• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

焦家金矿选厂旋流器溢流产品工艺矿物学分析

胡海祥, 范作鹏, 牛桂强, 刘洪澜, 刘海龙, 王攀志

胡海祥, 范作鹏, 牛桂强, 刘洪澜, 刘海龙, 王攀志. 焦家金矿选厂旋流器溢流产品工艺矿物学分析[J]. 岩矿测试, 2014, 33(4): 535-544.
引用本文: 胡海祥, 范作鹏, 牛桂强, 刘洪澜, 刘海龙, 王攀志. 焦家金矿选厂旋流器溢流产品工艺矿物学分析[J]. 岩矿测试, 2014, 33(4): 535-544.
Hai-xiang HU, Zuo-peng FAN, Gui-qiang NIU, Hong-lan LIU, Hai-long LIU, Pan-zhi WANG. The Mineralogy Characteristics of Overflow Product from Hydrocyclone in the Jiaojia Gold Mine[J]. Rock and Mineral Analysis, 2014, 33(4): 535-544.
Citation: Hai-xiang HU, Zuo-peng FAN, Gui-qiang NIU, Hong-lan LIU, Hai-long LIU, Pan-zhi WANG. The Mineralogy Characteristics of Overflow Product from Hydrocyclone in the Jiaojia Gold Mine[J]. Rock and Mineral Analysis, 2014, 33(4): 535-544.

焦家金矿选厂旋流器溢流产品工艺矿物学分析

基金项目: 

江西省教育厅青年基金项目 GJJ12362

江西省教育厅青年基金项目(GJJ12362);山东省博士后创新基金项目(201302013);山东黄金集团有限公司博士后科研项目(BSH-2012-06);江西理工大学校级科研基金重点项目(NSFJ2014-K04)

江西理工大学校级科研基金重点项目 NSFJ2014-K04

山东黄金集团有限公司博士后科研项目 BSH-2012-06

山东省博士后创新基金项目 201302013

详细信息
    作者简介:

    胡海祥,博士,副教授,研究方向为工艺矿物学及磨矿分级与浮选。E-mail:hhxok@qq.com

  • 中图分类号: P578.11;O614.123;P575

The Mineralogy Characteristics of Overflow Product from Hydrocyclone in the Jiaojia Gold Mine

  • 摘要: 焦家金矿选矿厂目前的日处理量达12000吨/天,金回收率92%。选矿厂已将破碎段产品用双螺旋分级机洗矿,洗矿的矿泥产率为7%,矿泥单独浮选,整体工艺初步实现了泥砂分选。为进一步提高选金回收率,流程改造拟将磨矿-浮选系统的旋流器溢流产品二次分级,分级的次生矿泥与洗矿矿泥进入矿泥浮选系统一并浮选,为了掌握旋流器溢流产品的性质,本文采用偏光反光两用显微镜、扫描电镜、X射线衍射仪、红外光谱和差热分析等手段进行研究。研究结果表明矿物种类主要是金属硫化物和脉石矿物,金属硫化物约占4%,脉石约占96%,金属硫化物主要是黄铁矿(70.17%)和黄铜矿(16.27%),脉石主要是石英(47.12%)和长石(15.90%)。黄铁矿和石英是重要的载金矿物,黄铁矿含金65%,石英含金20%。颗粒越细,单体颗粒含量越高,连生体颗粒含量越少;颗粒越细,黄铁矿含量越高,Au、Ag分布率越高,-0.037 mm粒级中黄铁矿含量达到73.58%,Au、Ag占到47.99%和56.60%,金分配率与黄铁矿含量成正相关;粗粒级中未发现金颗粒,中等粒级中次显微金约占30%,细粒级中次显微金约40%,金粒径在2~10 μm范围内;金形状有三角形、棱角状、小粒状、不规则状等。红外光谱与差热曲线研究发现颗粒越细矿物成分趋于复杂。研究结论为磨矿分级产生的次生矿泥浮选调控提供了依据,对矿泥浮选的药剂制度调控、浮选流程确定等具有重要实际意义。

