Determination of Rare Earth Elements in Fluorite Samples by Open Boric Acid Dissolution and Inductively Coupled Plasma-Mass Spectrometry
-
摘要: 萤石中稀土元素的研究对揭示成矿物质来源、成矿流体的性质和矿床成因均具有十分重要的意义。传统的过氧化钠碱熔-电感耦合等离子体质谱(ICP-MS)分析方法可以解决萤石中稀土元素的测定问题,但过氧化钠提纯难度高,过程繁杂,不宜大量样品的处理,且待测溶液总盐度大易产生基体干扰等;常规的酸溶法因使用的试剂一般为硝酸和氢氟酸,这些酸均不与萤石的主要成分氟化钙发生反应而很少应用。本文基于氟化钙能溶于硫酸和硼酸,采用硼酸溶液(10%硫酸和25%盐酸介质)和氢氟酸处理样品,硝酸提取,引入103Rh和185Re双内标,建立了硼酸溶液敞口酸溶ICP-MS测定萤石中稀土元素的分析方法。相比于传统的过氧化钠碱熔方法,本方法采用的试剂纯度高,可以有效地降低空白,方法检出限为0.002~0.016 μg/g,低于过氧化钠碱熔方法的检出限(0.006~0.058 μg/g),回收率在94.0%~107.6%之间,方法精密度(RSD)为0.7%~2.7%。本方法配制的硼酸溶液能够有效地与萤石反应,可充分分解萤石样品,简化了样品处理流程,有效地控制了稀土元素的损失,数据可靠性高,适用于大量萤石样品的稀土元素分析。
-
关键词:
- 萤石 /
- 稀土元素 /
- 硼酸溶液 /
- 敞口酸溶 /
- 电感耦合等离子体质谱法
Abstract: The research of rare earth elements (REEs) in fluorite has very important significance for determining the source of ore-forming materials, the nature of ore-forming fluid and genesis. The determination of REEs in fluorite can be solved by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) with sodium peroxide fusion, but the sample handling process is complex; sodium peroxide is difficult to purify and matrix interferences derive from high salinity solution, making it unsuitable for processing large numbers of samples. Nitric acid and hydrofluoric acid, which are used for the conventional method, do not react with calcium fluoride, which can be dissolved in sulfuric acid and boric acid. To this end, a method for the determination of 15 rare earth elements in fluorite by ICP-MS has been developed. The fluorite samples were decomposed with boric acid solution (media with 10% H2SO4 and 25% HCl) and hydrofluoric acid in PTFE beakers, and then dissolved with nitric acid. Two internal standards of 103Rh and 185Re were selected to compensate the drift of analytical signals and correct matrix effects by ICP-MS. Compared with the traditional sodium peroxide alkali fusion method, this method adopted the reagents of high purity which can reduce the background effectively. The detection limits were 0.002-0.016 μg/g, which is lower than that by sodium peroxide fusion (0.006-0.058 μg/g), and the precisions were 0.7%-2.7%. The results of this method were consistent with the results by sodium peroxide fusion. The new established method was is simple and had has a low detection limit for processing large numbers of fluorite samples. -
