• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

水中系列氢氧同位素标准物质的研制

张琳, 刘福亮, 贾艳琨, 刘君

张琳, 刘福亮, 贾艳琨, 刘君. 水中系列氢氧同位素标准物质的研制[J]. 岩矿测试, 2013, 32(5): 780-784.
引用本文: 张琳, 刘福亮, 贾艳琨, 刘君. 水中系列氢氧同位素标准物质的研制[J]. 岩矿测试, 2013, 32(5): 780-784.
Lin ZHANG, Fu-liang LIU, Yan-kun JIA, Jun LIU. Preparation and Certification of Reference Materials for Hydrogen and Oxygen Isotopes in Water[J]. Rock and Mineral Analysis, 2013, 32(5): 780-784.
Citation: Lin ZHANG, Fu-liang LIU, Yan-kun JIA, Jun LIU. Preparation and Certification of Reference Materials for Hydrogen and Oxygen Isotopes in Water[J]. Rock and Mineral Analysis, 2013, 32(5): 780-784.

水中系列氢氧同位素标准物质的研制

基金项目: 

中国地质大调查项目 1212011120290

中国地质大调查项目(1212011120290)

详细信息
    作者简介:

    张琳,副研究员,从事地下水同位素研究。E-mail: zhl5369@163.com

  • 中图分类号: TQ421.31;O628.11;O628.41

Preparation and Certification of Reference Materials for Hydrogen and Oxygen Isotopes in Water

  • 摘要:

    我国氢氧同位素国家一级标准物质经过二十余年的使用,现已不能满足需求,急需研制代表当今分析技术水平的新的氢氧同位素国家标准物质。本文研制了系列(4个)水中氢氧同位素标准物质,其中三个采自天然水样,一个为人工配制的贫氘水,三种天然水样基本涵盖了我国境内天然水的氢氧同位素组成范围。每种标准物质随机抽取30瓶的均匀性子样,每份子样做双份分析,进行均匀性检验,四种标准物质的均匀性检验得到的F值都小于相应的自由度的临界值,显示四种标准物质的均匀性良好。标准物质的δ18O和δD值经过2年的稳定性检验,特征量值变化在不确定度范围,由此判定δD、δ18O值稳定性良好。采用国际间实验室采用不同原理的方法协同定值,11家国内外实验室分别采用Cr还原法、激光法、H2-H2O平衡法、高温热转换元素分析法进行水中氢同位素定值,采用CO2-H2O平衡法进行氧同位素定值;定值不确定度显著降低,δ18O的扩展不确定度小于0.08‰,δD的扩展不确定度小于0.9‰。该标准物质已被国家质检总局批准确为国家一级标准物质,批准号为GBW 04458~GBW 04461。

  • 祖母绿,由Cr致色,属环状硅酸盐矿物,六方晶系,空间群D6h2-P6/mcc,[SiO4]、[BeO4]和[AlO6]以6︰3︰2的比例组成Be3A12[Si6O18]。结构中[SiO4]四面体以两个角顶联结在平面上,形成封闭的六方环,垂直c轴平行排列。上下两环错动25°,环之间由Al3+和Be2+连接,铝配位数为6,铍配位数为4。[AlO6]八面体和[BeO4]四面体以共棱的方式连结,分布在环的外侧[3-6]。环中心平行于c轴,为连通性较好的结构通道,可容纳Na+、K+、Cs+等大半径离子和水分子。由于环状结构的离子堆积程度较差,晶格中部分Al、Be可被Cr、Fe、Mg、Mn、Li等类质同象替代[1,3]

    新疆祖母绿矿区位于西昆仑、喀喇昆仑、帕米尔构造单元的结合处。东北部属塔里木板块南缘活动带公格尔—喀拉塔什中间地块的西北段;西南部属华南板块羌塘微板块的一部分。

    该区域祖母绿多产在碳酸盐岩脉中,碳酸盐岩脉主要以斜交脉、顺层脉产于片岩、片麻岩、炭质页岩中,以脉状、透镜状、雁行状为主,走向以北西向为主[7-9]

