The Background Values and Distribution Characteristics of Stream Sediments in the Yangbajain-Qinglong Region, Tibet
-
摘要: 水系沉积物中化学元素的背景值是地球化学找矿工作中不可缺少的基础资料,对区域地球化学异常评价具有重要意义。西藏地区一直缺少以区内微景观区表层物质为基础建立的多元素背景值数据,在一定程度上限制了对已有水系沉积物异常的认识水平。本文分析了羊八井—青龙地区约12000 km2内2800件水系沉积物组合样品中69个元素背景值及分布特征。统计分析结果表明:与全国水系沉积物和中国南方地区水系沉积物平均值相比,研究区自北向南分布的班戈—八宿、隆格尔—南木林、拉萨—察隅三个地球化学分区内SiO2的含量普遍较高(68.6%~77.0%),SiO2高含量与区内强烈的风化剥蚀作用及中酸性岩体的大面积产出有关。其他元素的含量普遍偏低,且各分区内有一定的差异性:北部班戈—八宿分区以富集与高温热液或气液有关的Li、Sr、B、N、Cl元素为特征,中部隆格尔—南木林分区以富集铁族元素、稀有元素(Zr)、稀土元素(Sc)为特征,南部拉萨—察隅分区以富集造岩、轻稀土、稀有、分散元素及亲铜成矿元素为特征。元素含量分布的差异与各区地层、岩体、矿床和矿化点密切相关。本次研究提供了羊八井—青龙地区水系沉积物中69个元素背景值,如亲铜成矿元素Au、Ag、Cu、Pb、Zn的背景值分别为0.26 ng/g、41 ng/g、4.04 μg/g、25.2 μg/g和25.6 μg/g,这些背景值的提出弥补了该微景观区化学元素背景值的空白,为羊八井—青龙地区及其邻区区域地质研究及勘查找矿工作提供了参考依据。Abstract: The background values of chemical elements in stream sediments are an indispensable tool in geochemical prospecting work, and they are of important significance for regional geochemical anomalies assessment. However, there is a lack of poly-elements background values in Tibet, which are based on the surface material from the micro landscape area thereby limiting understanding of the existing stream sediment anomalies to a certain extent. Analysis of the chemical elements background values and distribution characteristics of 69 kinds of elements in 2800 stream sediment combination samples covering about 12000 km2 in Yangbajain-Qinglong area have been conducted and are reported in this paper. From north to south, the area is divided into three geochemical divisions of Bangor-Basu, Longer-Nanmulin and Lhasa-Zayu. The results indicate that content of SiO2 (68.6%-77.0%) in the study area is higher compared to the average value of stream sediments nationwide. The high content of SiO2 is related to strong weathering and occurrence of large-scale intermediate-acid intrusive rocks in the study area. While other elements are lower and differentiated in three geochemical divisions. Bangor-Basu division is characterized by enrichment of Li, Sr, B, N and Cl which are related to high-temperature hydrothermal or gas-liquid. Longer-Nanmulin division is enriched with iron group elements, rare element (Zr) and rare earth element (Sc). Lhasa-Zayu division is enriched with petrogenetic elements, light rare earth elements, rare elements, dispersed elements and chalcophile metallogenic elements. The differences in element content distribution are closely related with the stratum, rock mass, deposits and mineralization in the geochemical divisions. This study gives the background values for 69 kinds of elements in the Yangbajin-Qinglong area, such as the chalcophile metallogenic elements of Au, Ag, Cu, Pb and Zn with 0.26 ng/g, 41 ng/g, 4.04 μg/g, 25.2 μg/g and 25.6 μg/g, respectively. These data fill a vacancy in the chemical elements background values on the micro-landscape areas of Tibet, and provide references for regional exploration study and geological prospecting work in Yangbajain-Qinglong and adjacent areas.
