Laser Ablation-Inductively Coupled Plasma-Mass Spectrometric Analysis Methods of Melt Inclusions and Its Geological Applications
-
摘要: 熔体包裹体可以保留岩浆被捕获时的温度、压力及化学组成等信息,为研究岩浆结晶演化过程提供最直接有效的手段;然而由于取样方法、仪器分辨率和灵敏度等技术手段的限制,熔体包裹体研究(尤其是熔体包裹体成分研究方面)发展相对缓慢。本文在简述熔体包裹体特征与分类的基础上,总结了目前熔体包裹体成分研究的主要技术手段,包括技术特点、适用范围及样品制备等;详细介绍单个熔体包裹体激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)原位分析技术(原理、优缺点、定量方法等),并重点阐述分析过程中可能产生的元素分馏、基体效应及激光剥蚀技术要点等。单个熔体包裹体LA-ICP-MS原位分析技术的发展和完善,避免了传统熔体包裹体成分分析技术需加热均一化、样品制备繁琐等缺点,可直接对成分复杂矿物表面100 μm以下以多相形式存在的熔体包裹体进行整体分析,数据精确度可与电子探针分析和二次离子质谱相媲美,增加了样品中可分析熔体包裹体数量,更全面地反映岩浆演化信息,省时、高效、准确,极大地推动了熔体包裹体研究的发展。近年来,国内外单个熔体包裹体LA-ICP-MS原位分析技术应用于地质学和矿床学领域,在地球深部岩浆过程及岩浆热液矿床成矿理论等方面取得了重要成果。随着激光、质谱等设备的发展及定量方法完善,单个熔体包裹体LA-ICP-MS分析的准确性将进一步提高,同时单个熔体包裹体同位素原位分析技术的发展和应用将再次为熔体包裹体研究带来革命性进展。
-
关键词:
- 熔体包裹体 /
- 激光剥蚀电感耦合等离子体质谱 /
- 地质学 /
- 矿床学
Abstract: Melt inclusions in phenocrysts play a very important role in petrological research for reserving the only direct information available on the temperature, pressure and chemical compositions of the magmatic system at the time that the host minerals crystallized. However, due to the limitation of techniques on sampling method, the resolution and sensitivity of the instrument, the study of melt inclusions (especially the chemical composition) is a relatively slow process. The melt inclusions properties and classifications generally are introduced in this paper, along with a summary of the analytical methods, applications and sample preparation, and an extensive description of the technique of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), especially the elemental fraction, matrix effects and principal points for laser ablation. The development of an in-situ micro-analytical technique by LA-ICP-MS, which can analyse the multi-phase inclusions up to 100 μm beneath the surface of the complex minerals, and avoids the prerequisite conditions of heating homogenization and sample preparation for the routine method is described. With the advantages of rapidity, efficiency and accuracy, the newly developed technique allows more analysis for melt inclusions in the same sample and comprehensively provides evolvement information for magma. Data accuracy can be comparable with Electron Microprobe Analysis and Secondary Ion Mass Spectrometry. Recently, this technique has been applied widely in research fields of geology and ore deposit geology. Furthermore, the significant achievements were obtained in the deep earth magmatic processes and magmatic hydrothermal metallogenic theory. The development of the equipment and quantitative methods will improve the accuracy of this technique. Meanwhile, the development and application of in-situ isotopic analysis of melt inclusions by LA-MC-ICP-MS will revolutionize melt inclusions research. -
不久前,友人发来一封邮件,谈及最近阅读有感。其中有这样一段文字颇值得玩味:当布里斯班的灯鱼轻轻划过五彩斑斓的珊瑚丛时,你在苦战通宵;当蒙巴萨的小蟹溜出渔夫布满老茧的掌心时,你正辗转难眠;当布拉格的电车晃过金色夕阳下的古堡宫殿,你正埋头冥思着软件代码之逻辑……
如若自己此时做了个渔夫,是不是也正大江中一叶扁舟,自在来去?