    新疆祖母绿晶体多呈绿色、翠绿色;半透明—透明;短柱状或长柱状,长1~8 cm,对径0.5~3 cm,玻璃光泽,摩氏硬度为7.5,密度2.70 g/cm3;多为非均质体,具一轴晶,有负光性;折射率1.574~1.576,双折射率0.005~0.009。

    采用EPMA和XRD测试技术,对新疆祖母绿成分及结构的研究非常重要。为此,作者利用XRD对新疆祖母绿典型样品进行测试分析,从而获取一些初步研究结果,对进一步深入研究新疆祖母绿具有重要的矿物学研究意义。

    本次EPMA测试分析样品,采用产于新疆的天然祖母绿典型样品,粗粒状,翠绿色。利用日本电子公司JXA-733探针-扫描电子显微镜,测定新疆天然祖母绿的化学成分,结果见表 1[9]

    表  1  新疆祖母绿电子探针显微成分分析
    Table  1.  Analytical results of components in emeralds from Xinjiang by EPMA
    原编号 样品名称 wB/%
    SiO2 Al2O3 K2O FeO CaO MgO Cr2O3 TiO2 MnO Na2O 总计
    08TY-1 祖母绿 66.21 16.39 0.03 1.13 0.13 1.33 0.32 0.01 0.00 1.02 86.57
    08TY-2 祖母绿 67.66 15.04 0.02 0.86 0.06 1.57 0.21 0.03 0.04 0.71 86.20
    08TY-3 祖母绿 65.78 16.28 0.09 1.50 0.12 1.61 0.54 0.03 0.03 0.88 86.86
    下载: 导出CSV 
    | 显示表格

    表 1可见,样品主要成分为:SiO2 (65.78 %~67.66%)、Al2O3 (15.04%~16.39%)、K2O (0.02%~0.09%)、FeO (0.86%~1.50%)、CaO (0.06%~0.13%)、MgO (1.33%~1.61%)、Cr2O3 (0.21%~0.54%)、TiO2 (0.01%~0.03%)、MnO (0.00%~0.04%)、Na2O (0.71%~1.02%) 等。

    祖母绿晶体中Cr2O3含量一般为0.15%~0.20%,深绿色晶体可达0.50%~0.60%;绿柱石中SiO2含量为66.90%,Al2O3含量为19.0%[1,10]

    新疆祖母绿较之绿柱石,SiO2和Al2O3均有大量类质同像替代存在。较之祖母绿理论含量,新疆祖母绿中Cr2O3含量较高,所呈颜色多在翠绿至深绿之间。

    新疆祖母绿样品存在同心圆状颜色环带,环带间颜色有明显差异,特征如下 (见表 2):①外环颜色显深绿色,内环颜色明显较浅。从成分上分析,祖母绿 (外环) Cr2O3含量明显高于祖母绿 (内环)[9]。②祖母绿 (外环) FeO含量明显高于祖母绿 (内环)。③外环K2O+Na2O总量明显低于内环;且碱 (Na2O+K2O) 含量有较宽的变化范围 (0.36%~1.17%)。

    表  2  新疆祖母绿电子探针成分分析
    Table  2.  Analytical results of components in emeralds from Xinjiang by EPMA
    样品名称 wB/%
    SiO2 Al2O3 K2O FeO CaO MgO Cr2O3 TiO2 MnO Na2O 总计
    祖母绿 (内环) 65.30 16.36 0.15 1.26 0.18 1.72 0.43 0.02 0.02 0.95 86.39
    祖母绿 (外环) 66.25 16.20 0.04 1.74 0.06 1.50 0.65 0.05 0.03 0.81 87.33
    下载: 导出CSV 
    | 显示表格