-
锰矿是工业产业重要的基础性大宗原料矿产,中国的电解锰产量占了全世界的95%。锰还是钢最基本的元素,是对钢及其钢材性能产生重要影响的合金化元素,所有钢种及其钢材都含锰。锰多以化合物形式广泛分布于自然界,几乎各种矿石及硅酸盐的岩石中均含有锰矿。近年来我国对锰矿消费需求量大,且我国锰矿又多是贫、杂、含磷量偏高的低品位矿,作为最大的锰系铁合金生产国,我国的锰矿资源已经远远不能满足需求,与国内的贫锰矿搭配使用[1]。2011年全国各口岸进口锰矿石约1350万吨,仅天津口岸进口批次达到1500余批,主要进口国为南非、澳大利亚、加蓬、巴西、加纳五国。近年来,进口贸易商不断拓展海外市场,缅甸、印度尼西亚、印度、菲律宾、纳米比亚、摩洛哥等非主要锰矿生产国的矿石也大量进口至国内,其锰含量水平差异较大,杂质元素水平较为复杂。面对检验批次的大幅度增加,矿产品检验检疫行业迫切需要开展多批次自动化检测锰矿石中锰含量的实施方案,以降低劳动强度,提高锰矿石中锰分析的准确度和精密度。
目前锰矿石中锰含量的测定方法包括X射线荧光光谱法[2]、手工电位滴定法[3]、手工目视滴定法[3]等。X射线荧光光谱法分析锰含量时由于锰矿的高湿存水,熔制玻璃片时要求操作者具备很高的经验,否则很容易产生气泡,而且需要配备多个水平的标准样品,另外检测成本较高。手工电位滴定法操作手续繁杂,无法移植到自动电位滴定仪上。手工目视滴定法相对于其他方法溶样较为简单,滴定方法适合移植到自动电位滴定仪。本文建立了锰含量的自动电位滴定法,对自动电位滴定仪滴定锰含量的电位变化特点进行深入分析,确定了滴定参数,优化滴定速度,对标定空白和样品空白溶液测定给出了测定方法,实现手工滴定向自动电位滴定的转变。
1. 自动电位滴定法的实现
现有文献[3-4]有两种手工滴定方法可供选择:高锰酸钾电位滴定法和目视滴定法。
KMnO4电位滴定法的反应方程式为:
该法滴定时需要分取样品溶液至盛有焦硫酸钠的溶液中且需要不断搅拌,当出现沉淀时需要增加焦硫酸钠溶液,以保证溶液清亮。还需调节试液pH值,再用KMnO4标准溶液进行电位滴定。故该法向自动电位滴定法移植时有困难。
目视滴定法反应方程式为:
采用该法将样品分解,Mn氧化成+3价后,滴定步骤可在自动电位滴定仪上直接完成,采用氧化还原电极判断终点,不用指示剂,从而避免了指示剂的干扰[5],无需调节酸度等操作,能够适应不同锰含量范围的样品。因此,选择手工目视滴定法向自动电位滴定法进行移植更为简便。
2. 实验部分
2.1 仪器
809型自动电位滴定仪(瑞士Metrohm公司),配3个滴定单元;自动滴定单元为50 mL;10322840型铂复合电极(瑞士Metrohm公司);814型自动样品转换器(瑞士Metrohm公司)。
2.2 主要试剂
重铬酸钾标准溶液
c(K2Cr2O7)=0.04000 mol/L:准确称取1.9615 g在150℃下烘干2 h的基准重铬酸钾(天津市化学试剂研究所产品),加水溶解后移入1000 mL容量瓶中,用水稀释至刻度,混匀。硫酸亚铁铵标准溶液 c[(NH4)2Fe(SO4)2·6H2O]≈0.040 mol/L:称取15.68 g硫酸亚铁铵[(NH4)2Fe(SO4)2·6H2O](天津市天大化工实验厂产品),溶于1000 mL的5%硫酸中。
硫磷混合酸:400 mL硫酸(20%)和50 mL磷酸按比例混匀。
盐酸、硝酸、硫酸、磷酸、高氯酸。除特别注明外试剂均为分析纯,水为新鲜去离子水。
2.3 实验方法
准确称取0.2 g空气平衡试样,加5 mL盐酸和20 mL磷酸,在约200℃的电热板上加热分解10 min后取下,加 3~5 mL硝酸,继续加热至微冒磷酸烟,取下稍冷,加2 mL高氯酸在约250℃下加热至液面平静,使二价锰氧化完全,即刻取下,防止焦磷酸盐析出。冷却至约70℃后加50 mL水,充分摇动溶解,流水冷却至室温。转移至自动电位滴定仪上的150 mL专用滴定杯中,调整溶液体积约80 mL。同时称取试料测定湿存水[6]。
3. 结果与讨论
3.1 滴定参数的确定