  • 激光拉曼光谱分析作为一种非破坏性的分析方法,可以快速方便地对单个包裹体进行定性、半定量分析,现已成为流体包裹体研究的基本工具之一[1, 2]。近年来随着仪器精度的提高以及科研的需要,激光拉曼针对包裹体的定量分析的研究发展迅速。定量分析主要涉及包裹体的气[3, 4, 5, 6, 7]、液相[8, 9, 10, 11, 12, 13, 14, 15]以及同位素[16, 17, 18, 19, 20]等化学组成分析以及包裹体的内压[21, 22, 23, 24]、密度[25, 26]、有机质热成熟度[27, 28]等物理参数的获取。而作为包裹体重要成分的各种无机和有机气相组分,由于其一般具有较强的拉曼活性,在拉曼谱图上表现出尖锐而特征的谱峰,因此被认为是进行拉曼定量分析的重要研究对象[29]。国内外学者对包裹体中常见的C-H-O-N-S体系的气相组分开展了比较广泛的定量研究[3, 4, 5, 6, 7],取得了显著的成果。由于气相组分的拉曼定量分析与分子性质、温度、压力、仪器性能等诸多因素有关[3, 4, 29],造成前人结果存在比较明显的差异,难以相互借用,如李维华等[5]与Wopenka等[30]测定的SO2的定量因子有近5倍的差别。因此在进行气相成分的定量分析之前,需要利用一系列混合气体标样对仪器进行标定。前人一般使用商用钢瓶装混合气进行仪器标定[3, 4, 5],虽然上述标样易于购置、配比准确,却存在气体组成单一无法调节、费用高、需要经常更换钢瓶等缺点。如按10%的梯度对10%~90%的两种气体的混合物进行标定,需要购置9瓶钢瓶气轮换使用,并且钢瓶气一定的使用期限,超过期限需要重新购置。针对上述不足,本文提出了一种在线配置不同浓度和压力条件下混合气体标样的方法,以实现快速准确地对激光拉曼探针进行标定及测定气体拉曼定量因子的研究目的。

    为了实现混合气体标样的制备,本次研究搭建了一套在线标样制备装置(图 1)。该装置可以同时接入三路钢瓶气体,每路钢瓶气分别连接一个减压阀用于控制气体的输出压力;利用带有刻度和活塞的体积转移器量取实验所需体积的气体并将量取的气体注入高压容器中进行混合;增压泵用于对高压容器中的混合气体进行增压;真空泵用于对装置进行抽真空;装置的输出端与石英毛细管相连接;管路中安装有真空表以及压力表用于监控系统的真空度以及线路中气体的压力值;线路中还设有两个排气孔用于排气及管路清洗。

    图  1  在线标样制备装置简图
    Figure  1.  Schematic diagram of the gas mixtures system

    实验所用的钢瓶气为高纯气体,浓度≥99.999%;毛细管规格为内径0.1 mm,外径0.3 mm,表面涂有一层聚酰亚胺保护膜,厚度约0.025 mm(美国Polymicro Technologies公司)。激光拉曼分析的仪器为Renishaw Invia型激光拉曼光谱仪(英国Renishaw公司),使用Ar+激光器,波长为514 nm,光谱分辨率为2 cm-1

    在线混合气体标样制备的实验步骤如下。

    (1) 打开阀门1~6、8、10,关闭阀门7、9、11,打开真空泵对管路、体积转移器及高压容器抽真空,待真空表读数≤10Pa时,关闭真空泵。

    (2) 关闭阀门2~4、6、8、10,打开气瓶1的减压阀并调节至实验所需压力值,用体积转移器量取实验所需气体体积。

    (3) 关闭阀门1、5、气瓶1的减压阀,打开阀门6、8,将体积转移器中的气体转移至高压容器中。

    (4) 关闭阀门8,打开阀门1~6、8、10,对系统抽真空,待真空表读数≤10Pa时,关闭真空泵。

    (5) 重复步骤(2)~(4),量取实验所需体积及压力条件下的气体2并注入到高压容器中,使气体1和2充分混合。

    (6) 关闭阀门6,打开阀门8、11,利用高压容器中的混合气体对管路进行清洗。

    (7) 关闭阀门11,打开阀门9,打开电动增压泵,对高压容器中的气体进行增压,待达到实验所需的气体压力时,停止增压并进行激光拉曼分析,然后继续增压至下一个压力点并进行拉曼分析。

