Simultaneous Analysis of Organochlorinated Pesticides and Polychlorinated Biphenyls from Animal Tissue using Gas Chromatography-Mass Spectrometry Combined with Accelerated Solvent Extraction
-
摘要: 动物组织样品油脂含量大、干扰杂质多,对其中低含量有机氯农药及多氯联苯的分析会造成较大程度的影响。针对动物组织样品基质复杂的特点,本文以二氯甲烷-丙酮(体积比为1:1)的溶剂体系,采用加速溶剂萃取技术对样品进行提取,在提取过程中尽量减少脂肪的共提出,然后采用凝胶渗透色谱技术去除样品中的大部分油脂,再结合弗罗里硅土为填料的固相萃取方法对样品进一步净化,能够达到充分去除油脂和小分子杂质的目的。采用气相色谱-质谱分析17种有机氯农药及7种指示性多氯联苯,各化合物的回收率在81.6%~113.4%之间,检出限在1.02~3.59 ng/g之间,技术指标优于部分国家标准。本方法改进了动物样品的净化效果,建立了凝胶渗透色谱结合固相萃取技术的净化方法,达到了样品快速自动提取、溶剂用量少、基质净化彻底的目的,降低了方法检出限,能够满足快速、准确检测动物组织中低含量持久性有机污染物的要求。Abstract:
The majority of fat and impurities in animal tissues influence the analysis result for low concentration organic compounds. To overcome this issue, the animal sample was extracted by accelerated solvent extraction (ASE) with methylene chloride/acetone (V:V=1:1), which reduced the co-extraction lipids during the extraction process. Gel Permeation Chromatography (GPC) combined with solid phase extraction (SPE) was applied to remove lipids from the sample solution. The GPC can remove most of the macromolecular lipids in samples, and the SPE with florisil can sufficiently reduce fat and small molecule impurity. The accuracy and sensitivity of the method can be improved by this pretreatment process. The compounds, including 17 organochlorinated pesticides and 7 indicator polychlorinated biphenyls in animal tissue, can be simultaneously analysed by Gas Chromatography Mass Spectrometry. The recoveries of 25 of the target compounds were in the range of 81.6%-113.4% and the method detection limits for dry samples were 1.02-3.59 ng/g. These results were superior to those of the national standard. This method improved the purification effect of animal samples, reduced the method detection limit, and enhanced the accuracy. It can be used to quickly and accurately determine the low content of persistent organic pollutants in animals.