无论是用硫酸亚铁铵滴定标定空白中的重铬酸钾还是测试试样滴定三价锰,都是从高电位向低电位滴定,其滴定拐点很“陡”,先兆不明显,在临近终点前0.20 mL都不会出现较大的电位下降,但终点突跃明显,突跃电位差达300 mV,发生在600~900 mV之间,发生突跃的体积范围在0.30 mL左右。仪器提供了“优化”、“快”、“慢”三种可选滴定参数模式,通过控制仪器滴定参数发现,三种模式均得不到理想的滴定曲线,也就找不到理想的等当点,如图 1所示。经过调试,先将信号漂移值适当调小,以增加预判能力。由于滴定时溶液电位稳定时间较快,故可将滴定参数中“最小等待时间”和“最大等待时间”缩短,可提高滴定速度,并且使滴定曲线满意。
本文确定了适合锰矿石标定和滴定精度要求的滴定参数,表 1列出了标定及空白滴定重铬酸钾的滴定参数、滴定试样中三价锰的滴定参数。按照本参数滴定等当点理想,如图 2所示。
表 1 动态滴定参数Table 1. Parameters of dynamic titration滴定参数 标定/空白 试样滴定 信号漂移(mV/min) 15 40 最小等待时间(s) 2 1 最大等待时间(s) 3 3 测量点密度 4 4 最小加液量(μL) 10 10 最大加液量(μL) 50 100 加液速度(mL/min) 10 最大 3.2 自动电位滴定程序的设计
3.2.1 硫酸亚铁铵标准溶液的标定
编写程序,用自动电位滴定仪准确加入25.00 mL重铬酸钾标准溶液,加入45 mL硫磷混合酸,利用自动电位滴定仪的加水功能,将溶液体积调整为约80 mL,使电极浸没在溶液中。用硫酸亚铁铵标准溶液滴定。经过测算消耗滴定溶液体积约为25 mL。为缩短滴定时间,先预加24.00 mL硫酸亚铁铵标准溶液,再滴定至终点。计算浓度时,将标定体积扣除标定空白后得到净体积。程序自动计算出浓度,将标液浓度值写入芯片供滴定样品时调用计算。
3.2.2 试样溶液的滴定和滴定速度的优化
由于进口锰矿石锰含量水平为5%~60%,范围很宽,如果采用同一滴定步骤,对于水平较高的样品,滴定时间冗长。经过对滴定曲线的分析,滴定初始电位在1000 mV以上,终点出现在500~1000 mV之间,故将1000 mV设定为滴定先兆。先用“电位滴定”模式,快速加入硫酸亚铁铵标准溶液至溶液电位到达1000 mV左右,再采用“等当点滴定模式”滴定至终点,显著提高了滴定速度。
首先采用等当点滴定方式,起始电位一般在1000 mV以上,进行快速预滴定,停止等当点设为1000 mV,当电位达到1000 mV时,预滴定结束,此时可发现样品溶液所呈紫色明显变浅,显示已临近终点[7-9]。等当点滴定结束后再进行动态滴定,参数见表 2,总滴定时间可在5 min内完成,滴定曲线满意。
表 2 等当点滴定参数Table 2. The parameters of equivalent point titration滴定过程 工作参数 设定值 预滴定 停止电位 1000 mV 滴定速度 动态范围 100 mV 最大加液速度 35 mL/min 最小加液速度 200 μL/min 停止标准 等待 2 s 3.2.3 空白的滴定
由于氧化还原滴定中试剂不可避免会引入试剂空白,故需要编写程序滴定空白用于样品的扣除。空白的引入包括硫酸亚铁铵标准溶液标定部分(称之为标定空白)和试样滴定部分(称之为样品空白)。由于试剂引入的空白可能是还原性物质,也可能是氧化性物质,故空白值可正可负。先用自动电位滴定仪准确加入10.00 mL重铬酸钾标准溶液(测试标定空白时还需加入45 mL硫磷混合酸),仪器补充水至滴定体积为80 mL。先预加9.00 mL硫酸亚铁铵标准溶液滴定,滴定至终点。然后,再次准确加入10.00 mL重铬酸钾标准溶液,预加9.00 mL硫酸亚铁铵标准溶液滴定,再滴定至终点。在计算空白值时,由于自动电位滴定仪利用ΔE/ΔV曲线获得等当点时,必须滴过等当点,故在计算空白值时,利用三个参数计算后得出,包括:第一次滴定的等当点体积(VEp1)、第一次滴定结束后的体积(VEVT)、第二次滴定等当点体积(VEp2)。空白值(V0)按下式计算。
3.2.4 滴定终点的识别
自动电位滴定仪默认终点判别为大于“等当点识别标准”值,即ΔE/ΔV值高于预设值为找到滴定终点[10-11]。为使本方法稳健,屏蔽样品滴定过程中的各种伪终点。经过多次测试,确定了终点参数,设定列于表 3。