    选择具有典型代表性的新疆祖母绿 (绿柱石),利用D/MAX-3A X射线衍射仪 (日本理学公司) 对粉末样品进行分析。所得祖母绿样品的晶胞参数为:a0=0.9233 nm,c0=0.9206 nm,Z=2,主要粉晶谱线为2.871 (100)、3.257 (100)、7.996 (100),详见图 1表 3

    图  1  新疆祖母绿X射线衍射谱图
    Figure  1.  XRD spectrograms of emeralds from Xinjiang
    表  3  新疆祖母绿X射线衍射数据
    Table  3.  X-ray diffractometric data of emeralds from Xinjiang
    序号 d hkl
    第一次 第二次 第三次 平均值
    1 7.993 7.997 7.997 7.996 100
    2 4.594 4.594 4.594 4.594 110,002
    3 3.984 3.984 3.984 3.984 200,102
    4 3.257 3.257 3.257 3.257 112
    5 3.017 3.018 3.018 3.018 210,202
    6 2.871 2.871 2.871 2.871 211
    7 2.525 2.526 2.526 2.526 212
    8 2.297 2.297 2.297 2.297 220,302
    9 2.208 2.207 2.207 2.207 104
    10 2.155 2.155 2.155 2.155 311
    11 1.992 1.992 1.992 1.992 312,204
    12 1.835 1.835 320,402
    13 1.797 1.797 1.797 1.797 321,313
    14 1.741 1.741 1.741 1.741 304
    15 1.715 1.715 1.715 1.715 411
    16 1.629 1.628 1.629 1.629 412,224
    17 1.600 1.600 1.600 1.600 500,314
    18 1.571 1.571 1.571 323
    19 1.532 1.532 1.532 1.532 006
    20 1.517 1.517 1.517 1.517 413
    21 1.460 1.460 1.460 1.460 116
    22 1.436 1.434 1.436 1.435 510,422
    23 1.371 1.371 1.371 1.371 512
    下载: 导出CSV 
    | 显示表格

    祖母绿晶体发生类质同象替代,会对祖母绿的晶胞参数产生影响。如Me类质同象代替Al,导致Me—O键长变长,八面体体积增大,由此挤压c轴方向致使八面体发生形变。a轴方向键长变长也会影响晶胞参数a的值。四面体配位中Li+代替Be2+,使Me—O键长增加,伴随着c值的增加。绿柱石理论晶胞参数为a=0.9188 nm,c=0.9189 nm,c/a为0.997~0.998,据c/a比值可将绿柱石分为以下两种类型[11-13]

    (1) 以Al3+的八面体类质同象替代为主的绿柱石。c/a为0.991~0.998,随替代量增加,其a值增加,c值保持稳定。

    (2) 以Li+→Be2+的四面体替代为主的绿柱石。c/a为0.999~1.003,随替代量增加,a值保持稳定,c值增加。

    图 1表 2可见,新疆祖母绿样品的X射线衍射线的主要峰位置与强度几乎吻合,a0=0.9233 nm,c0=0.9206 nm,Z=2。样品晶胞参数ac值 (c/a=0.997) 与标准绿柱石相比,表明新疆祖母绿晶体晶格中存在大量Al的类质同相替代,这与本文化学成分分析结果一致。测定的c/a值表明新疆祖母绿以[A1O6]八面体类质同象替代为主。

    (1) 新疆祖母绿化学成分中Cr2O3含量较高,一般为0.21%~0.54%。测得样品晶胞参数为:a0=0.9233 nm,c0=0.9206 nm,Z=2,主要粉晶谱线为2.871 (100)、3.257 (100)、7.996 (100)。

    (2) 新疆祖母绿较之标准绿柱石,其SiO2和Al2O3均有大量类质同像替代存在。

    (3) 测定的c/a值表明,新疆祖母绿属于以[A1O6]八面体类质同象替代为主的绿柱石。

    新疆祖母绿是我国的又一种高档宝石,在一定程度上填补了我国优质祖母绿宝石的空白。多项测试数据表明,新疆祖母绿具有高品质祖母绿宝石的特征,对其研究工作需要多角度、全方面深入。本文仅从电子探针显微分析 (EPMA) 和X射线衍射 (XRD) 测试结果与晶体结构的角度进行了分析,对新疆祖母绿晶体化学特征进行了初探,以供进一步工作参考。