-
矿产品堆场由于堆存量大、堆放时间久、堆存条件简陋,且土壤具有吸附富集作用,造成土壤中重金属含量较高,危害人类健康[1, 2, 3]。环境中重金属的迁移性主要取决于它们的化学形态或元素的结合形式,许多研究表明:只用总量分析重金属元素在环境中的活性、生物可用性、毒性等生态效应是不确切的[4, 5, 6],对重金属元素的研究不仅要关注其总量,更要关注其形态分量,特别是有效态和可交换态[7, 8, 9]。
为了研究土壤中重金属化学形态,国内外学者大多采用单独或连续提取法,其中应用最广泛的是Tessier五步提取法[10],然而该方法存在分析结果的可比性差,无法进行数据的验证和比对等缺点。为了克服以上缺点,欧共体标准局提出了BCR连续提取法[11],将土壤重金属化学形态划分为酸可交换态、可还原态和可氧化态,在后来的实践应用中,Rauret等[12]又在该方案的基础上进一步修正,提出了改进的BCR顺序提取方案,目前该方法已被广泛应用于底泥和土壤样品的金属形态分析[13, 14, 15, 16]。本实验采用改进的BCR顺序提取方案[17],结合Cd、As、Pb的物理化学性质,将港口矿产品堆场土壤中Cd、As、Pb分为可交换态、可还原态、可氧化态和残渣态,确定了电感耦合等离子体发射光谱法(ICP-AES)测定Cd、As、Pb的最佳测试条件,将改进的BCR法应用于堆场土壤样品中Cd、As、Pb的形态分析。
1. 实验部分
1.1 仪器及工作条件
Prodigy全谱直读原子发射光谱仪(美国利曼公司)。工作条件:功率1.1 kW;辅助气流量0.2 L/min;载气压力221 kPa;冷却气流量18 L/min;泵速1.2 mL/min;进样时间40 s;读数时间30 s。
THZ-82水浴恒温振荡器(常州市恒久仪器公司)。
L-550台式离心机(湖南湘仪公司)。
1.2 主要试剂
湖底沉积物重金属顺序提取形态分析标准物质GBW 07436(中国地质科学院地球物理地球化学勘查研究所)。
镉、砷、铅标准储备液(国家钢铁材料测试中心冶金部钢铁研究总部):1.000 mg/mL,使用时按要求稀释成标准溶液。
冰乙酸、盐酸羟胺、硝酸、双氧水、醋酸铵、醋酸钠等试剂均为分析纯,实验用水为去离子水。
1.3 样品采集
在确定的矿产品堆场采样点上,先用小土铲去掉表层覆盖有矿物的3 cm土壤,然后倾斜向下去一片片的土壤,采取约1 kg的土壤试样。样品风干后,用玻璃棒压碎,过841 μm尼龙筛,将筛下的样品置于研钵中研磨后,再过147 μm尼龙筛,储存于塑料瓶中备用。
1.4 样品中重金属总量测定方法
称取试样1.00 g于聚四氟乙烯烧杯中,加入30 mL王水,低温消解30 min,再加入2 mL氢氟酸,加热至白烟冒尽,冷却后,加入10 mL双氧水,蒸发至约5 mL,冷却至室温转移至100 mL容量瓶中,用ICP-AES测定Cd、As、Pb含量[18]。
1.5 样品中重金属形态测定方法
1.5.1 改进的BCR连续提取过程
按照改进的BCR连续提取法进行提取,提取过程如下。
第一步(可交换态):称取土壤试样1.0 g于100 mL塑料烧杯中,加20 mL 4 mol/L的乙酸,30℃恒温水浴中振荡2 h,取下,于离心机上4000 r/min离心20 min。上层清夜经0.45 μm微孔滤膜过滤,用ICP-AES测定可交换态。
第二步(可还原态):向第一步提取后的残余物中加入20 mL 0.4 mol/L盐酸羟胺溶液(盐酸羟胺溶液用硝酸调节pH=2),30℃恒温水浴中振荡6 h,离心分离。其余操作同第一步,测定可交换态。
第三步(可氧化态):向第二步提取后的残余物中加入10 mL水和10 mL 30%的过氧化氢溶液(30%的双氧水溶液用硝酸溶液调pH值至2~3),室温振荡浸取1 h,后于85℃水浴中振荡2 h,冷却后加入10 mL 1 mol/L的乙酸铵溶液,持续震荡1 h,离心分离取其上清液。其余操作同第一步,测定可氧化态。
1.5.2 混合酸消解测定残渣态
将经过第三步提取后的残渣置于100 mL聚四氟乙烯烧杯中,加入10 mL浓硝酸和5 mL氢氟酸,加热煮沸10 min后,加入2.5 mL高氯酸,电热板低温加热至冒浓白烟,加盖,使黑色有机碳化物分解。加热至近干后再加入2.5 mL高氯酸,蒸至近干,取下坩埚,冷却后,加入25 mL 2%的稀硝酸并加热,使白色残渣溶解,最终消解后的样品定容至50 mL或100 mL容量瓶,用ICP-AES测定残渣晶格结合态。