表 3 空白和试样等当点识别参数Table 3. Parameters of the equivalent point in blank and sample工作参数 空白/标定 试样滴定 停止体积(mL) 20 60 停止测量值(mV) 450 450 到达等当点后加的体积(mL) 0.5 1 停止时间 关 关 吸液速度 最大值 最大值 带测量值的窗口评估下限(mV) 600 600 带测量值的窗口评估上限(mV) 900 900 等当点识别标准 50 70 3.3 方法准确度和精密度
用本方法对6种不同水平锰矿石国家一级标准物质进行6次重复性分析,结果列于表 4。测定平均值与标准值的相对偏差(RE) < 0.2%,相对标准偏差(RSD) < 0.3(n=6),方法准确度和精密度较好,优于标准[3-4]对精密度的要求,能够满足分析要求。
表 4 准确度及精密度试验Table 4. Accuracy and precision tests of method标准物质
编号w(Mn)/% 相对偏差
RE/%RSD/% 标准值 测定平均值 GBW 07261 45.39 45.44 0.11 0.16 GBW 07262 36.99 37.00 0.03 0.16 GBW 07263 32.54 32.60 0.18 0.14 GBW 07264 25.00 25.03 0.12 0.16 GBW 07265 22.54 22.50 -0.18 0.22 GBW 07266 15.74 15.74 0.00 0.27 3.4 常见离子干扰
高氯酸作为强氧化剂,可将Cr(Ⅲ)、Ce(Ⅲ)、V(Ⅲ)氧化至高价,形成干扰。通常贸易中的锰矿石这三个元素含量甚微,不予考虑。
3.5 方法对照
对天津口岸近年来进口国的不同水平锰矿石样品采用手工目视滴定法[3]和本法测定锰的含量,结果见表 5。对表 5数据进行t检验,得t=0.87,小于临界值2.26,故认为两种方法无显著性差异。相对而言,自动电位滴定方法稳健。
表 5 分析结果比对Table 5. Comparison of analytical results of elements in samples样品来源 w(Mn)/% 目视
滴定法本法
测定值阿曼 19.04 19.01 印度 24.66 24.67 马来西亚 32.96 32.96 澳大利亚 32.98 33.07 南非 36.96 36.87 南非 37.05 37.09 加蓬 43.27 43.21 澳大利亚 50.22 50.29 加蓬 50.30 50.28 巴西 50.81 50.77 4. 结语
随着工业技术的不断进步,商业化自动电位滴定仪正逐渐朝着智能化方向发展,对于普通的滴定操作者只需按照默认滴定参数即可得到理想的等当点。对于较为特殊的滴定反应,需要操作者熟知滴定原理及仪器控制参数,设计出合适的滴定方法和控制参数。本文将影响自动电位滴定结果的三个关键环节:滴定参数的建立、等当点识别标准的设定和滴定计算程序的设计进行了深入讨论,建立了一套实际应用方案。特别是在滴定分析锰矿石样品时,由于进口锰矿石水平为5%~60%,范围跨度大,在滴定程序设计时必须对终点先兆进行判别,从而提高滴定速度。
本研究方法自动便捷、操作简单,缩短了测量周期,较其他方法有较高精密度和准确度,适宜大批量检测,减少人工操作,有较强的实用性,适合在出入境检验检疫行业锰矿石冶炼企业推广,也为建立其他相关矿产品分析方法提供了参考。
致谢: 感谢中国地质科学院地球物理地球化学勘查研究所张振海教授级高级工程师、刘海良教授级高级工程师、聂兰仕博士、张必敏博士、曾道明工程师,中国地质科学院申伍军博士研究生、陈晓峰博士研究生、梁胜跃硕士研究生,河南省地质调查院宁福正高级工程师、谢庆峰工程师和裴瑞亮工程师在野外工作中给予的鼎力相助。感谢中国地质科学院地球物理地球化学勘查研究所中心实验室张勤主任及多位同事在数据测试工作中给予的帮助。 -
表 1 69个元素分析方法与检出限
Table 1 The analytical methods and detection limits for 69 elements