研究绿松石的矿料来源对于了解古代先民的活动范围、开采运输能力和考古文化联系等问题都具有重要的意义[1-6]。而它的来源问题一直是考古学界关注而又悬而未决的问题,如何能够正确鉴定绿松石矿料来源成为当务之急,显然这一问题的解决有赖于对绿松石矿物和结构特征等诸多方面的深入研究。前人主要从成分或者结构分别对我国一些产地的绿松石进行了研究和总结,但是并没有形成一个绿松石地域特征的划分体系。在前人的研究中,通过X射线衍射 (XRD) 物相分析对绿松石的结构进行分析,在成分分析上通常采用高分辨电感耦合等离子体质谱仪 (ICP-MS)、拉曼光谱来研究不同产地绿松石的谱线特征。为了进一步研究不同产地绿松石的产地特征,本文采用ICP-MS、扫描电镜、XRD、红外吸收光谱等现代测试方法[7]分析来自不同地区绿松石的成分,尤其是分析微量元素和稀土元素的种类和含量,同时对结构特征也进行了分析,从而为古绿松石来源的无损鉴定[8]提供一定的借鉴作用。
1. 样品特征及分析方法
1.1 样品描述
选取湖北竹山县秦古镇和安徽马鞍山绿松石为研究样品,其特征和形貌见表 1和图 1。
表 1 绿松石样品特征Table 1. Characteristics of turquoise samples样品 产地 描述 CL-1 湖北竹山县秦古镇 蓝灰色,结构致密,黑色物质相间分布 CL-2 湖北竹山县楼台乡 淡绿色,围岩含较多铁矿 CL-3 湖北竹山县溢水镇 淡蓝绿色,结构松散 CL-4 安徽马鞍山 浅蓝色,被围岩包裹 1.2 分析仪器
采用能谱仪 (EDAX)、GeoLas 2005激光剥蚀系统和Agilent 7500a等离子体质谱仪 (美国Agilent公司) 进行成分分析。激光能量70 mJ,频率8 Hz,激光束斑直径32 μm。
采用PW3373/10型X射线衍射仪 (日本理学株式会社) 进行物相分析。
采用AVATAR-370DTGS傅里叶变换红外光谱仪 (Nicolet) 进行矿物基团分析。
采用JSM-350CF型环境扫描电子显微镜 (荷兰FEI公司) 进行微观形貌和结构特征分析。
2. 分析与讨论
2.1 化学成分分析
X射线能谱分析绿松石样品中氧化物含量见表 2。湖北竹山县 (CL-1) 和安徽马鞍山地区 (CL-4) 的绿松石主成分中都含有一定量的Fe和微量的SiO2,其中竹山县样品CL-2和CL-3还含有一定量的S,两地的绿松石成分都与理论值[9]相比存在一定的偏离,这可能与所选样品为绿松石原石有关,因为原石中所含围岩矿物的成分会影响绿松石的主要元素含量。
表 2 X射线能谱分析绿松石中氧化物含量Table 2. Main chemical compositions of oxides in turquoise samples by EDAX analysis样品编号 wB/% Al2O3 SiO2 P2O5 Fe2O3 CuO SO3 CL-1 41.60 0.88 42.20 1.73 13.60 - CL-2 35.31 0.57 42.23 14.36 5.99 1.54 CL-3 46.41 2.65 40.56 1.50 7.56 1.32 CL-4 40.00 0.51 39.63 3.36 16.50 - 理论值 36.84 - 34.12 - 9.57 - 绿松石样品的微量元素含量见表 3。秦古绿松石 (CL-1) 中Na、Mg、Si、Ca、Sc、Ti、V、Cr、Mn、Co、Zn、Sr、Mo、Sb和Ba元素的含量与马鞍山绿松石存在较大的差异,这与绿松石矿的地质特征紧密相关。竹山县绿松石主要的伴生矿物有多水高岭石、水铝英石、明矾石、石英、方解石、蓝铜矿和孔雀石等,而马鞍山绿松石矿床成矿围岩中富含磷灰石,并伴有铜矿体[10],所以在一定程度上来讲上述微量元素的存在也是这些伴生矿物引入的。
表 3 等离子体质谱分析绿松石中微量元素含量Table 3. Chemical compositions of micro-amount of elements in turquoise samples by ICP-MS元素 wB/(μg·g-1) CL-1 CL-4 Y 0.464 0.707 Zr 0.320 0.390 Nb 0.021 0.003 Mo 147.234 0.018 Ag 0.116 0.052 Cd 0.726 0.019 In 0.192 1.684 Sn 2.159 1.555 Sb 76.300 0.651 Li 0.115 0.139 Be 5.326 6.078 B 2.650 1.073 Na 69.630 184.435 Mg 1.651 8.220 Si 282.623 507.143 K 214.616 