    为了验证制样方法的准确性及重复性,将本研究制备的70% N2+30% CO2的在线标样与购置于大连大特气体公司生产的同等浓度的商用标样,在10 MPa条件下分别进行了激光拉曼分析。结果表明,本次研究制备的混合气体与商用钢瓶装标样具有相似的峰形(图 2)。利用英国Renishaw公司出品的Wire3.0软件对上述拉曼谱图进行了分析,结果表明本方法制备的混合气体与商用标样具有相似的CO2与N2的相对峰高以及相对峰面积值,其相对误差小于4%,并具有较好的重现性,能够满足实验要求。

    图  2  商用标样与在线样品拉曼谱图
    Figure  2.  The Raman spectra of commercial standard sample and on-line mixing sample

    在测定单个包裹体气体组成方面,国内外多沿用“相对拉曼定量因子”的方法,即通常将N2的定量因子定为1.00,其他气体与N2进行比较,得到相对拉曼定量因子[3, 4]。本次研究分别对拉曼峰面积及峰高计算了相对拉曼定量因子,具体公式如下:

    式中,Ag为气体g的拉曼峰面积;AN2为N2的拉曼峰面积;Cg为气体g的摩尔分数;CN2为N2的摩尔分数;Hg为气体g的拉曼峰高;HN2为N2的拉曼峰高;Fgr代表以峰面积为参考值时气体g相对于N2的拉曼定量因子;Ggr代表以峰高为参考值时气体g相对于N2的拉曼定量因子。

    为了测定CO2以及CH4的相对拉曼定量因子,在室温、5 MPa和10 MPa压力条件下,分别制备了N2摩尔分数为30%、50%和70%的N2-CO2混合气体标样以及N2-CH4混合气体标样。

    在上述标样的激光拉曼谱图(图 3)中能清晰地辨识出N2、CO2以及CH4的拉曼特征峰。气体的拉曼峰强度随浓度以及压力的增加而增加,信噪比随着压力由5 MPa增加到10 MPa增大约一倍。

    图  3  N2-CO2以及N2-CH4在线混合气体拉曼谱图
    Figure  3.  The Raman spectra of N2-CO2 and N2-CH4 on-line gas mixtures

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    图  4  CH4-N2拉曼参数相关图解
    Figure  4.  Relationship between CCH4/CN2 and ACH4/AN2

    虽然CO2在1286 cm-1附近以及1386 cm-1附近出现两个峰值,但是由于1286 cm-1附近的峰强度要小于1386 cm-1附近峰强度。因此本文仅针对CO2在1386 cm-1附近的峰计算了相对拉曼定量因子。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    图  5  CO2-N2拉曼参数相关图解
    Figure  5.  Relationship between CCO2/CN2 and ACO2/AN2

    求得CH4和CO2相对拉曼定量因子之后,便可以对包裹体中CH4和CO2的相对含量进行计算,具体计算公式如下:

    选取四川金沙岩孔剖面,震旦系的藻云岩样品进行应用研究。该样品溶洞发育,被后期亮晶白云石充填。溶洞充填的亮晶白云石中发育气液两相盐水包裹体。选取个体较大并且靠近样品表面的包裹体,对其气泡进行激光拉曼分析,结果表明包裹体的气泡主要由CH4和CO2组成(图 6)。

    图  6  包裹体拉曼光谱分析结果
    Figure  6.  The Raman spectra of gas bubble in fluid inclusions

    利用wire3.0对图 6中两个包裹体的拉曼相关参数进行求解,并分别利用公式(3) 和(4) 对包裹体a和b中的CH4和CO2摩尔浓度进行了计算,得到包裹体中CH4的摩尔分数为27.60%~31.63%,CO2的摩尔分数为68.37%~72.40%(表 1)。上述结果表明,利用本文所求得的拉曼定量因子FG所得到计算的结果基本一致(两者的绝对偏差在2.5%以内);包裹体a和b气相组成较接近,可能为同期捕获的产物。