元素 分析方法 检出限 元素 分析方法 检出限 SiO2 XRF 0.1 P XRF 10 Al2O3 XRF 0.1 Pb ICP-MS 2 Fe2O3 XRF 0.1 Rb XRF 5 MgO ICP-AES 0.05 S XRF 50 CaO XRF 0.05 Sb AFS 0.05 Na2O ICP-AES 0.05 Sc ICP-MS 1 K2O XRF 0.05 Se AFS 0.01 全碳 GC 0.1 Sn ES 1 Ag ES 20 Sr ICP-AES 5 Au FAAS 0.2 Ta ICP-MS 0.1 Cd ICP-MS 20 Te ICP-MS 0.01 Hg CV-AFS 2 Th ICP-MS 1 As AFS 1 Ti XRF 10 B ES 2 Tl ICP-MS 0.1 Ba XRF 5 U ICP-MS 0.2 Be ICP-AES 0.5 V ICP-AES 2 Bi ICP-MS 0.05 W ICP-MS 0.3 Br XRF 1 Zn ICP-MS 2 Cl XRF 20 Zr XRF 5 Co ICP-MS 1 Y ICP-MS 1 Cr ICP-AES 2 La ICP-MS 1 Cs ICP-MS 1 Ce ICP-MS 1 Cu ICP-AES 1 Pr ICP-MS 0.1 F ISE 100 Nd ICP-MS 0.1 Ga XRF 1 Sm ICP-MS 0.1 Ge AFS 0.1 Eu ICP-MS 0.1 Hf ICP-MS 0.2 Gd ICP-MS 0.1 I COL 1 Tb ICP-MS 0.1 In ICP-MS 0.02 Dy ICP-MS 0.1 Li ICP-AES 1 Ho ICP-MS 0.1 Mn XRF 10 Er ICP-MS 0.1 Mo ICP-MS 0.2 Tm ICP-MS 0.1 N GC 20 Yb ICP-MS 0.1 Nb XRF 2 Lu ICP-MS 0.1 Ni XRF 2 注: ①元素检出限的单位说明,SiO2、Al2O3、Fe2O3、MgO、CaO、Na2O、K2O、全碳为%,Au、Ag、Cd、Hg为ng/g,其他元素为μg/g。
②分析技术方法说明,XRF—压片制样X射线荧光光谱法;ICP-AES—电感耦合等离子体发射光谱法;GC—氧化热解-气相色谱法;ES—发射光谱法(1米光栅);FAAS—火焰原子吸收光谱法;CV-AFS—冷蒸气原子荧光光谱法;ICP-MS—电感耦合等离子体质谱法;ISE—离子选择性电极法;AFS—原子荧光光谱法;COL—催化分光光度法。表 2 羊八井—青龙地区水系沉积物中69个元素测量数据统计
Table 2 Statistic parameters for 69 elements of stream sediment in Yangbajain-Qinglong region
元素分类 全区 分区元素平均值 丰度 中位值 75%值 95%值 背景值 标准差 班戈-八宿 隆格尔-南木林 拉萨-察隅 全国水系沉积物平均值[14] 中国南方水系沉积物背景值[15] 造岩
元素Al2O3 10.8 12.4 14.3 10.4 2.7 9.93 8.96 11.84 12.8 13.8 CaO 1.23 3.24 18.4 0.7 0.3 2.11 3.48 0.90 2.87 1.10 MgO 0.58 1.13 2.88 0.3 0.2 0.62 0.86 0.73 1.56 1.10 K2O 3.22 4.02 4.85 3.16 1.08 2.74 2.52 3.95 2.40 2.30 Na2O 1.91 2.59 3.20 1.82 0.87 1.52 1.65 2.26 1.37 0.60 SiO2 78.0 81.5 85.0 74.3 12.4 74.2 68.6 77.0 64.7 64.9 铁族
元素Fe2O3 2.17 3.72 6.20 1.41 0.56 2.35 3.52 2.44 4.73 4.80 Ti 1206 2231 3753 745 287 1271 1804 1622 4059 4600 V 31.5 58.3 104 20 11 37.4 46.9 36.2 87.3 91.0 Cr 14.2 37.7 94 4.78 2.90 19.3 29.2 21.1 67.9 67.0 Mn 368 605 1088 274 109 350 525 428 680 766 Co 4.69 9.11 19.2 2.74 1.26 5.19 8.39 5.61 13.1 13.3 Ni 7.96 20 63 3.38 1.64 10.7 17.4 8.51 28.7 29.0 稀有