327.047 Ca 0.000 13.092 Sc 2.647 13.645 Ti 78.346 27.745 Cs 0.011 0.004 Ba 1597.627 Li Hf 0.015 0.020 Ta 0.017 0.008 W 0.662 0.039 Tl 0.172 0.011 Pb 0.345 2.230 Bi 0.008 0.131 Th 0.000 0.173 U 67.272 0.984 V 310.534 25.235 Cr 325.871 5.927 Mn 0.000 0.221 Co 1.313 27.831 Ni 0.768 0.857 Zn 1584.435 147.116 Ga 19.476 10.371 Ge 0.214 0.340 Rb 0.364 0.597 Sr 19.249 3.431 从矿床学的角度来分析,竹山县的绿松石矿体赋存于寒武系硅质泥质板岩中,并且它的矿化与铀的矿化分布一致,广泛分布有铀-钒-钡矿化层,这就造成了产于竹山县的绿松石在U、V、Ba元素上远大于马鞍山地区绿松石。而马鞍山地区绿松石矿的成矿围岩为富钠的碱钙性岩石,其中龙王山组富含K2O,大王山组及次火山岩相对富含Na2O,而K2O的含量也较高[11],因此在碱性元素上马鞍山地区的绿松石含量普遍高于竹山地区。
任何矿石都是在某一地质历史时期,由某种地质作用在特定的地质环境中形成的。由于稀土元素 (REEs) 的离子半径和化学行为存在细微的差别,造成了不同地质作用过程中轻重稀土元素发生分馏[12-13],上述诸方面的差异均不可避免地体现在不同产地的绿松石矿中。根据REEs的指示作用可以通过讨论绿松石稀土元素的富化和亏损等对不同产地的绿松石作出鉴别,测定结果见表 4。
表 4 等离子体质谱分析绿松石稀土元素含量Table 4. Chemical compositions of REEs in turquoise samples by ICP-MS元素 wB/(μg·g-1) CL-1 CL-4 La 0.005 0.052 Ce 0.069 0.128 Pr 0.027 0.008 Nd 0.039 0.159 Sm 0.038 0.059 Eu 0.035 0.019 Gd 0.246 0.160 Tb 0.013 0.025 Dy 0.110 0.185 Ho 0.016 0.041 Er 0.051 0.090 Tm 0.016 0.030 Yb 0.080 0.168 Lu 0.011 0.019 由两地区样品稀土配分模式图 (图 2),两样品中Gd都显示正异常,但在稀土配分形式上存在一定的相似性。CL-1和CL-4的稀土元素总量均较低,分别变化于0.005~0.246 μg/g、0.008~0.185 μg/g,二者轻稀土总量均小于重稀土总量,明显富集重稀土,配分曲线向右上角倾斜。样品CL-1显示强烈的Nd负异常,CL-1和CL-4出现Pr反向,La的含量也相差较大。马鞍山绿松石CL-4配分曲线,Eu显示负异常,而Eu的负异常特征是马鞍山地区绿松石中经常可以看到的[14]。这种稀土含量特征可能与两地的克拉克值 (即每一种化学元素在地壳中所占的平均比值) 分布有关。
综上所述,绿松石由于成矿背景和地质条件不同,竹山与马鞍山地区绿松石虽然主要成分含量基本一致,但在微量元素含量存在较大差别;两地区绿松石的稀土元素均富集重稀土,二者的稀土配分模式图出现Pr反向,马鞍山地区的绿松石表现出Eu负异常;马鞍山绿松石的结晶程度优于竹山绿松石。
2.2 X射线衍射物相分析
为确定不同产地不同颜色的绿松石是否其内部结构[15]也发生变化,特别对绿松石样品进行XRD物相分析,测得的XRD图谱和数据见图 3,结果表明,样品CL-2为铁绿松石,其XRD分析结果与上述的主成分分析相一致。对照JCPDS卡片,显示样品CL-1、CL-3和CL-4的衍射谱线、矿物组分与绿松石理论谱线相吻合。绿松石样品CL-1、CL-3和CL-4的主要粉晶衍射数据分别为0.3666 nm (100)、0.3664 nm (100),二者基本相同。但马鞍山绿松石 (CL-4) 衍射峰的强度比竹山县绿松石 (CL-1、CL-3) 高,如图 4所示,说明马鞍山绿松石 (CL-4) 晶体的结晶程度优于CL-1和CL-3。从样品的外观 (见图 1) 和硬度来看,样品CL-2、CL-3所受风化程度较大,所以其衍射峰相对于CL-1和CL-4而言小些。
2.3 红外光谱分析
绿松石为含铜、铝和水的磷酸盐,OH、H2O及PO43-基团的振动模式和频率决定了绿松石红外光谱的主要特征[16]。图 4显示,竹山绿松石与马鞍山绿松石所表现出的红外吸收谱带特征基本相同,但绿松石晶体的结晶程度以及所受风化程度不同导致一些微小的差异。由绿松石中ν (OH) 伸缩振动致红外吸收锐谱带主要位于3511 cm-1、3459 cm-1处,而ν (MFe,Cu-H2O) 伸缩振动致红外吸收谱带则出现在3291 cm-1、3076 cm-1处,样品CL-3和CL-4的水区谱带被由吸附水ν (H2O) 伸缩振动致红外吸收舒宽谱带明显包络致使该区吸收谱带不够突出。由δ (H2O) 弯曲振动致红外吸收谱带位于1648 cm-1处。从图 4可以看出,由δ (H2O) 弯曲振动致红外吸收谱带与文献[17-19]报道的δ (H2O) 弯曲振动致红外吸收弱谱带存在一定的差异,可能是由于绿松石样品中水的结晶比较好所致。