人人都有青春的憧憬和金色的梦想,人人也都要面对现实的生活,经历奋斗的日时。知足常乐,过一种朴素的生活,是现实中最需要的一种成熟心态。
不仅人生如此,科学的探索也无不因了对于梦想的追寻和对于未知世界的不懈探究而穷无止境。同位素定年与示踪技术由来已久,广为熟知的铅同位素示踪在污染源识别方面起到了重要作用。其它的一些毒性元素是否也有可以作如此利用的可能?周期表中所有的元素都可以被利用或许只是一个梦想,但如果能发现其中的一个或几个,无疑将为解决现实环境地球化学研究中的难点问题,提供重要技术手段。令人欣喜的是,遥远的梦想有时也会来敲门,命运的音符会为我们平凡、朴素的生活增添几分色彩和活力。作为毒性元素之一的镉,其同位素实验测试技术研究已经起步,相信该技术在地球科学、环境科学、生命科学中会很快得到广泛而深入的应用。有兴趣的读者可参见进展与评述中“镉同位素体系及其在地球科学和环境科学中的应用”一文(P181~191)。事实上,进展与评述,是我们目前特别下力去办的栏目,它不是简单的文献堆砌,而是凝聚着作者实践、观察、思考和智慧的结晶。
在线分析和现场分析一直是地质实验测试技术的重要发展方向之一。本期“有机污染物稳定同位素在线测试技术研究”(P192~202)、“现场X射线荧光分析技术”(P203~212)、“地下水硝酸盐15N和18O同位素在线测试技术研究”(P311~318)分别从总体进展和实际应用方面对在线和现场分析技术及其应用作了诠释。
标准物质研制从来都是分析测试技术领域中最基础、最重要的工作之一。如何进行同位素样品的均匀性检验?是否可以用样品年龄值作为特性量值进行检验?相信读者可以从“新生代透长石SK01作为39Ar-40Ar法定年标准物质的均匀性检验”一文中(P213~220)获得有用的参考信息。同样对于现有标准物质进行补充完善(P221~228)自然也是一项务实的基础性工作。
关于“不同颜色的淡水养殖珍珠呈色机理”(P263~268),正如文中所述,并没有统一的认识。该文作者利用其采用的技术和样本,获得了一些数据,提出了相关的观点和看法。本刊在这里刊出,供大家参考。然而不能说该文已经提供了充分的证据,至少没有让读者完全信服。是否可以获得广泛认同,还需要大量的数据检验。但该文为构成机理框架的诸多假设、佐证等研究提供了基础数据,无疑也是十分有益的。同样,“安徽金寨县沙坪沟钼矿区铌赋存状态”一文(P269~277)报道了作者们所进行的探索和研究,给出了结论。其结论也还需要大量数据和多种方法、多种途径的广泛论证。这类探索性强,并需要进一步检验和论证的文章,无疑是我们《岩矿测试》要大力发掘并选择发表的论文。
了解、认知、掌控未知世界的每一个细节,是我们遥远的梦想。对于科学真谛的不懈探索和艰苦追寻过程,是我们平日里最朴素的生活。我们崇尚辛勤的劳动和无私付出,崇尚自由平凡和知足的生活。
新的一年,愿您拥有最朴素的生活和最遥远的梦想!
主编:罗立强
2013年2月18日
贵州雨谷村
-
图 1 熔体包裹体显微照片
a~g—华北新生代玄武岩橄榄石中熔体包裹体;h~i—Tahaa岛玄武岩橄榄石中次生熔体,修改自Schiano[
8 ];PMI—原生熔体包裹体;SMI—次生熔体包裹体。Figure 1. Photomicrographs of primary and secondary melt inclusion
图 4 不同期次形成锆石球粒陨石标准化REEs分布模式图(修改自Pettke等[41])
Figure 4. Comparison of trends in chondrite-normalized REEs patterns for zircon evolving from magmatic to hydrothermal crystallization
表 1 熔体包裹体成分分析技术
Table 1 Analytical techniques of chemical composition of melt inclusion
方法 特点 样品制备 可分析数据 参考文献 傅里叶变换红外吸收光谱(FTIR) 非破坏性分析,对于H2O、CO2具有极高的灵敏度和精度,但是样品制备困难,且空间分辨率低(>30 μm) 双面抛光薄片,需知薄片精确厚度、透明度及消光系数 熔体包裹体玻璃中溶解性的H2O、CO2含量及赋存形式 [11-12] 显微激光拉曼光谱(LRS) 非破坏性分析,只适宜检测流体中元素组成的分子基团,检出限1%~2%,测出的各项结果均为相对含量 抛光薄片 熔体包裹体收缩气泡中的挥发份,主要为CO2、N2、CH4、SO2、H2S及有机气体等;鉴定包裹体中结晶矿物 [13] 同步辐射X射线荧光光谱(SR-XRF) 非破坏性分析,检出限10-6,无法确定镁盐成分 抛光薄片或单矿物颗粒,包裹体均一化,暴露于表面 主量及微量元素 [14-15] 质子诱发X射线光谱(PIXE) 非破坏性分析,灵敏度高(μg/g),可穿入主矿物数十微米,但要求主矿物成分简单 双面抛光薄片,包裹体均一化,包裹体靠近样品表面 测定包裹体中Z>13的元素 [16] 电子探针(EPMA) 