2. 结果与讨论
2.1 ICP-AES测定干扰的消除
ICP-AES测定样品时主要存在基体干扰和背景干扰。土壤样品中含有大量的Fe、Al、K、Na、Ca、Mg等基体元素,为此,本实验采用了基体匹配法来消除基体干扰,具体做法是先测定样品基体元素的浓度,后在Cd和Pb的浓度范围为0~25.0 mg/L、As的浓度范围为0~50.0 mg/L的系列标准溶液中加入基体元素的参考浓度;同时在配制各系列标准溶液时,用相应的提取剂溶液来定容,以便使待测样品溶液与标准溶液的基体大体保持一致,从而消除基体干扰。
ICP-AES测试中的背景干扰主要来自非分析物自身的发射光产生的干扰。本实验通过仪器自带软件,采用离峰扣背景法消除此干扰。具体方法:分别对空白溶液、标准溶液及代表性的待测溶液进行波长扫描,观察扫描得到的叠加峰形图,本实验对Cd和Pb进行了单侧的背景扣除,对As进行了双侧的背景扣除。
2.2 方法的线性方程、检出限和精密度
用1.0 mg/mL的镉、砷、铅标准储备液配制标准曲线,使得Cd和Pb的浓度范围为0~25.0 mg/L,As的浓度范围为0~50.0 mg/L,通过仪器测试混合标准溶液,测定不同元素的线性方程,如表 1所示,各元素的相关系数为0.99996~0.99999。
表 1 标准工作曲线Table 1. Calibration curves of elements
待测元素线性范围
ρ/(mg·L-1)线性方程 相关系数 Cd 0~25.0 y=53578x-0.5997 0.99999 As 0~50.0 y=1531.7x+7.2654 0.99996 Pb 0~25.0 y=3125x+21.54 0.99998 按各形态的浸取流程,分别做11次空白试验,以测定值的3倍标准偏差,并考虑试样的称样量及稀释倍数作为方法的检出限。表 2结果显示,各形态测试方法的检出限(3σ)Cd为0.026~0.147 μg/g,As为0.015~0.219 μg/g,Pb为0.017~0.108 μg/g。
表 2 方法检出限Table 2. Detection limits of the method元素形态 检出限/(μg·g-1) Cd As Pb 可交换态 0.023 0.015 0.017 可还原态 0.026 0.024 0.031 可氧化态 0.043 0.033 0.022 残渣态 0.147 0.219 0.108 取天津港口矿产品堆场土壤样品共3份,按各形态的提取流程分别进行6次提取实验,取其平均值。由表 3结果可见,Cd的相对标准偏差(RSD)在0.41%~7.31%之间,As的RSD在0.18%~4.99%之间,Pb的RSD在0.57% ~9.28%之间,表明该方法的精密度较好。
表 3 方法精密度Table 3. Precision tests of the method元素
形态样品
编号Cd As Pb w/(μg·g-1) RSD/% w/(μg·g-1) RSD/% w/(μg·g-1) RSD/% 可交
换态1 2.1 2.9 5.2 1.0 1.4 2.7 2 1.2 4.8 1.3 5.0 0.4 7.8 3 18.1 0.4 16.2 0.4 0.7 4.5 可还
原态1 4.5 2.1 7.1 0.4 0.5 5.6 2 0.9 3.7 1.6 3.7 0.3 9.3 3 3.6 1.7 21.2 0.2 0.6 5.2 可氧
化态1 1.1 5.2 89.4 0.2 15.9 0.6 2 4.7 0.8 15.7 0.6 1.9 3.7 3 8.3 0.4 199.1 1.2 4.5 2.4 残渣
态1 0.6 7.2 221.2 1.7 28.1 0.8 2 0.5 7.3 60.1 3.5 5.5 2.0 3 5.6 0.5 679.8 2.3 13.4 0.6 2.3 方法准确度
为验证三步提取过程中测试元素的化学存在形态的准确性,本实验采用了湖底沉积物形态分析标准物质GBW 07436进行了验证,将每次提取形态的测定值与标准值进行了比较,从表 4可以看出,Cd、As、Pb的测定值与标准值吻合较好。
表 4 改进BCR法分析GBW 07436标准物质中Cd、As、Pb的测定值与标准值(n=5)Table 4. Certified and determined contents of extractable contents of Cd, As and Pb in certified reference material of GBW 07436 (n=5)w/(μg·g-1)测试