元素Li 27.3 35.8 51.9 25.4 7.0 30.0 27.4 28.0 33.9 34.0 Be 2.34 3.38 5.57 2.11 0.77 1.92 1.89 3.45 2.20 2.20 Rb 155 217 325 145 55 128 120 209 - 105 Zr 112 161 223 94 27 104 141 133 292 320 Nb 7.10 10.3 14.3 6.77 2.95 5.90 8.28 8.90 17.4 18.6 Cs 7.87 11.1 18.5 6.91 1.98 8.44 6.53 9.62 - 8.20 Hf 3.95 5.16 7.06 3.77 1.19 3.34 4.13 4.82 - 8.30 Ta 0.92 1.23 2.04 0.83 0.32 0.67 0.83 1.25 - 1.40 Sr 128 197 330 105 40 157 122 132 164 77.0 Ba 368 480 655 356 124 299 362 476 522 429 稀土
元素Sc 4.39 7.23 12.0 3.17 1.34 4.75 6.11 5.03 - 11.1 Y 16.7 21.9 29.5 16.0 5.41 15.3 18.3 18.3 - 29.0 La 26.1 35.1 52.7 24.0 7.30 23.8 25.4 33.7 41.1 43.0 Ce 47.3 65.7 96.1 42.4 13.6 42.1 46.5 62.2 - 87.0 Pr 5.32 7.09 10.7 4.80 1.43 4.75 5.28 6.83 - 9.80 Nd 18.7 25.2 37.8 16.8 4.9 16.8 19.0 23.9 - 36.0 Sm 3.47 4.63 6.79 3.18 0.90 3.14 3.66 4.36 - 6.60 Eu 0.68 0.86 1.24 0.64 0.18 0.67 0.69 0.77 - 1.20 Gd 3.00 3.94 5.63 2.76 0.80 2.77 3.21 3.57 - 5.80 Tb 0.53 0.70 0.96 0.50 0.16 0.48 0.57 0.62 - 0.94 Dy 2.98 3.89 5.23 2.83 0.94 2.71 3.23 3.32 - 5.50 Ho 0.62 0.82 1.09 0.59 0.21 0.56 0.68 0.69 - 1.08 Er 1.70 2.23 2.97 1.63 0.57 1.58 1.87 1.79 - 3.10 Tm 0.29 0.38 0.51 0.28 0.10 0.27 0.32 0.30 - 0.49 Yb 1.82 2.35 3.20 1.73 0.60 1.69 2.00 1.88 - 3.10 Lu 0.28 0.37 0.51 0.27 0.09 0.27 0.32 0.29 - 0.47 钨钼族
元素Mo 0.45 0.63 1.30 0.38 0.09 0.40 0.54 0.57 1.13 1.12 Sn 2.63 3.59 8.83 2.32 0.73 2.46 2.21 3.08 4.13 3.60 W 1.64 2.21 4.75 1.46 0.50 1.57 1.60 1.92 2.10 2.10 Bi 0.31 0.48 1.15 0.25 0.09 0.33 0.26 0.40 0.50 0.39 亲铜成矿
元素Cu 6.49 12.0 23.6 4.04 1.66 7.86 9.58 7.09 25.6 25.0 Zn 34.4 55.3 98 25.6 7.58 32.3 43.6 42.2 77.2 81.0 As 9.33 16.1 33.9 7.01 4.48 10.7 16.6 5.49 13.3 13.1 Sb 0.50 0.87 2.01 0.18 0.06 0.65 0.77 0.27 1.42 1.07 Ag 47 64 114 41 11 48 55 45 93.0 83.0 Au 0.35 0.54 1.22 0.26 0.05 0.35 0.38 0.41 2.03 1.80 Hg 9.55 14.3 31.2 7.81 1.41 11.85 14.9 8.30 69.0 75.0 Pb 27.5 36.8 53.1 25.2 7.14 23.7 24.4 36.7 29.2 32.3 分散