    表  1  包裹体样品分析结果
    Table  1.  The analytical composition of gas in fluid inclusions
    包裹体 ACO2 HCO2 ACH4 HCH4 CCH4(%) CCO2(%)
    据公式(3) 据公式(4) 据公式(3) 据公式(4)
    包裹体a 3461.54 594.541 17891.2 4115.24 31.63 31.25 68.37 68.75
    包裹体b 3137.87 732.481 14694.8 4251.27 29.54 27.60 70.46 72.40
    下载: 导出CSV 
    | 显示表格

    本文利用自主搭建的在线标样制备装置,对N2-CH4以及N2-CO2进行在线混合增压,制备了N2摩尔浓度为30%、50%和70%,压力为5 MPa和10 MPa的N2-CH4以及N2-CO2混合气体在线标样。通过与商用混合钢瓶气体标样对比表明,该方法所使用的装置操作简单,制备的混合气体具有较高的准确性及重现性,能够方便、准确地对拉曼光谱仪进行标定,实现了不同压力和浓度条件下气体的相对拉曼定量因子的测定。通过对CH4及CO2的相对定量因子测定表明,气体压力在5~10 MPa的范围时,定量因子不受压力变化的影响,为固定值。地质样品应用表明,本方法可以方便、灵活、准确地按任意比例将两瓶及两瓶以上纯气体钢瓶样品进行混合及增压,弥补了商用钢瓶装混合气体标样费用高、气体组成单一固定等不足。

    由于本次研究仅在5 MPa和10 MPa两个压力点进行了分析,因此对于相对定量因子在 < 5 MPa及 > 10 MPa压力条件下的变化规律还有待于进一步研究。另外由于缺乏已知气体组成的人工合成包裹体标样,对于本方法在包裹体应用中的误差范围还有待于进一步研究。

  • 图  1   各粒级中金属硫化物矿物分配

    Figure  1.   The distribution of metal sulfide minerals in different particle sizes

    图  2   各粒级中脉石矿物分配

    Figure  2.   The distribution of gangue minerals in different particle sizes

    图  3   0.104~0.074 mm粒级中不同形状的黄铁矿单体显微镜图

    a—长条形黄铁矿单体;b—豆状黄铁矿单体;c—扁豆形黄铁矿单体;d—多边形黄铁矿单体。

    Figure  3.   The microscopes of different shapes of pyrite with 0.104-0.074 mm particle sizes

    图  4   0.074~0.043 mm粒级中不同形状的黄铁矿单体显微镜图

    a—长条形黄铁矿单体;b—多边形黄铁矿单体;c—类三角状黄铁矿单体;d—颗粒状黄铁矿单体。

    Figure  4.   The microscopes of different shapes of pyrite with 0.074-0.043 mm particle sizes

    图  5   0.043~0.037 mm粒级中不同形状的黄铁矿显微镜图

    a—颗粒状黄铁矿单体;b—多边形黄铁矿单体;c—扁豆形黄铁矿单体;d—三角形黄铁矿单体。

    Figure  5.   The different shapes of pyrite in 0.043~0.037 mm particle sizes

    图  6   -0.037 mm粒级不同形状黄铁矿单体扫描电镜图

    a—长条状黄铁矿单体;b—多边形黄铁矿单体;c—三角形黄铁矿单体;d—不规则黄铁矿单体。

    Figure  6.   The scanning electroscopes of different shapes of pyrite wtth -0.037 mm particle sizes

    图  7   各粒级红外光谱图

    (a)粒级0.104~0.074 mm;(b)粒级0.074~0.043 mm;(c)粒级0.043~0.037 mm;(d)粒级-0.037 mm。

    Figure  7.   The infrared spectra of different particles sizes

    图  8   各粒级颗粒的差热曲线

    (a)粒级0.104~0.074 mm;(b)粒级0.074~0.043 mm;(c)粒级0.043~0.037 mm;(d)粒级-0.037 mm。

    Figure  8.   The differential thermal analysis of different particle sizes

    表  1   金属硫化物矿物组成

    Table  1   The mineral composition of metal sulfides

    矿物组成含量(%)矿物组成含量(%)
    黄铁矿70.17辉钼矿1.02
    黄铜矿16.27辉铋矿0.97
    闪锌矿6.25其他3.01
    方铅矿2.31合计100
    下载: 导出CSV