元素可交换态 可还原态 可氧化态 测试值 标准值 测试值 标准值 测试值 标准值 Cd 1.53±0.25 1.46±0.20 0.94±0.07 0.86±0.03 0.15±0.02 0.12±0.03 As 0.23±0.04 0.25±0.03 1.52±0.05 1.48±0.04 0.47±0.04 0.44±0.03 Pb 1.61±0.22 1.58±0.17 48.4±4.6 49.1±5.5 5.1±0.34 5.4±0.23 2.4 堆场土壤样品分析
采用本方法分析6个堆场土壤样品中不同化学形态的Cd、As、Pb的含量,结合样品总量进行综合评价,结果见表 5。由表 5可以看出,样品各元素的各个浸取形态之和其总量基本相符,回收率在84.54%~102.88%,表明提取方法具有较好的可行性。
表 5 土壤样品Cd、As、Pb形态分析Table 5. Analytical results of Cd, As and Pb in soil samples样品
编号测试
元素w/(μg·g-1) 回收率
/%可交
换态可还
原态可氧
化态残渣态 四形态
之和总量 1 Cd 2.1 4.5 1.1 0.6 8.2 9.4 88.2 As 5.2 7.1 89.4 221.2 322.8 333.6 96.8 Pb 1.34 0.5 15.9 28.1 45.9 47.9 95.9 2 Cd 1.9 1.34 2.5 0.7 6.5 7.1 91.9 As 7.9 10.2 116.8 428.4 563.4 600.5 93.8 Pb 0.3 0.2 4.4 13.7 18.6 19.0 98.1 3 Cd 1.2 0.9 4.7 0.5 7.2 8.5 84.5 As 1.3 1.6 15.7 60.1 78.7 79.8 98.6 Pb 0.4 0.3 1.9 5.5 8.1 9.0 89.8 4 Cd 1.7 2.2 2.5 0.5 6.9 7.2 96.6 As 1.3 1.6 19.0 69.9 91.7 95.5 96.1 Pb 2.3 1.2 17.4 34.1 55.0 55.1 99.7 5 Cd 22.1 17.4 20.5 3.3 63.3 61.5 102.9 As 16.9 18.9 300.7 687.4 1024.0 1077.0 95.1 Pb 1.8 1.7 23.0 40.6 67.2 68.4 98.1 6 Cd 18.1 3.6 8.3 5.6 35.5 36.5 97.2 As 16.12 21.2 199.1 679.8 916.4 954.1 96.1 Pb 0.7 0.6 4.5 13.4 19.2 22.1 86.7 表 6为土壤中Cd、As、Pb四种化学形态含量占总量的百分比。由表 6可知,堆场土壤中Cd主要以可交换态、可还原态和可氧化态存在,占总量的70%~90%,残渣态占比很小。As和Pb以残渣态占绝对优势,占总量的60%以上,其他三种存在形态所占比例较小。在这四种化学形态中,当环境酸度发生变化时,可交换态的金属元素容易被生物体吸收,表明该形态的迁移性强;可还原态和可氧化态主要为氧化物、硫化物和有机物的结合态,可被生物间接吸收,其环境迁移型较弱;残渣态主要是硅酸盐类,迁移性很小并且很难被生物体吸收利用,因此,在自然条件下,Cd、As、Pb进入生物体中的几率取决于可交换态、可还原态、可氧化态含量的多少。由表 6提供的数据可见,矿产品堆场土壤中Cd、As、Pb的可交换态、可还原态和可氧化态三种形态总量顺序为Cd(79.40%~94.94%)>Pb(24.27%~37.73%)>As(22.89%~31.51%),其溶解性顺序Cd>Pb>As,表明堆场土壤中Cd易被生物吸收和累积。
表 6 堆场土壤中Cd、As、Pb各种化学形态所占比例Table 6. Species distribution of Cd, As and Pb in soil samples样品编号 测试元素 各形态含量的比例/% 可交换态 可还原态 可氧化态 残渣态 1 Cd 23.1 47.8 11.8 6.1 As 1.6 2.1 27.5 67.9 Pb 2.7 1.1 32.0 56.4 2 Cd 26.7 19.3 34.5 10.3 As 1.5 1.7 20.6 75.6 Pb 1.6 1.0 21.7 68.6 3 Cd 14.4 10.2 56.7 5.7 As 1.6 2.0 19.4 74.0 Pb 4.6 3.6 22.5 66.3 4 Cd 24.1 30.2 35.2 6.7 As 1.4 1.6 20.1 73.8 Pb 4.1 2.2 31.0 60.4 5 Cd 34.5 28.4 32.1 5.1 As 1.6 1.8 28.2 64.4 Pb 2.7 2.4 32. 57.5 6 Cd 47.8 9.7 21.9 14.9 As 1.7 2.2 21.1 72.0 Pb 3.3 2.6 22.1 64.9 3. 结语
