Research Progress on Stable Isotope Online Testing Technology for Organic Contaminants
-
摘要: 为了识别环境中有机污染物的来源和迁移转化,在线的单体稳定同位素分析(CSIA)是必不可少的关键技术,但是在实际应用中还存在问题。本文评价了目前已经开发的6种在线测定单体稳定同位素仪器的发展动态,包括气相色谱-同位素比值质谱计(GC-IRMS)、液相色谱-同位素比值质谱计(LC-IRMS)、直接引进-气相色谱-同位素比值质谱计(DI-GC-IRMS)、气相色谱-四极杆质谱计(GC-qMS)、气相色谱-多接收器电感耦合等离子体质谱计(GC-MC-ICPMS)、气相色谱-光强衰荡光谱仪(GC-CRDS)。提出了在线测试中的5个值得注意的问题:①样品的预富集;②气相色谱(GC)和液相色谱(LC)分离;③多种仪器和多种方法选择使用;④有机化合物稳定同位素标准物质的开发;⑤安全保障。提出了三点建议:一是大力发展直接注入而不经过燃烧的有机污染物同位素测试技术,例如GC-qMS和GC-CRDS技术;二是继续开发研究GC-MC-ICPMS测定有机氯和有机溴同位素技术;三是快速研制有机化合物稳定同位素的国际标准物质。本文认为,在进行单体化合物同位素研究时应作多元素的同位素分析,而其最优的选择是采用直接样品注入而不经过燃烧的测试技术。Abstract: Compound-specific isotope analysis (CSIA) online is an indispensable key technique for identifying the sources of organic contaminants in the environment and characterizing their transformation processes, but there are still some problems in practical applications. In this study, firstly, the development of six methods for online determination of compound-specific organic isotope analysis was introduced and reviewed, including Gas Chromatography-Isotope Ratio Mass Spectrometer (GC-IRMS), Liquid Chromatography Coupled-Isotope Ratio Mass Spectrometer (LC-IRMS), Direct Introduction-Gas Chromatography-Isotope Ratio Mass Spectrometer (DI-GC-IRMS), Gas Chromatography-Quadrupole Mass Spectrometer (GC-qMS), Gas Chromatography-Multicollector Inductively Coupled Plasma-Mass Spectrograph (GC-MC-ICPMS) and Gas Chromatography-Cavity Ring-Down Spectroscopy (GC-CRDS). Secondly, five noteworthy problems in online testing were proposed: sample pre-concentration, Gas Chromatography (GC) and Liquid Chromatography (LC) separation, selection of instruments and methods, the development of organic compound stable isotope standard material and safety control. Finally, three suggestions were proposed: 1) to develop vigorously the direct injection technology without combustion, such as GC-qMS and GC-CRDS, 2) to continually develop the determination technology for organic chlorine and organic bromine isotopes and 3) to rapidly develop international stable isotope standards for organic compounds. The new understanding in this study was that when multi-element isotope analysis was applied to study compound-specific isotopes, direct injection technology without combustion was the optimal choice.