由磷酸根基团伸缩振动致红外吸收谱带为:ν3 (PO4) 伸缩振动致红外吸收谱带位于1172 cm-1、1104 cm-1、1055 cm-1处,而δ (OH) 弯曲振动致红外吸收弱谱带出现在837 cm-1、787 cm-1处,由PO43-基团ν4 (PO4) 弯曲振动致红外吸收谱带主要位于645 cm-1、577 cm-1、482 cm-1处。这与文献[12]中天然绿松石的吸收谱带存在一定范围的偏差,可能是由于所选绿松石原石的结晶程度不完全所致。
2.4 微观形貌分析
样品CL-1、CL-2、CL-3和CL-4的扫描电子显微镜照片如图 5所示,5000倍下绿松石样品都呈现出鳞片状结构或针状结构,质地细腻。
3. 结语
通过两地绿松石的成分和结构特征对比,可以进一步分析不同产地绿松石的成矿背景,并且与古代著名绿松石产地的地质条件进行分析比对,进而可以从矿物成因的角度对古绿松石的产地进行判断,这就可以从源头上解决古绿松石的产地问题。
根据测试结果得出以下结论。
(1) 在成分上,两地绿松石的主要化学成分基本一致,而微量元素含量有一定的区别,尤其是稀土元素的含量具有显著的地域特征。由于在测试化学成分上所采用的仪器和方法都属于无损鉴定,因此在以后的研究中可以通过测试化学成分来标定各个产地绿松石的产地特点,从而为古绿松石产地的无损鉴定形成一个标准体系。
(2) 在结构上,两地的绿松石具有特征的绿松石谱线特征,并且马鞍山地区的样品结晶程度优于竹山县样品。
(3) 在形貌上,两地绿松石表现出质地细腻的特性。其中马鞍山绿松石具有明显的鳞片状集合体微观形貌结构,而竹山县绿松石呈现细鳞片状或针状结构。
绿松石可以采用X射线衍射和红外光谱以及扫描电镜进行鉴定。绿松石成分上的区别,尤其是某些微量元素和稀有元素含量上的差别可以用于判别地域,这些差别与绿松石矿的成矿背景有关。所以只有深入了解不同地区绿松石的成矿背景,才能为绿松石的产地划分提供依据。本文采用的测试化学成分的方法都是可以应用于古绿松石地域判别的无损鉴定。
不同产地的绿松石具有不同的矿物和结构特征,而且这些特征可以在不破坏绿松石外观的基础上来进行分析和判断。通过分析现代不同产地绿松石的特征能够得出绿松石的地域体系。这将对古绿松石的产地划分有很大的帮助,从而进一步推断出考古挖掘出来的古物的产地。
-
表 1 仪器工作参数
Table 1 Operating parameters of the ICP-MS instrument
工作参数 设定条件 工作参数 设定条件 功率 1400 W 截取锥(镍锥)孔径 0.8 mm 冷却气(Ar)流量 15.4 L/min 测量方式 跳峰 辅助气(Ar)流量 0.80 L/min 进样泵速 30 r/min 雾化气(Ar)流量 0.86 L/min 测量模式 标准 采样锥(镍锥)孔径 1.0 mm 总采集时间 36 s 表 2 方法检出限
Table 2 Detection limits of the method
元素 内标 检出限/(μg·g-1) 元素 内标 检出限/(μg·g-1) 碱熔 酸溶 碱熔 酸溶 89Y 103Rh 0.014 0.011 159Tb 185Re 0.023 0.003 139La 103Rh 0.031 0.012 163Dy 185Re 0.008 0.005 140Ce 103Rh 0.058 0.016 165Ho 185Re 0.019 0.003 141Pr 103Rh 0.007 0.005 166Er 185Re 0.006 0.004 146Nd 103Rh 0.040 0.010 169Tm 185Re 0.016 0.002 147Sm 103Rh 0.009 0.007 172Yb 185Re 0.007 0.003 151Eu 103Rh 0.007 0.006 175Lu 185Re 0.011 0.003 157Gd 185Re 0.015 0.009 表 3 方法精密度
Table 3 Precision tests of the method
元素 测定平均值
w/(μg·g-1)RSD/% 元素 测定平均值
w/(μg·g-1)RSD/% 89Y 30.2 0.7 159Tb 0.30 1.6 139La 6.18 1.0 163Dy 2.36 1.9 140Ce 11.0 1.2 165Ho 0.68 1.6 141Pr 1.15 2.0 166Er 2.71 2.2 146Nd 4.23 0.9 168Tm 0.60 2.7 147Sm 1.12 1.2 172Yb 5.22 2.0 151Eu 0.55 2.1 175Lu 1.03 2.1 157Gd 1.55 1.3 表 4 方法准确度
Table 4 Accuracy tests of the method