本实验采用改进的BCR和ICP-AES提取测定了6个堆场土壤样品中不同化学形态的Cd、As、Pb的含量,并通过形态分析标准物质和回收率实验证明了改进的BCR三步提取程序的可行性,该提取和检测方法可以在全国各口岸矿产品堆场进行土壤重金属形态的调查,为受污染土壤治理提供了科学依据。
-
表 1 采用不同净化方法时样品提取液的脂肪含量
Table 1 The lipids content of the sample extracted by different clean-up methods
样品 脂肪含量(g) 脂肪含量 SEP 净化后的
脂肪含量GPC净化后的
脂肪含量GPC 结合SEP净化后的
脂肪含量猪肉 0.4048 0.3465 0.0032 0.0007 牛肉 0.4072 0.3759 0.0038 0.0006 鸡肉 0.1015 0.0801 0.0034 0.0007 鱼肉 0.2263 0.1903 0.0023 0.0006 表 2 25种化合物的GC-SIS-MS分析定性、定量离子及标准曲线相关系数
Table 2 The quantitative ions and qualitative ions of GC-SIS-MS and correlation coefficient of standard work curve for 25 compounds
化合物 时间窗口
(min)定量离子
(m/z)定性离子
(m/z)相关系数
(r2)α-HCH 10.00~10.51 217+219 183,217,219 0.999 六氯苯 284 284,286,288 0.998 β-HCH 10.51~11.41 217+219 183,217,219 0.998 γ-HCH 217+219 183,217,219 0.998 PCB 15 222 152,222,224 0.999 δ-HCH 217+219 183,217,219 0.994 PCB 28 11.41~12.08 256 186,256,258 0.997 七氯 272 235,237,272 0.999 PCB 52 12.08~12.43 292 220.222,292,294 0.998 艾氏剂 12.43~12.85 263 261,263,265,291,293, 0.999 环氧七氯 12.85~13.82 353 353,355,357 0.999 反式-氯丹 13.82~14.86 375 373,375,377 0.997 PCB 101 326 254,256,326,328 1.000 顺式-氯丹 13.82~14.86 375 373,375,377 0.999 p,p'-DDE 14.86~15.81 246 246,248316,318 0.999 狄氏剂 263 235,237, 263,265 0.997 异狄氏剂 15.81~17.21 263 245,261,263,265 0.997 PCB 118 326 254,256,326, 328 0.999 p,p'-DDD 237 165,235,237 0.999 o,p'-DDT 237 165,235,237 0.996 PCB 153 17.21~20.15 360 290,292,360,362 0.999 p,p'-DDT 237 165,235,237 0.999 PCB 138 360 290,292,360,362 1.000 PCB 180 20.15~22.71 396 359,361,394,396 0.998 灭蚁灵 22.71~23.98 272 235,237,272,274 0.999 替代物 时间窗口
(min)定量离子
(m/z)定性离子
(m/z)相关系数
(r2)TCMX
(2,4,5,6-