-
-
表 1 有机化合物中常见元素的稳定同位素系统和同位素天然丰度比值
Table 1 Stable isotope systems and natural abundance isotope ratios for typical elements in organic contaminants
元素名称 同位素系统 同位素比值 H 2H/1H 0.01558 C 13C/12C 1.123 N 15N/14N 0.3663 O 18O/16O 0.2005 S 34S/32S 4.416 Cl 37Cl/35Cl 31.96 Br 81Br/79Br 97.27 表 2 单体有机污染物稳定同位素比值分析的仪器装置
Table 2 Overview of instrumental setups for compound-specific analyses of stable isotope ratios in organic contaminants
仪器 分离方式 装置系统 分析物 电离作用 质量分析/离子检测 同位素比值 GC-IRMS 燃烧① CO2 EI② 扇形磁铁/
Faraday杯13C/12C GC 燃烧/还原④ N2 15N/14N GC×GC③ 热解⑤ H2 2H/1H 热解 CO 18O/16O LC-IRMS LC 湿氧化 CO2 EI 扇形磁铁/
Faraday杯13C/12C GC-IRMS⑥ GC — 碎片离子 EI 扇形磁铁/
Faraday杯37Cl/35Cl 81Br/79Br GC-qMS GC — 分子离子和碎片离子 EI 四极电子
倍增器37Cl/35Cl GC-MC-ICPMS GC ICP⑦ Cl ICP 扇形磁铁/
Faraday杯37Cl/35Cl Br 81Br/79Br S 34S/32S GC-CRDS⑧ GC 燃烧 CO2 — 红外光谱 13C/12C 注:GC—气相色谱;IRMS—同位素比值质谱;LC—液相色谱;qMS—四极杆质谱;MC-ICPMS—多接收器电感耦合等离子体质谱;CRDS—光腔衰荡光谱[9]。①—在900~950℃下燃烧;②—电离;③—为分析碳同位素专门报道的应用;④—燃烧后在600~650℃下还原;⑤—在1200~1450℃下热解;⑥—直接引进GC-IRMS,详细情况见正文;⑦—电感耦合等离子体;⑧—由于使用燃烧装置也用GC-C-CRDS表示。 表 3 几种合成溴代有机化合物81Br/79Br的测试结果[29]
Table 3 The test results of 81Br/79Br in several synthetic bromine organic compound[29]
化合物 (81Br/79Br)Sr校正值 3-溴甲苯(Aldrich,BT) (9762±1)×10-4 3-溴甲苯(Riedel,BT) (9763±2)×10-4 三溴苯(Aldrich,TBB) (9768±3)×10-4 三溴酚(Aldrich,TBP) (9763±1)×10-4 二溴乙烷(Aldrich) (9744±4)×10-4 2-溴氯苯(Aldrich) (9759±2)×10-4 表 4 稳定同位素标准和常用标准物质
Table 4 The stable isotope standard and standard material used commonly
元素 同位素系统 钢瓶气 国际标准 常用标准物质 H 2H/1H H2 VSMOW VSMOW1 VSMOW2 O 18O/16O CO,CO2 VSMOW QYTB-1a QYTB-2a C 13C/12C CO,CO2 VPDB NBS22(油) IAEA-CH-3(纤维素) IAEA-CH-6(蔗糖) N 15N/14N N2O,N2 空气 IAEA-NO-3(硝酸钾) EAFE-N-1(硫酸铵) S 34S/32S SO2 VCDT IAEA-SO-5(硫酸钡) IAEA-SO-6(硫酸钡) Cl 37Cl/35Cl CH3Cl SMOC NIST SAM 975(氯化钠) ISL-354(氯化钠) 海水 Br 81Br/79Br CH3Br SMOB NIST SRM 977(溴化钠) 海水 -
Hofstetter T B, Schwarzenbach R P, Bernasconi S M. Assessing transformation processes of organic compounds using stable isotope fractionation[J].Environmental Science & Technology, 2008, 42(21): 7737-7743.
Schmidt T C, Zwank L, Elsner M, Berg M, Meckenstock R U, Haderlen S B. Compound-specific stable isotope analysis of organic contaminants in natural environments: A critical review of the state of the art, prospects, and future challenges[J]. Analytical and Bioanalytical Chemistry, 2004,378(2): 283-300. doi: 10.1007/s00216-003-2350-y
Elsner M, Zwank L, Hunkeler D, Schwarzenbach R P. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants[J]. Environmental Science & Technology, 2005, 39(18): 6896-6916.
周爱国,李小倩,刘存富,周建伟,蔡鹤生,余婷婷.氯代挥发性有机物(VOCs)氯同位素测试技术及其在地下水污染中的应用研究进展[J].地球科学进展, 2008, 23(4): 342-349. 马腾,周爱国,刘存富,蔡鹤生,李理.地下水污染研究中稳定同位素测试方法及其应用前景[J].水文地质工程地质,2008(Z1): 330-335. De Laeter J R, Bohlke J K, de Bievre P, Hidaka H, Peiser H S, Rosman K J R, Taglor P D P. Atomic weights of the elements: Review 2000 (IUPAC technical report)[J]. Pure and Applied Chemistry,2003,75(6): 683-800.