检出限>1%,用于分析主量元素,且只适用于分析固相样品,无法进行空间分析 抛光薄片或单矿物颗粒,包裹体均一化,暴露于表面 主量、部分微量元素和一些挥发性元素(如F、Cl和S) [17-18] 离子探针(SIMS) 高空间分辨(<20 μm),检出限10-6,空间原位分析时寄主矿物剥蚀过慢,且具有极强的基体效应 抛光薄片或单矿物颗粒,包裹体均一化,暴露于表面 微量元素和挥发性元素含量,稳定同位素特征和Pb同位素 [19-22] 激光剥蚀多接收器电感耦合等离子体质谱(LA-MC-ICPMS) 高空间分辨率,高灵敏度,低检出限(10-9~10-6),可同时测定主量及微量元素 抛光薄片或单矿物颗粒,包裹体均一化,暴露于表面;或者直接对距离样品表面100 μm以下的包裹体进行分析 主量、微量元素,同位素等,不能测定挥发份(F、Cl、H2O等) [23-25] -
夏林圻.岩浆岩中的熔体包裹体 [J].地学前缘, 2002, 9(2): 403-414. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200202031.htm Danyushevsky L V, Della-Pasqua F N, Sokolov S. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: Petrological implications[J]. Contributions to Mineralogy and Petrology, 2000, 138(1): 68-83. doi: 10.1007/PL00007664
Danyushevsky L V, McNeill A W, Sobolev A V. Experi-mental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: An overview of techniques, advantages and complications [J]. Chemical Geology, 2002, 183(1-4): 5-24. doi: 10.1016/S0009-2541(01)00369-2
Qin Z, Lu F, Anderson A T. Diffusive reequilibration of melt and fluid inclusions [J]. American Mineralogist, 1992, 77(5-6): 565-576.
Gaetani G A,Watson E B. Open system behavior of olivine-hosted melt inclusions [J]. Earth and Planetary Science Letters, 2000, 183(1-2): 27-41. doi: 10.1016/S0012-821X(00)00260-0
Sobolev A V, Danyushevsky L V. Petrology and Geoch-emistry of Boninites from the North Termination of the Tonga Trench: Constraints on the generation conditions of primary high-Ca boninite magmas [J]. Journal of Petrology, 1994, 35(5): 1183-1211. doi: 10.1093/petrology/35.5.1183
卢焕章,范洪瑞,倪培,欧光习,沈昆,张文淮.流体包裹体[M].北京:科学出版社,2004. Schiano P. Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals [J]. Earth-Science Reviews, 2003, 63(1-2): 121-144. doi: 10.1016/S0012-8252(03)00034-5
Frezzotti M-L.Silicate-melt inclusions in magmatic rocks: Applications to petrology [J]. Lithos, 2001, 55(1-4): 273-299. doi: 10.1016/S0024-4937(00)00048-7
Marshall D J. Cathodoluminescence of Geological Materials [M]. Boston: Unwin Hyman,1988: 146.
Lowenstern J B. Chlorine, fluid immiscibility, and de-gassing in peralkaline magmas from Pantelleria, Italy [J].American Mineralogist,1994, 79(3-4): 353-369.