四氯间二甲苯)9.00~10.00 242 207,209,242,244 - PCB 103 12.85~13.82 326 254,256,326,328 - PCB 204 20.15~22.71 358 358,360,428,432 - 表 3 精密度、准确度及方法检出限
Table 3 The precision, accuracy and detection limits of the method
化合物 低添加浓度水平(n=7) 高添加浓度水平(n=7) 检出限
(ng/g)平均回收率
(%)RSD
(%)平均回收率
(%)RSD
(%)α-HCH 84.3 11.9 86.1 8.0 3.48 六氯苯 98.1 10.2 83.9 7.1 3.46 β-HCH 102.0 4.3 98.1 11.1 1.52 γ-HCH 85.7 6.8 88.1 10.0 2.01 PCB 15 93.7 6.5 98.6 7.6 1.06 δ-HCH 90.1 11.0 90.9 9.8 3.40 PCB 28 105.1 12.0 93.6 6.8 2.18 七氯 95.5 7.6 88.8 8.4 2.51 PCB 52 101.5 9.4 89.5 7.4 1.66 艾氏剂 99.3 7.1 81.6 3.2 2.45 环氧七氯 108.5 9.0 91.3 7.0 3.39 反式-氯丹 113.4 4.7 91.5 9.5 1.84 PCB 101 106.6 9.9 95.9 7.1 1.84 顺式-氯丹 106.8 5.8 91.6 6.7 2.14 p,p'-DDE 95.7 7.6 96.0 10.9 2.53 狄氏剂 92.5 4.5 96.9 9.8 3.59 异狄氏剂 106.3 3.0 88.2 5.8 2.24 PCB 118 98.5 6.0 101.8 7.1 1.02 p,p'-DDD 90.4 9.5 95.3 12.1 2.98 o,p'-DDT 100.0 9.6 92.9 4.5 3.35 PCB 153 101.7 6.4 94.3 7.5 1.13 p,p'-DDT 95.6 6.2 96.8 9.3 2.04 PCB 138 92.6 10.5 96.5 9.7 1.68 PCB 180 93.2 7.2 96.9 11.8 1.16 灭蚁灵 100.4 3.7 91.3 9.7 1.29 替代物 平均回收率
(%)RSD
(%)平均回收率
(%)RSD
(%)- TCMX 74.3 4.1 73.3 4.2 - PCB 103 103.3 4.2 86.9 7.2 - PCB 204 104.9 5.7 94.0 5.8 - 表 4 实际样品检测结果
Table 4 Analysis results of actual samples
化合物 含量(ng/g) 鲤鱼 虾 牛肉 猪肉 六氯苯 5.00 1.26 - - p,p'-DDE 15.36 2.97 4.76 3.57 p,p'-DDD 6.31 - - - o,p'-DDT 4.37 - - - p,p'-DDT 5.61 - - - 替代物 回收率(%) 2,4,5,6-四氯间二甲苯 80.3 83.2 73.0 79.9 PCB 103 93.0 95.7 107.1 97.9 PCB 204 105.9 100.4 107.9 99.5 -
[1] 席英玉.动物性食品中有机氯农药多残留检测方法的研究[J].福建水产,2006(2):38-43. http://www.cnki.com.cn/Article/CJFDTOTAL-FJSC200602008.htm [2] 张海秀.农业环境中有机氯农药污染现状及危害[J].科技信息,2009(14):548-549. doi: 10.3969/j.issn.1001-9960.2009.14.452 [3] Liu X, Zhang G, Li J, Yu L L, Xu Y, Li X D, Kobara Y, Jones K C.Seasonal patterns and current sources of DDTs, chlordanes, hexachlorobenzene, and endosulfan in the atmosphere of 37 Chinese cities[J].Environmental Science & Technology, 2009, 43: 1316-1321.