    表  2   脉石矿物组成

    Table  2   The mineral composition of gangue

    矿物组成含量(%)矿物组成含量(%)
    石英47.12绿泥石0.92
    斜长石8.65石膏4.85
    微斜长石7.25其他2.86
    绢云母8.02合计100
    方解石20.33
    下载: 导出CSV

    表  3   各粒级及其产率

    Table  3   The various particle sizes and their yield

    粒级(mm)产率(%)粒级(mm)产率(%)
    +0.1043.2530.043~0.0378.148
    0.104~0.07417.718-0.03737.625
    0.074~0.04333.256
    下载: 导出CSV

    表  4   各粒级颗粒中单体和连生体情况

    Table  4   The monomer and conjuncture features in different particle sizes

    粒级(mm)颗粒类型显微镜尺度含量(%)电镜尺度含量(%)颗粒成分
    0.104~0.074 单体87.4871①黄铁矿、黄铜矿、磁黄铁矿;②石英、长石、方解石、绢云母;③石膏;④其他
    连生体12.5229①石英-黄铁矿;②石英-黄铜矿;③黄铜矿-闪锌矿;④黄铁矿-黄铜矿;⑤其他矿物连生体
    0.074~0.043 单体92.0982①黄铁矿、黄铜矿、磁黄铁矿;②石英、长石、方解石、绢云母③沸石、石膏、白榴石④其他
    连生体7.9118①石英-黄铁矿;②石英-黄铜矿;③黄铜矿-闪锌矿;④黄铁矿-黄铜矿;⑤其他矿物连生体
    0.043~0.037 单体95.0288①黄铁矿、磁黄铁矿;②石英、钠长石、微斜长石、钠钙长石、绢云母③沸石、白榴石、石膏;④其他矿物连生体
    连生体4.9812①石英-黄铁矿;②石英-黄铜矿;③黄铜矿-闪锌矿;④黄铜矿-黄铁矿;⑤其他矿物连生体
    -0.037 单体98.2092①石英、斜长石(钠长石和钠钙长石);②微斜长石、方解石、绢云母;③沸石、石膏、白榴石;④黄铁矿、黄铜矿、方铅矿、闪锌矿;⑤其他矿物连生体
    连生体1.808①硫化物-石英;②硫化物-硫化物;③黄铁矿-黄铜矿;④其他矿物连生体
    下载: 导出CSV

    表  5   各粒级金银分布

    Table  5   The gold and silver distribution in different particle sizes

    项目 各粒级金银分布
    0.104~0.074 mm0.074~0.043 mm0.043~0.037 mm-0.037 mm合计
    含量比例(%)17.71833.2568.14837.62596.747
    Au品位(μg/g)1.442.212.562.942.382
    Ag品位(μg/g)3.224.125.188.195.627
    Au分布率(%)11.0731.899.0547.99100
    Ag分布率(%)10.4825.177.7556.60100
    下载: 导出CSV

    表  6   Au的分布与黄铁矿含量关系

    Table  6   The distribution relationship betweent Au and pyrite

    项目 各粒级金分布与黄铁矿含量
    0.104~0.074mm0.074~0.043mm0.043~0.037mm-0.037mm
    粒级含量比例(%)17.7233.2568.14837.625
    黄铁矿含量(%)66.0268.5270.2173.58
    Au品位(μg/g)1.442.212.562.94
    Au分布率(%)11.0731.899.0547.99
    下载: 导出CSV