  • 表  1   δ18O均匀性检验方差分析结果

    Table  1   Variance analysis for δ18O homogeneity inspection of reference sample

    δ18OQ2ν2s22Q1ν1s12FFα(ν1,ν2)
    OH10.1539300.00510.1682290.00581.131.85
    OH20.15410.00510.18280.00631.23
    OH30.46710.01560.46630.00161.03
    OH40.94870.03160.92480.03191.01
    下载: 导出CSV

    表  2   δD均匀性检验方差分析结果

    Table  2   Variance analysis for δD homogeneity inspection of reference sample

    δDQ2ν2s22Q1ν1s12FFα(ν1,ν2)
    OH114.1236300.470814.5145290.50051.061.85
    OH212.95800.4319 10.58600.3650 0.85
    OH315.88490.5295 18.31260.6315 1.19
    OH434.06701.1356 34.04441.1739 1.03
    下载: 导出CSV

    表  3   δ18O标准溶液稳定性检验结果

    Table  3   The stability test of δ18O values for the four reference materials

    δ18O1361224均值标准偏差
    s
    OH1-0.19-0.14-0.16-0.24-0.15-0.180.040
    OH2-8.64-8.70-8.63-8.72-8.62-9.660.045
    OH3-19.03-19.13-19.13-19.11-19.14-19.110.045
    OH4-55.80-55.73-55.81-55.79-55.82-55.790.035
    下载: 导出CSV

    表  4   δD标准溶液稳定性检验结果

    Table  4   The stability test of δD values for the four reference materials

    δD141224均值标准偏差
    s
    OH1-2.34-2.11-2.17-1.61-2.060.32
    OH2-63.27-63.28-63.39-63.26-63.300.06
    OH3-143.02-143.55-143.15-143.95-143.420.42
    OH4-433.87-433.08-433.64-433.63-433.560.34
    下载: 导出CSV

    表  5   各实验室的分析数据

    Table  5   Multiple measurement data of δD for the four reference materials

    实验室编号δDVSMOW/‰
    OH1OH2OH3OH4
    1-1.55-63.20-143.93-432.19
    2-1.52-62.72-143.43-433.68
    3-1.35-62.92-144.38-434.26
    4-2.17-63.39-143.15-433.64
    5-1.61-63.26-143.95-433.63
    6-2.30-63.69-144.20-433.90
    7-2.08-63.85-144.37-432.03
    8-3.68*-63.67-143.32-432.92
    9-1.56-63.19-144.10-434.21
    10-1.79-64.11-145.03-433.36
    11-1.50-63.25-143.71-433.27
    12-1.71-63.88-144.54-432.59
    注:“*”表示剔除数据。
    下载: 导出CSV

    表  6   各实验室δ18O的分析数据

    Table  6   Multiple measurement data of δ18O for the four reference materials

    实验室编号δ18OVSMOW/‰
    OH1OH2OH3OH4
    1-0.14-8.55-19.09-55.72
    2-0.16-8.63-19.13-55.81
    3-0.16-8.62-19.16-55.91
    4-0.12-8.66-19.15-55.82
    5-0.16-8.67-19.19-55.67
    6-0.20-8.56-19.01-55.54
    7-0.10-8.61-19.17-55.80
    8-0.19-8.60-19.12-55.71
    9-0.16-8.63-19.20-55.70
    10-0.14-8.55-19.09-55.72
    下载: 导出CSV

    表  7   标准物质定值元素δ18O、δD的认定值及扩展不确定度

    Table  7   δ18O and δD reference values for materials OH1 to OH4 and their associated expanded uncertainties (k=2)