元素Ga 14.3 16.0 18.7 13.9 2.80 12.9 12.5 15.9 - 17.1 Ge 1.28 1.46 1.71 1.25 0.26 1.20 1.23 1.36 - 1.42 Se 0.04 0.07 0.15 0.03 0.01 0.05 0.06 0.04 - 0.33 In 0.038 0.054 0.083 0.033 0.009 0.039 0.039 0.046 - 0.068 Tl 0.84 1.25 2.05 0.73 0.26 0.73 0.69 1.23 - 0.67 Cd 82.9 130 276 62.6 18.6 85.2 104 132 258 230 Te 0.02 0.04 0.09 0.01 0.01 0.03 0.03 0.02 - 0.05 矿化剂及
卤素元素全碳 0.22 0.73 4.32 0.13 0.04 0.42 0.88 0.12 - 1.69 B 19.1 36.3 72.9 12.3 7.4 31.9 21.1 16.6 51.2 60.0 N 163 262 640 128 41 215 208 121 - 1328 F 295 449 689 239 65 288 320 397 528 527 P 211 316 532 171 42 202 243 285 654 601 S 72.9 108 204 63.8 13.0 92.6 100 68.6 - 271 Cl 50.8 72.3 124 43.8 11.8 73.4 50.0 39.6 - 71.0 Br 1.00 1.34 2.30 0.94 0.31 1.00 1.18 1.04 - 4.10 I 0.30 0.48 1.04 0.24 0.09 0.40 0.45 0.25 2.5 放射性
元素Th 12.3 16.5 27.1 11.2 3.93 9.81 11.1 17.4 13.5 13.3 U 2.06 2.83 5.95 1.79 0.64 1.51 2.18 3.23 3.08 3.50 注:①元素的含量单位说明,SiO2、Al2O3、Fe2O3、MgO、CaO、Na2O、K2O、全碳为%,Au、Ag、Cd、Hg为ng/g,其他元素为μg/g。②数值说明,中位值(50%)、75%值、95%值为元素含量数据分位值,元素含量>75%值视为异常数值,元素含量>95%值视为异常内带水平;“-”表示无此数据。 -
Shacklette H T, Boergen J G.Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States: An Account of the Concentrations 50 Chemical Elements in Samples of Soils and Other Regoliths [M].Washington: US Government Printing House,1984: 105-106.
Gough L P, Severson R C, Shacklette H T.Element Concentrations in Soil and Other Surficial Materials of Alaska [M].Washington: US Government Printing House,1988: 1-135.
Salminen R, Batista M J, Bidovec M.Foregs Geochemical Atlas of Europe, PartⅠ: Background Information, Methodology, and Maps [M].ESPOO: Geology Survey of Finland, 2005: 1-135.