Zhang Y, Belcher R, Ihinger P D, Wang L, Xu Z, Newman S. New calibration of infrared measurement of dissolved water in rhyolitic glasses [J]. Geochimica et Cosmochimica Acta, 1997, 61(15): 3089-3100. doi: 10.1016/S0016-7037(97)00151-8
Burke E A J. Raman microspectrometry of fluid inclusions [J]. Lithos, 2001, 55(1-4): 139-158. doi: 10.1016/S0024-4937(00)00043-8
于福生,袁万明,韩松,靳克,黄宇营,何伟,董金泉,贾秀琴,曹杰,王红月.同步辐射X射线荧光微探针技术测定熔融包裹体中的微量元素[J].高能物理与核物理, 2004, 28(6): 675-678. http://www.cnki.com.cn/Article/CJFDTOTAL-KNWL200406021.htm 周云,汪雄武,唐菊兴,秦志鹏,彭慧娟,李爱国,杨科,王华,李炯,张继超.西藏甲玛铜多金属矿含矿斑岩石英斑晶单个熔融包裹体的成分研究 [J].成都理工大学学报, 2011, 38(1): 92-102. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201101015.htm Harris A C, Kamenetsky V S, White N C, van Achter-bergh E, Ryan C G. Melt inclusions in veins: Linking magmas and porphyry Cu deposits [J]. Science, 2003, 302(5653): 2109-2111. doi: 10.1126/science.1089927
Zajacz Z, Szabó C. Origin of sulfide inclusions in cumulate xenoliths from Nógrád-Gömör volcanic field, Pannonian Basin (North Hungary/South Slovakia) [J]. Chemical Geology, 2003, 194(1-3): 105-117. doi: 10.1016/S0009-2541(02)00273-5
Pettke T, Halter W E, Webster J D, Aigner-Torres M, Heinrich C A. Accurate quantification of melt inclusion chemistry by LA-ICPMS: A comparison with EMP and SIMS and advantages and possible limitations of these methods [J]. Lithos, 2004, 78(4): 333-361. doi: 10.1016/j.lithos.2004.06.011
Sobolev A V, Shimizu N. Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge [J]. Nature, 1993, 363(6425): 151-154. doi: 10.1038/363151a0
Sobolev A V, Chaussidon M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle [J]. Earth and Planetary Science Letters, 1996, 137(1-4): 45-55. doi: 10.1016/0012-821X(95)00203-O
Hauri E, Wang J, Dixon J E, King P L, Mandeville C, Newman S. SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR [J]. Chemical Geology, 2002, 183(1-4): 99-114. doi: 10.1016/S0009-2541(01)00375-8
Panina L I, Usoltseva L M. Alkaline-ultrabasic mantle-derived magmas, their sources, and crystallization features: Data of melt inclusion studies [J]. Lithos, 2008, 103(3-4): 431-444. doi: 10.1016/j.lithos.2007.10.009
Taylor R P, Jackson S E, Longerich H P, Webster J D. In situ trace-element analysis of individual silicate melt inclusions by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) [J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2559-2567. doi: 10.1016/S0016-7037(97)00109-9
Halter W E, Pettke T, Heinrich C A, Rothen-Rutishauser B. Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: Methods of quantification [J]. Chemical Geology, 2002, 183(1-4): 63-86. doi: 10.1016/S0009-2541(01)00372-2
Zajacz Z, Halter W. LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: Quantification, data analysis and mineral/melt partitioning [J]. Geochimica et Cosmochimica Acta, 2007, 71(4): 1021-1040. doi: 10.1016/j.gca.2006.11.001
Halter W E, Pettke T, Heinrich C A. The Origin of Cu/Au ratios in porphyry-type ore deposits [J]. Science, 2002, 296(5574): 1844-1846. doi: 10.1126/science.1070139
Hauri E. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions [J]. Chemical Geology, 2002, 183(1-4): 115-141. doi: 10.1016/S0009-2541(01)00374-6
Guillong M, Pettke T. Depth dependent element ratios in fluid inclusion analysis by laser ablation ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 2012, 27(3): 505-508. doi: 10.1039/c2ja10147e