    表  7   各粒级中金颗粒特性

    Table  7   Particle features of gold in different particle sizes

    金类型项目不同粒级中金颗粒的特性
    0.074~0.043 mm0.043~0.037 mm-0.037 mm
    单体金 颗粒数(颗)53103156
    特征金黄色光泽金黄色光泽金黄色光泽
    粒径(μm)105~72~6
    形状棱角状棱角状小粒状
    连生金 颗粒数(颗)1055251
    连生矿物脉石脉石脉石
    特征金黄色金黄色金黄色
    形状棱角状小粒状小粒状
    金颗粒数合计(520颗)158155207
    下载: 导出CSV
  • 董金奎,杨洪英.山东焦家金矿深部载金矿物的研究[J].东北大学学报(自然科学版),2013,59(6):867-870. http://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201306026.htm

    Yang H Y, Wang S H, Song X L, Pan H D, Ma P C.Gold occurrence of Jiaojia gold mine in Shandong Province[J].Transactions of Nonferrous Metals Society of China,2011,21(9):2072-2077. doi: 10.1016/S1003-6326(11)60975-8

    Chen Y J, Irajno F P, Lai Yong.Metallogenic time and tectonic setting of the Jiaodong gold province, eastern China [J].Acta Petrologica Sinica,2004,20(4):907-922.

    Mao J W, Wang Y T, Zhang Z H, Yu J J, Niu B G.Geodynamic settings of Mesozoic large-scale minerali-zation in North China and adjacent areas—Implication from the highly precise and accurate ages of metal deposits [J].Science in China Series D: Earth Sciences,2003,46(5):838-851.

    Sun J G. Relations of gold abundance in geologic bodies to genesis of gold deposits, Jiaodong [J].Contributions to Geology and Mineral Resources Research,1999,14 (2):43-54.

    刘润田,邱俊刚,张忠辉,高海峰,李纪玉.焦家金矿低品位矿石回收设计与应用[J].黄金科学技术,2010,23(6):54-57. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201006023.htm
    李茂林,崔瑞,王非,向文娟,曾凡霞.阶段磨选磨矿粒度划分的理论分析与计算[J].矿冶工程,2011,31(1):27-29,32. http://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201101010.htm
    彭艳华,彭光菊,贾利攀,周卫宁.湖南宝山铅锌矿西部矿带银的工艺矿物学研究[J].岩矿测试,2013,32(5):729-737. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201305012.htm
    焦淑静,韩辉,翁庆萍,杨峰,姜大强,崔立山.页岩孔隙结构扫描电镜分析方法研究[J].电子显微学报,2012,31(5):432-436. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJS201607150.htm
    黄瑢,赖潇静,秦善,巫翔,李延春,刘景,杨科.同步辐射X射线衍射研究利蛇纹石的压缩性[J].核技术,2012,35(11):801-805. http://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201211001.htm
    颜文昌,袁鹏,谭道永,吴大清,刘冬.富镁与贫镁坡缕石的红外光谱[J].硅酸盐学报,2013,57(1):89-95. doi: 10.7521/j.issn.0454-5648.2013.01.18
    霍小旭,王丽娟,廖立兵.新疆尉犁蛭石的物相组成[J].硅酸盐学报,2011,55(9):1517-1522. http://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201109027.htm

    Wilson M, Frisse J.Clay Mineralogy: Spectroscopic and Chemical Determinative Methods [M].London: Chapman & Hall Oxford,1994.

    杨南如.C—S—H凝胶及其研究方法[J].硅酸盐通报,2003,24(2):46-52.
    刘高魁,彭文世.黄土中方解石、长石和石英的红外光谱定量测定[J].矿物学报,1983,3(1):63-67. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198301009.htm
    陈国玺.我国某矿田硫化物和硫盐类矿物差热失重分析的研究[J].地球化学,1976,4(3):201-212. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX197603005.htm
    洪汉烈,李菲,牟善彬,陈文怡.一种绢云母样品的综合鉴定分析[J].岩矿测试,2002,21(1):68-70. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200201016.htm
    顾长光.碳酸盐矿物热分解机理的研究[J].矿物学报,1990,10(3):266-272. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199003011.htm
    辽宁省地质局中心实验室.矿物差热分析[M].北京:地质出版社,1975:101-106.
图(8)  /  表(7)
计量
  • 文章访问数:  1082
  • HTML全文浏览量:  278
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-08
  • 录用日期:  2014-01-23
  • 发布日期:  2014-06-30

目录

/

返回文章
返回