Groning M, Hakkarainen M, Albertsson A C. Recycling of glass-fibre reinforced phenolic prepreg waste. Part 2. Milled prepreg as functional filler in PP and PA6[J]. Polymers and Polymer Composites, 2004, 12(6): 501-509.
Horfs J. Stable Isotope Geochemistry [M]. 6th ed. Berlin: Springer Press, 2009.
Hofstetter T B, Berg M. Assessing transformation proce-sses of organic contaminants by compound-specific stable isotope analysis[J].Trends in Analytical Chemistry, 2011, 30(4): 618-627. doi: 10.1016/j.trac.2010.10.012
刘国卿,张干,彭先芝,祈士华,李军.水体中痕量挥发性有机物单体碳同位素组成的固相微萃取-冷阱预富集GC-IRMS分析[J].地球科学——中国地质大学学报, 2004, 29(2): 235-238, 246. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200402018.htm Berg M, Bolotin J, Hofstetter T B. Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS[J]. Analytical Chemistry, 2007, 79: 2386-2393. doi: 10.1021/ac0622577
Skarpeli-Liati M, Turgeon A, Carr A N, Arnold W A, Cramer C J, Hofstetter T B. pH-dependment equili-brium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substibuted anilines by SPME-GC/IRMS[J]. Analytical Chemistry, 2011, 83: 1641-1648. doi: 10.1021/ac102667y
Bergmann F D, Abu Laban N M F H, Meger A H, Elsner M, Meckenstock R U. Dual(C, H) isotope fractionation in anaerobic low molecular weight (Poly) aromatic hydrocarbon (PAH) degradation: Potential for field studies and mechanistic implications[J]. Environmental Science & Technology, 2011, 45: 6947-6953.
Godin J P, Fay L B, Hopfgartner G. Liquid chromato-graphy combined with mass Spectrometry for C-13 isotopic analysis in life science research[J].Mass Spectrometry Reviews, 2007, 26(6): 751-774. doi: 10.1002/(ISSN)1098-2787
Krummen M. A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry[J].Rapid Communications in Mass Spectrometry, 2004, 18(19): 2260-2266. doi: 10.1002/rcm.v18:19
Shouakar-Stash O, Drimmie R J, Zhang M, Frape S K. Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS[J]. Applied Geochemistry, 2006, 21(5): 766-781. doi: 10.1016/j.apgeochem.2006.02.006
Shouakar-Stash O, Frape S K, Drimmie R J. Determination of bromine stable isotopes using continuous-flow isotope ratio mass spectrometry[J]. Analytical Chemistry, 2005,77(13): 4027-4033. doi: 10.1021/ac048318n
Shouakar-Stash O, Frape S K, Aravena R, Gargini A, Pasini M, Drimmie R J. Analysis of compound-specific chlorine stable isotopes of vingl chloride by continuous flow-isotope ratio mass spectrometry (FC-IRMS)[J]. Environmental Forensics, 2009, 10: 299-306. doi: 10.1080/15275920903347628
Sakaguchi-Söder K, Jager J, Grund H, Matthäus F, Schüth C. Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis[J].Rapid Communications in Mass Spectrometry, 2007, 21(18): 3077-3084. doi: 10.1002/(ISSN)1097-0231
Aeppli C, Holmstrand H, Adersson P, Gustafsson. Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing[J]. Analytical Chemistry, 2010, 82(1): 420-426. doi: 10.1021/ac902445f
Elsner M, Hunkeler D. Evaluating chlorine isotope effects from isotope ratios and mass spectra of polychlorinated molecules[J]. Analytical Chemistry, 2008, 80(12): 4731-4740. doi: 10.1021/ac702543y
Jin B, Laskov C, Rolle M, Haderlein S B. Chlorine isotope analysis of organic contaminants using GC-qMS: Method optimization and comparison of different evaluation schemes[J].Environmental Science & Technology, 2011, 45: 5279-5286.