Halter W E, Heinrich C A, Pettke T. Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex Ⅱ: Evidence for magma mixing and magma chamber evolution [J]. Contributions to Mineralogy and Petrology, 2004, 147(4): 397-412. doi: 10.1007/s00410-004-0563-5
Zajacz Z, Halter W E, Pettke T, Guillong M. Deter-mination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: Controls on element partitioning [J]. Geochimica et Cosmochimica Acta, 2008, 72(8): 2169-2197. doi: 10.1016/j.gca.2008.01.034
Heinrich C A, Pettke T, Halter W E, Aigner-Torres M, Audétat A, G nther D, Hattendorf B, Bleiner D, Guillong M, Horn I. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry [J]. Geochimica et Cosmochimica Acta, 2003, 67(18): 3473-3497. doi: 10.1016/S0016-7037(03)00084-X
Liu Y, Hu Z, Yuan H, Hu S, Cheng H. Volume-optional and low-memory (VOLM) chamber for laser ablation-ICP-MS: Application to fiber analyses [J]. Journal of Analytical Atomic Spectrometry, 2007, 22(5): 582-585. doi: 10.1039/b701718a
Eggins S M, Kinsley L P J, Shelley J M G. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS [J]. Applied Surface Science, 1998, 127-129: 278-286. doi: 10.1016/S0169-4332(97)00643-0
Russo R E, Mao X, Liu H, Gonzalez J, Mao S S. Laser ablation in analytical chemistry-A review [J]. Talanta, 2002, 57(3): 425-451. doi: 10.1016/S0039-9140(02)00053-X
Jeffries T E, Pearce N J G, Perkins W T, Raith A. Chemical fractionation during infrared and ultraviolet laser ablation inductively coupled plasma mass spectrometry-implications for mineral microanalysis [J]. Analytical Communications, 1996, 33(1): 35-39. doi: 10.1039/AC9963300035
张春来,刘勇胜,高山,Zoltan Z,胡兆初,高长贵.四合屯玄武岩斑晶中单个熔体包裹体元素组成及其对岩浆演化的指示 [J].地球化学, 2011, 40(2): 109-125. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201102001.htm Hu Z, Liu Y, Chen L, Zhou L, Li M, Zong K, Zhu L, Gao S. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution [J]. Journal of Analytical Atomic Spectrometry, 2011,26(2): 425-430. doi: 10.1039/C0JA00145G
Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
胡明月,何红蓼,詹秀春,樊兴涛,王广,贾泽荣.基体归一定量技术在激光烧蚀-等离子体质谱法锆石原位多元素分析中的应用 [J].分析化学, 2008,36(7): 947-953. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200807021.htm de Hoog J C M, Mason P R D, van Bergen M J. Sulfur and chalcophile elements in subduction zones: constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia [J].Geochimica et Cosmochimica Acta, 2001, 65(18): 3147-3164. doi: 10.1016/S0016-7037(01)00634-2
Pettke T, Audétat A, Schaltegger U, Heinrich C A. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia): Part Ⅱ: Evolving zircon and thorite trace element chemistry [J]. Chemical Geology, 2005, 220(3-4): 191-213. doi: 10.1016/j.chemgeo.2005.02.017
Elburg M A, Kamenetsky V S, Foden J D, Sobolev A. The origin of medium-K ankaramitic arc magmas from Lombok (Sunda Arc, Indonesia): Mineral and melt inclusion evidence [J]. Chemical Geology, 2007, 240(3-4): 260-279. doi: 10.1016/j.chemgeo.2007.02.015
Guzmics T, Zajacz Z, Kodolányi J, Halter W, Szabó C. LA-ICP-MS study of apatite- and K feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from lamprophyres, Hungary: Implications for significance of carbonatite melts in the Earth′s mantle [J]. Geochimica et Cosmochimica Acta, 2008, 72(7): 1864-1886. doi: 10.1016/j.gca.2008.01.024
Araújo D P, Griffin W L, O′Reilly S Y. Mantle melts, metasomatism and diamond formation: Insights from melt inclusions in xenoliths from Diavik, Slave Craton [J]. Lithos, 2009, 112(Supplement 2): 675-682.