元素 ρ/(ng·mL-1) 回收率/% 样品含量 加标量 样品加标后
测量结果89Y 30.5 50.0 81.22 101.4 139La 6.18 5.0 11.08 98.0 140Ce 11.0 10.0 20.65 96.5 141Pr 1.21 2.0 3.33 106.0 146Nd 4.22 5.0 9.38 103.2 147Sm 1.09 1.0 2.13 104.0 151Eu 0.55 0.5 1.04 98.0 157Gd 1.58 2.0 3.49 95.5 159Tb 0.28 0.5 0.76 96.0 163Dy 2.29 2.0 4.38 104.5 165Ho 0.72 1.0 1.66 94.0 166Er 2.73 5.0 7.88 103.0 169Tm 0.56 0.5 1.11 104.0 172Yb 5.18 5.0 10.56 107.6 175Lu 1.09 1.0 2.12 103.0 表 5 过氧化钠碱熔和硼酸敞口酸溶处理样品的分析结果对比
Table 5 Analytical results of REEs with sodium peroxide fusion and boric acid dissolution
元素 过氧化钠碱熔 w/(μg·g-1) 硼酸溶液敞口酸溶 w/(μg·g-1) 样品1 样品2 样品3 样品4 样品1 样品2 样品3 样品4 89Y 30.1 183.0 172.0 115.0 29.6 185.0 171.0 113.0 139La 6.44 16.17 14.63 9.28 6.12 16.30 16.30 9.60 140Ce 12.00 29.64 30.55 16.12 10.7 27.40 29.60 15.60 141Pr 1.21 2.94 3.52 1.65 1.91 3.07 3.46 1.77 146Nd 4.35 11.33 11.44 6.17 4.26 11.90 13.30 6.64 147Sm 1.18 4.08 3.93 1.83 1.11 4.02 4.35 1.92 151Eu 0.56 2.18 2.22 0.90 0.57 2.19 2.49 0.96 157Gd 1.69 7.49 6.95 3.49 1.56 7.56 7.67 3.55 159Tb 0.32 1.59 1.50 0.84 0.31 1.55 1.63 0.85 163Dy 2.46 11.58 11.04 7.20 2.38 11.80 12.70 7.81 165Ho 0.68 2.83 2.78 2.20 0.68 2.92 3.22 2.42 166Er 2.81 9.98 10.14 9.30 2.69 10.0 11.30 9.84 169Tm 0.60 1.76 1.82 1.80 0.59 1.77 2.07 1.95 172Yb 5.47 14.16 14.76 14.76 5.21 14.1 16.50 15.90 175Lu 1.08 2.59 2.68 2.71 1.05 2.61 3.08 2.93 表 6 GBW 07108的准确度
Table 6 Accuracy tests of GBW 07108
元素 w/(μg·g-1) 元素 w/(μg·g-1) 标准值 测定值 标准值 测定值 89Y 9.10 9.06 159Tb 0.35 0.34 139La 15.0 15.03 163Dy 1.60 1.58 140Ce 25.0 24.98 165Ho 0.33 0.32 141Pr 3.40 3.42 166Er 1.10 1.13 146Nd 12.0 11.97 168Tm 0.17 0.18 147Sm 2.40 2.45 172Yb 0.90 0.92 151Eu 0.51 0.53 175Lu 0.14 0.15 157Gd 1.90 1.92 -
袁俊宏.我国萤石资源开发利用情况[J].化工新型材料,2005,33(6): 55-56,75. http://www.cnki.com.cn/Article/CJFDTOTAL-HGXC200506019.htm 王怀宇.世界萤石(氟石)生产消费及国际贸易[J].中国非金属矿工业导刊,2009(6): 54-58. http://epub.cnki.net/kns/detail/detail.aspx?QueryID=0&CurRec=1&recid=&FileName=LGFK200906018&DbName=CJFD2009&DbCode=CJFQ&pr= 魏金凤,段香芝,许东利,曾小兰.萤石化学成分分析方法探讨[J].非金属矿,2000,23(2): 17,37. http://www.cnki.com.cn/Article/CJFDTOTAL-FJSK200002006.htm 王蕾,何红蓼,李冰.碱熔沉淀-等离子体质谱法测定地质样品中的多元素[J].岩矿测试,2003,22(2): 86-92. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20030225&flag=1 李艳玲,熊采华,黄慧萍,陶德刚,方金东.基体分离-电感耦合等离子体质谱测定重晶石中超痕量稀土元素[J].岩矿测试,2005,24(2): 87-92. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20050225&flag=1 周国兴,刘玺祥,崔德松.碱熔ICP-MS法测定岩石样品中稀土等28种金属元素[J].质谱学报,2010,31(2): 120-124. http://epub.cnki.net/kns/detail/detail.aspx?QueryID=4&CurRec=1&recid=&FileName=ZPXB201002014&DbName=CJFD2010&DbCode=CJFQ&pr= 黄一帆,林文业,黄文琦,龙智翔.ICP-MS法测定土壤中十五种稀土元素[J].广东微量元素科学,2008,15(11): 46-49. doi: 10.3969/j.issn.1006-446X.2008.11.011 陈永欣,黎香荣,韦新红,吕泽厄,谢毓群,蔡维专.微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素[J].岩矿测试,2011,30(5): 560-565. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20110507&flag=1 黄凤妹.微波消解-电感耦合等离子体质谱法检测土壤中16种稀土元素[J].中国无机分析化学,2012,2(1): 43-46. http://epub.cnki.net/kns/detail/detail.aspx?QueryID=12&CurRec=1&recid=&FileName=WJFX201201011&DbName=CJFD2012&DbCode=CJFQ&pr= 何红蓼,李冰,韩丽荣,孙德忠,王淑贤,李松.封闭压力酸溶ICP-MS法分析地质样品中47个元素的评价[J].分析试验室,2002,21(5): 8-12. http://epub.cnki.net/kns/detail/detail.aspx?QueryID=16&CurRec=1&recid=&FileName=FXSY200205003&DbName=CJFD2002&DbCode=CJFQ&pr= 张保科,温宏利,王蕾,马生凤,巩爱华.封闭压力酸溶-盐酸提取-电感耦合等离子体质谱法测定地质样品中的多元素[J].岩矿测试,2011,30(6): 737-744. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20110615&flag=1 刘晔,第五春荣,柳小明,袁洪林.密闭高压高温溶样ICP-MS测定56种国家地质标准物质中的36种痕量元素——对部分元素参考值修正和定值的探讨[J].岩矿测试,2013,32(2): 221-228. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20130207&flag=1 王君玉,吴葆存,李志伟,韩敏,钟莅湘.敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素[J].岩矿测试,2011,30(4): 440-445. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20110409&flag=1 岩石矿物分析编委会.岩石矿物分析(第四版 第二分册)[M].北京: 地质出版社,2011: 349-350. 陈福强,何光涛,李其英.地质样品中微-痕量稀土元素ICP-MS测定[J].广州化工,2011,39(14): 115-117. doi: 10.3969/j.issn.1001-9677.2011.14.042 Smirnova E V, Fedorova I N, Sandimirova G P, Petrov L L, Balbekina N G, Lozhkin V I. Determination of rare earth elements in black shales by inductively coupled plasma mass spectrometry [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003,58(2): 329-340. doi: 10.1016/S0584-8547(02)00152-0
王初丹,侯明.电感耦合等离子体质谱法测定地质样品中的稀土、钍元素[J].桂林理工大学学报,2011,31(3): 454-456. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201103025.htm
计量
- 文章访问数: 3420
- HTML全文浏览量: 285
- PDF下载量: 51