Bernstein A, Shouakar-Stash O, Ebert K, Laskov C, Hunkeler D, Jeannottat S, Sakaguch-Söder K, Laaks J, Jochmann M A, Cretnik S, Jager J, Haderlein S B, Schmidt T C, Aravena R, Elsner M. Compounds-specific chlorine isotope analysis: A comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study[J].Analytical Chemistry, 2011, 83: 7624-7634. doi: 10.1021/ac200516c
Sakaguchi-Söder K. A new method for compound-specific stable chlorine isotope analysis: Basics and application[D]. Darmstadt: Technische University, 2010.
van Acker M R, Shahar A, Young E D, Coleman M L. GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons[J]. Analytical Chemistry, 2006, 78(13): 4663-4667. doi: 10.1021/ac0602120
Jendrzejewski N, Eggenkamp H G M, Coleman M L. Characterisation of chlorinated hydrocarbons from chlorine and carbon isotope compositions: Scope of application to environmental problems[J]. Applied Geochemistry, 2001, 16: 1021-1031. doi: 10.1016/S0883-2927(00)00083-4
Eggenkamp H G M, Coleman M L. Rediscovery of classical method and their application to the measurement of stable bromine isotopes in natural samples[J].Chemical Geology,2000,167: 393-402. doi: 10.1016/S0009-2541(99)00234-X
Sylva S P, Ball L, Nelson R K, Reddy C M. Compound-specific 81Br/79Br analysis by capillary gas chromato-graphy/multicollector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(20): 3301-3305. doi: 10.1002/(ISSN)1097-0231
Gelman F, Halicz L. High precision determination of bromine isotope ratio by GC-MC-ICPM[J]. International Journal of Mass Spectrometry, 2010, 289: 167-169. doi: 10.1016/j.ijms.2009.10.004
Krupp E M. Precise isotope-ratio determination by CGC hyphenated to ICP-MCMS for speciation of trace amounts of gaseous sulfur, with SF6 as example compound [J]. Analytical and Bioanalytical Chemistry, 2004, 378(2): 250-255. doi: 10.1007/s00216-003-2328-9
Kerstel E, Gianfrani L. Advances in laser-based isotope ratio measurements: Selected applications[J]. Applied Physics B-Lasers and Optics, 2008, 92(3): 439-449. doi: 10.1007/s00340-008-3128-x
Lis G, Wassenaar L I, Hendry M J. High-precision laser spectroscope D/H and 18O/16O measurement of microliter natural water samples[J]. Analytical Chemistry, 2008, 80: 287-293. doi: 10.1021/ac701716q
Wang L X, Caylor K K, Dragoni D. On the calbration of continuous, high-precision δ18O and δ2H measure-ment using an off-axis integrated cavity output spectrometer[J]. Rapid Communications in Mass Spectrometry, 2009, 23: 530-536. doi: 10.1002/rcm.v23:4
Christensen L E, Brunner B, Treong K N, Mielke R E, Webster C R, Coleman M. Measurement of sulfur isotope compositions by tunable laser spectroscopy of SO2[J].Analytical Chemistry,2007,79: 9261-9268. doi: 10.1021/ac071040p
Barker S L L, Dipple G M D, Dong F, Baer D S. Use of laser spectroscopy to measure the 13C/12C and 18O/16O compositions of carbonate minerals[J]. Analytical Chemistry, 2011, 83: 2220-2226. doi: 10.1021/ac103111y
Krestel E. Handbook of Stable Isotope Analytical Tech-niques[M].Amsterdam: Elsevier Press, 2004: 759-787.
Keppler F. Measurements of 13C/12C methane from anaerobic digesters: Comparison of optical spectrometry with continuous-flow isotope ratio mass spectrometry[J]. Environmental Science & Technology, 2010, 44(13): 5067-5073.
刘国卿,张干,彭先芝.单体同位素技术在有机环境污染中的研究进展[J].地球与环境, 2004,32(1):23-27. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200401004.htm