鄢明才,王春书,迟清华,顾铁新.岩石和松散沉积物中金元素丰度值的初步研究[J].地球化学,1990(2): 144-152. 鄢明才,迟清华,顾铁新,王春书.中国各类沉积物化学元素平均含量[J].物探与化探,1995,19(6): 468-472. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH506.008.htm 迟清华.金在地壳、岩石和沉积物中的丰度[J].地球化学,2002,31(4): 347-353. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200204005.htm 迟清华.汞在地壳、岩石和沉积物中的丰度[J].地球化学,2004,33(6): 641-648. http://epub.cnki.net/kns/detail/detail.aspx?QueryID=8&CurRec=2&recid=&FileName=DQHX200406012&DbName=CJFD2004&DbCode=CJFQ&pr= 迟清华,鄢明才.铂族元素在地壳、岩石和沉积物中的丰度[J].地球化学,2006,35(5): 461-471. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200605001.htm 任天祥,伍宗华,羌荣生.区域化探异常筛选与查证的方法技术[M].北京:地质出版社,1998: 17. 程志中,谢学锦,潘含江,杨蓉,商云涛.中国南方地区水系沉积物中元素丰度[J].地学前缘,2011,18(5): 289-295. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201105026.htm 程志中,谢学锦,潘含江,杨蓉.中国南方地区碲地球化学特征[J].中国地质,2012,39(2): 295-301. http://epub.cnki.net/kns/detail/detail.aspx?QueryID=12&CurRec=1&recid=&FileName=DIZI201202002&DbName=CJFD2012&DbCode=CJFQ&pr= 朱弟成,潘桂堂,王立全,莫宣学,赵志丹,周长勇,廖忠礼,董国臣,袁四化.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J].地质通报,2008,27(9): 1535-1550. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200809015.htm 西藏自治区地质调查研究院.《区域地质调查报告》 1∶25万班戈幅[R].2002. http://www.oalib.com/references/19223496 中国地质科学院地质力学研究所.《区域地质调查报告》1∶25万当雄幅[R].2003. http://www.oalib.com/references/19223489 中国地质科学院地球物理地球化学勘查研究所.《地球化学图说明书》1∶20万青龙幅、羊八井幅[R].2011. 刘英俊,曹励明.元素地球化学导论[M].北京:地质出版社,1984: 186. 叶培盛,吴珍汉,胡道功,江万,杨欣德.西藏纳木错西岸蛇绿岩的地球化学特征及其形成环境[J].现代地质,2004,18(2): 237-243. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200402014.htm 孟祥金,侯增谦,叶培盛,杨竹森,李振清,高永丰.西藏冈底斯银多金属矿化带的基本特征与成矿远景分析[J].矿床地质,2007,26(2): 153-162. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200702001.htm 朱立新,朱炳球.西藏羊八井热田的碱金属元素研究[J].物探与化探,1990,14(1): 55-62. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH199001009.htm 赵平,多吉,梁廷立,金建,张海政.西藏羊八井地热田气体地球化学特征[J].科学通报,1998,43(7): 691-696. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199807004.htm 李振清,侯增谦,聂凤军,杨竹森,曲晓明,孟祥金,赵元艺.西藏地热活动中铯的富集过程探讨[J].地质学报,2006,80(9): 1457-1464. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200609019.htm 席明杰,马生明,朱立新,李冰.西藏羊八井—宁中地区水系沉积物中分散元素地球化学特征及其对找矿的指示意义[J].地球学报,2013, 34(6): 702-712. doi: 10.3975/cagsb.2013.06.07 Schwartz M O.Cadmium in zinc deposit: Economic geology of a polluting element [J].International Geology Review, 2000, 42: 445-469. doi: 10.1080/00206810009465091
叶霖,刘铁庚.都匀地区镉(Cd)资源极其远景初探[J].贵州地质,1997,14(2): 160-163. http://epub.cnki.net/kns/detail/detail.aspx?QueryID=24&CurRec=1&recid=&FileName=GZDZ199702007&DbName=CJFD9697&DbCode=CJFQ&pr= Zhang Q, Zhan X Z, Pan J Y, Shao S X. Geochemical enrichment and mineralization of indium[J].Chinese Journal of Geochemistry, 1998,17(3): 221-225. doi: 10.1007/BF02834597
张乾,刘志浩,战新志,邵树勋.分散元素铟富集的矿床类型和矿物专属性[J].矿床地质,2003,22(1): 309-316. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200303016.htm 谷团,刘玉平,李朝阳.分散元素的超常富集与共生[J].矿物岩石地球化学通报,2000,19(1): 60-63. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200001017.htm 胡瑞忠,苏文超,戚华文,毕献武.锗的地球化学、赋存状态和成矿作用[J].岩石矿物地球化学通报,2000,19(4): 215-217. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200004001.htm 卢家烂,庄汉平,傅家谟,刘金钟.临沧超大型锗矿床的沉积环境,成岩过程和热液作用与锗的富集[J].地球化学,2000,29(1): 36-42. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200001006.htm 汤艳杰,刘建朝.豫西杜家沟铝土矿中镓的分布规律及控制因素浅析[J].地质与勘探,2001(6): 9-12. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200106002.htm 汤艳杰,贾建业,刘建朝.豫西地区铝土矿中镓的分布规律研究[J].矿物岩石,2002,22(1): 15-20. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200201003.htm