 10.3321/j.issn:0253-3820.2002.11.022 陈真龙,刘扬中,郑化桂.CL-N263萃淋树脂分离富集金与铂钯的研究[J].冶金分析,1998,18(5): 5-7. 刘先国,方金东.活性炭吸附-电感耦合等离子体发射光谱法测定化探样品中痕量金铂钯[J].贵金属,2002,23(1): 33-35. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ200201007.htm 杨仲平,靳晓珠,黄华鸾,韦山桃.TNA负载聚氨酯泡塑富集ICP-MS测定地球化学样品中痕量金铂、钯[J].分析试验室,2006,25(9): 99-102. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200609026.htm 孟红,云作敏.负载泡沫富集发射光谱法测定化探样品中痕量金铂、钯[J].黄金,2005,26(2): 51-53. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ20050200I.htm 李承元,李蓉,赵刚,党利坤,丁志,李发刚,补涛,吴琼.负载泡沫塑料富集发射光谱测定化探样品中痕量金铂、钯[J].黄金,2005,26(12): 48-50. doi: 10.3969/j.issn.1001-1277.2005.12.014 范哲锋,杜黎明,靳晓涛.氧化铝负载二苯基硫脲分离富集ICP-AES测定贵金属的研究[J].光谱学与光谱分析,2003,23(2): 365-367. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200302049.htm 赖锦秋.负载泡塑富集、发射光谱法测定痕量金铂[J].矿产与地质,1999,13(3): 188-190. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD903.011.htm 王瑞敏.泡沫塑料富集-电感耦合等离子体质谱法测定土壤中超痕量金铀钯[J].岩矿测试,2011,30(3): 295-298. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201103016.htm 林智辉,王英滨,黄文辉.聚氨酯泡沫塑料富集-电感耦合等离子体质谱法测定地质样品中痕量铂和钯[J].理化检验:化学分册,2005,41(5): 321-326. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH200505007.htm 谢娟.泡塑富集分光光度法测定矿石中的铂和钯[J].西北地质,2003,36(1): 105-107. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200301018.htm 赵平.泡塑富集发射光谱法连测化探样品中超痕量金铂钯[J].光谱学与光谱分析,2001,21(2): 235-236. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200102028.htm 王继森,刘磊.脂胺泡沫塑料在分析中的应用——AAS测定矿石中微量金铂、钯的研究[J].岩矿测试,1988,5(4): 285-289. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS198604008.htm