[4] Guo Y, Yu H Y, Zhang B Z, Zeng E Y. Persistent halogenated hydrocarbons in fish feeds manufactured in South China[J].Journal of Agricultural and Food Chemistry, 2009, 57: 3674-3680. doi: 10.1021/jf803868b
[5] 王泰,张祖麟,黄俊,胡洪营,余刚,李发生.海河与渤海湾水体中溶解态多氯联苯和有机氯农药污染状况调查[J].环境科学,2007,28(4):730-735. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200704006.htm [6] 韩关根,徐盈,凌波,梁鹰,沈阿根.环境多氯联苯污染状况研究[J].卫生研究,2006,35(2):168-174. http://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ200602013.htm [7] 宋杨,吴南翔,韩见龙,沈海涛,谭玉凤,丁刚强,项菊香,陶核,金顺亮.某电子垃圾拆解地鲫鱼和鸡蛋中二英和多氯联苯的污染状况研究[J].环境与健康,2011,28(4):328-331. http://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201104015.htm [8] Qin Y Y, Leung C K M, Lin C K, Leung A O W, Wang H S, Giesy J P, Wong M H. Halogenated POPs and PAHs in Blood Plasma of Hong Kong Residents[J].Environmental Science & Technology,2001,45: 1630-1637.
[9] Moliner-Martinez Y, Campíns-Falcó P, Molins-Legua C, Segovia-Martínezb L, Seco-Torrecillasb A. Miniaturized matrix solid phase dispersion procedure and solid phase microextraction for the analysis of organochlorinated pesticides and polybrominated diphenylethers in biota samples by gas chromatography electron capture detection[J].Journal of Chromatography A, 2009, 1216: 6741-6745. doi: 10.1016/j.chroma.2009.08.021
[10] Rezaeia F, Hosseini M R M. New method based on combining ultrasonic assisted miniaturized matrix solid-phase dispersion and homogeneous liquid-liquid extraction for the determination of some organo-chlorinated pesticides in fish[J].Analytica Chimica Acta, 2011, 702: 274-279. doi: 10.1016/j.aca.2011.06.008
[11] 李君君,李力军,徐惠诚,赵增强,高彬,刘琨.动物源性食品中农药多残留检测前处理技术研究进展[J].中国食品卫生杂志,2012,24(4):403-407. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSPZ201204035.htm [12] 吴刚,赵珊红,俞春燕,王华雄,叶庆富,吴慧明.加速溶剂萃取-GPC气相色谱(μ-ECD)快速分析动物源性食品中多种电负性农药残留量[J].中国食品学报,2009,9(2):162-170. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSP200902043.htm [13] Oukebdane K, Portet-Koltalo F N. Machoura, Dionnet F, Desbene P L. Comparison of hot Soxhlet and accelerated solvent extractions with microwave and supercritical fluid extractions for the determination of polycyclic aromatic hydrocarbons and nitrated derivatives strongly adsorbed on soot collected inside a diesel particulate filter[J].Talanta, 2010, 82:227-236. doi: 10.1016/j.talanta.2010.04.027
[14] Chung S W C, Chen B L S.Determination of organochlorine pesticide residues in fatty foods: A critical review on the analytical methods and their testing capabilities[J].Journal of Chromatography A, 2011, 1218: 5555-5567. doi: 10.1016/j.chroma.2011.06.066
[15] Beck J, Totsche K U, Kögel-Knabner I. A rapid and efficient determination of natural estrogens in soils by pressurised liquid extraction and gas chromatography-mass spectrometry[J].Chemosphere, 2008, 71: 954-960. doi: 10.1016/j.chemosphere.2007.11.062