    项目OH1OH2OH3OH4
    标准值及扩展不确定度
    δ18OVSMOW/‰
    -0.15±0.07-8.61±0.08-19.13±0.07-55.73±0.08
    标准值及扩展不确定度
    δDVSMOW/‰
    -1.7±0.4-63.4±0.6-144.0±0.8-433.3±0.9
    下载: 导出CSV
  • Dansgaard W. Stable isotopes in precipitation [J].Tellus, 1964, 16(4):436-468. doi: 10.3402/tellusa.v16i4.8993

    Craig H. Isotopic variations in meteoric waters [J].Science,1961,133:1702-1703. doi: 10.1126/science.133.3465.1702

    张应华,仵彦卿,温小虎,苏建平.环境同位素在水循环研究中的应用[J].水科学进展, 2006,17(5):738-747. http://www.cnki.com.cn/Article/CJFDTOTAL-SJLY200803004.htm

    IAEA.1969,1970,1971,1973,1975,1979,1981,1983,1986,1990,1992 Environmental Isotope Data. World Survey of Isotope Concentrations in Precipitation [R]//Technical Report Series No.69,117,129,147,165,192,210,226,264,311,331.Vienna:International Atomic Energy Agency.

    Ingrahan N E, Taylor B E. Light stable isotope system-atics of large-scale hydrologic regimes in California and Nevada [J].Water Resource Reviews,1991,27(1):77-90. doi: 10.1029/90WR01708

    Friedman, Smith G, Gleason J D. Stable isotope compo-sition of waters in southeastern California 1. Modern precipitation [J].Journal of Geophysics Research, 1992, 97(D5):5795-5812. doi: 10.1029/92JD00184

    金德秋,周锡煌,倪葆龄.氢氧同位素标准水样的研制[J].计量学报,1991,12(2):85-91. http://www.cnki.com.cn/Article/CJFDTOTAL-JLXB199102001.htm

    ISO-REMCO ISO Guide 35. Materials—General and Statistical Principles for Certification[S].2006:54-59.

    JJG 1006—1994,一级标准物质技术规范[S].

    Simon D K, Karl D H, Paul B. Deuterium/hydrogen isotope ratio measurement of water and organic samples by continuous-flow isotope ratio mass spectrometry using chromium as the reducing agent in an elemental analyzer [J].Rapid Communication in Mass Spectrometry,2001,15(15):1283-1286. doi: 10.1002/(ISSN)1097-0231

    Munksgaard N C, Wurster C M, Bird M I.Continuous analysis of δ18O and δD values of water by diffusion sampling cavity ring-down spectrometry:A novel sampling device for unattended field monitoring of precipitation, ground and surface waters [J].Rapid Communication in Mass Spectrometry,2011,25(24):3706-3721. doi: 10.1002/rcm.5282

    Begley I S, Scrimgeour C M. High-precision δ2H and δ18O measurement for water and volatile organic compounds by continuous-flow pyrolysis isotope ratio mass spectrometry [J].Analytical Chemistry, 1997,69:1530-1535. doi: 10.1021/ac960935r

    Lu F H. Online high-precision δ2H and δ18O analysis in water by pyrolysis [J].Rapid communication in Mass Spectrometry, 2009,23:3144-3150. doi: 10.1002/rcm.v23:19

    孙青,王晓华,石丽明,刘美美,储国强. GasBench Ⅱ-IRMS水平衡氢氧同位素分析方法研究[J].岩矿测试, 2009,28(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200901002.htm
    中国实验室国家认可委员会.化学分析中不确定度的评估指南[M].北京:中国计量出版社,2002.
    韩永志.标准物质的定值[J].化学分析计量, 2001,10(5):38-39. http://www.cnki.com.cn/Article/CJFDTOTAL-HOCE201401005.htm
    JJF 1343—2012,标准物质定值的通用原则及统计学原理[S].
表(7)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-12
  • 录用日期:  2013-03-05
  • 发布日期:  2013-09-30

目录

/

返回文章
返回