[16] Saito K, Sjodin A, Sandau C D, Davis M D, Nakazawa H, Matsuki Y, Patterson J D G. Development of a accelerated solvent extraction and gel permeation chromatography analytical method for measuring persistent organohalogen compounds in adipose and organ tissue analysis[J].Chemosphere, 2004, 57: 373-381. doi: 10.1016/j.chemosphere.2004.04.050
[17] 潘娟,华贤辉,商军.毛细管气相色谱法测定动物性食品中六六六和滴滴涕的残留量[J].中国兽药杂志,2009,43(3):46-49. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSYY200903017.htm [18] 周萍萍,陈惠京,赵云峰,吴永宁,荫士安.动物性食品中持久性有机氯农药的残留分析[J].中国食品卫生杂志,2010,22(3):193-198. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSPZ201003004.htm [19] 佟玲,杨佳佳,吴淑琪,张玲金.沉积物样品中干扰物的去除及多种持久性有机污染物气相色谱分析[J].岩矿测试,2011,30(5):601-605. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201105018.htm [20] 曹忠波,高岩,贾宏新.凝胶渗透色谱和固相萃取净化气相色谱-质谱法检测动物性食品中26种有机氯农药残留[J].中国卫生检验杂志,2012,22(7): 1550-1555. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201207029.htm [21] 纪欣欣,石志红,曹彦忠,石利利,王娜,庞国芳.凝胶渗透色谱净化/液相色谱-串联质谱法对动物脂肪中111种农药残留量的同时测定[J].分析测试学报,2009,28(12):1433-1439. doi: 10.3969/j.issn.1004-4957.2009.12.017 [22] 吴刚,鲍晓霞,王华雄,俞春燕,吴慧明,叶庆富.加速溶剂萃取-凝胶渗透色谱净化-气相色谱快速分析动物源性食品中残留的多种有机磷农药[J].色谱,2008,26(5):577-582. http://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ200805012.htm [23] Wang H, Zhang J, Gao F, Yang Y, Duan H, Wu Y, Berset J D, Shao B. Simultaneous analysis of synthetic musks and triclosan in human breast milk by gas chromatography tandem mass spectrometry[J].Journal of Chromatography B, 2011, 879:1861-1869. doi: 10.1016/j.jchromb.2011.04.036
[24] Helaleh M I H, Al-Rashdan A, Ibtisam A.Simultaneous analysis of organochlorinated pesticides (OCPs) and polychlorinated biphenyls (PCBs) from marine samples using automated pressurized liquid extraction (PLE) and Power PrepTM clean-up[J].Talanta, 2012, 94: 44-49. doi: 10.1016/j.talanta.2012.02.031
[25] Richter B E, Jones B A, Ezzell J L, Porter N L.Accelerated solvent extraction: A technique for sample preparation[J].Analytical Chemistry, 1996,68: 1033-1039. doi: 10.1021/ac9508199
[26] Wu G, Bao X, Zhao S, Wu J, Han A, Ye Q.Analysis of multi-pesticide residues in the foods of animal origin by GC-MS coupled with accelerated solvent extraction and gel permeation chromatography cleanup[J].Food Chemistry, 2011, 126: 646-654. doi: 10.1016/j.foodchem.2010.10.105
[27] 程悦,贾倩楠,邹晓莉.加速溶剂萃取在农药检测中的应用[J].现代预防医学,2012,39(14):3627-3631. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DIDD200809002041.htm [28] Lang Y H, Cao Z M, Nie X H.Extraction of organo-chlorine pesticides in sediments using Soxhlet, ultrasonic and accelerated solvent extraction techniques[J]. Journal of Ocean University of China, 2005, 4(2): 173-176. doi: 10.1007/s11802-005-0012-8