Daví M, De Rosa R, Barca D. A LA-ICP-MS study of minerals in the Rocche Rosse magmatic enclaves: Evidence of a mafic input triggering the latest silicic eruption of Lipari Island (Aeolian Arc, Italy) [J]. Journal of Volcanology and Geothermal Research, 2009, 182(1-2): 45-56. doi: 10.1016/j.jvolgeores.2009.02.001
Zajacz Z, Hanley J J, Heinrich C A, Halter W E, Guillong M. Diffusive reequilibration of quartz-hosted silicate melt and fluid inclusions: Are all metal concentrations unmodified?[J]. Geochimica et Cosmochimica Acta, 2009, 73(10): 3013-3027. doi: 10.1016/j.gca.2009.02.023
Marques A F A, Scott S D, Guillong M. Magmatic degassing of ore-metals at the Menez Gwen: Input from the Azores plume into an active Mid-Atlantic Ridge seafloor hydrothermal system [J]. Earth and Planetary Science Letters, 2011, 310(1-2): 145-160. doi: 10.1016/j.epsl.2011.07.021
Audétat A, Pettke T. The magmatic-hydrothermal evol-ution of two barren granites: A melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA) [J]. Geochimica et Cosmochimica Acta, 2003, 67(1): 97-121. doi: 10.1016/S0016-7037(02)01049-9
Beaudoin Y, Scott S D, Gorton M P, Zajacz Z, Halter W. Pb and other ore metals in modern seafloor tectonic environments: Evidence from melt inclusions [J]. Marine Geology, 2007, 242(4): 271-289. doi: 10.1016/j.margeo.2007.04.004
Marchev P, Georgiev S, Zajacz Z, Manetti P, Raicheva R, von Quadt A, Tommasini S. High-K ankaramitic melt inclusions and lavas in the Upper Cretaceous Eastern Srednogorie continental arc, Bulgaria: Implications for the genesis of arc shoshonites [J]. Lithos, 2009, 113(1-2): 228-245. doi: 10.1016/j.lithos.2009.03.014
Roeder P L, Emslie R F. Olivine-liquid equilibrium [J]. Contributions to Mineralogy and Petrology, 1970, 29(4): 275-289. doi: 10.1007/BF00371276
Grove T L, Baker M B. Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends [J]. Journal of Geophysical Research, 1984, 89(B5): 3253-3274. doi: 10.1029/JB089iB05p03253
Kogiso T, Hirschmann M M, Frost D J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts [J]. Earth and Planetary Science Letters, 2003, 216(4): 603-617. doi: 10.1016/S0012-821X(03)00538-7
Kogiso T, Hirschmann M M. Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions [J]. Contributions to Mineralogy and Petrology, 2001, 142(3): 347-360. doi: 10.1007/s004100100295
Zajacz Z, Halter W. Copper transport by high temper-ature, sulfur-rich magmatic vapor: Evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile) [J]. Earth and Planetary Science Letters, 2009, 282(1-4): 115-121. doi: 10.1016/j.epsl.2009.03.006
Dsnyushevsky L V, Sokolov S, Falloon T J. Melt inclusions in olivine phenocrysts: Using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks [J]. Journal of Petrology,2002,43(9): 1651-1671. doi: 10.1093/petrology/43.9.1651
Lassiter J C, Hauri E H, Nikogosian I K, Barsczus H G. Chlorine-potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands: Constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust [J]. Earth and Planetary Science Letters, 2002, 202(3-4): 525-540. doi: 10.1016/S0012-821X(02)00826-9
Seo J H, Guillong M, Aerts M, Zajacz Z, Heinrich C A. Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS [J].Chemical Geology,2011,284(1-2): 35-44.
Ren Z Y, Ingle S, Takahashi E, Hirano N, Hirata T. The chemical structure of the Hawaiian mantle plume [J]. Nature, 2005, 436(7052): 837-840. doi: 10.1038/nature03907
Gunn B M, Coy-Yll R, Watkins N D, Abranson C E, Nougier J. Geochemistry of an oceanite-ankaramite-basalt suite from East Island, Crozet Archipelago [J]. Contributions to Mineralogy and Petrology,1970,28(4): 319-339. doi: 10.1007/BF00388954
Schiano P, Eiler J, Hutcheon I, Stolper E. Primitive CaO-rich, silica-undersaturated melts in island arcs: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas [J]. Geochemistry, Geophysics, Geosystems, 2000, 1(5): 1999GC000032.
Danyushevsky L V, Leslie R A J, Crawford A J, Durance P. Melt inclusions in primitive olivine phenocrysts: The role of localized reaction processes in the origin of anomalous compositions [J]. Journal of Petrology, 2004, 45(12): 2531-2553. doi: 10.1093/petrology/egh080
Reed M J, Candela P A, Piccoli P M. The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800℃ and 200 MPa [J]. Contributions to Mineralogy and Petrology, 2000, 140(2): 251-262. doi: 10.1007/s004100000182
Gao S, Rudnick R L, Xu W-L, Yuan H-L, Liu Y-S, Walker R J, Puchtel I S, Liu X, Huang H, Wang X-R, Yang J. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton [J]. Earth and Planetary Science Letters, 2008, 270(1-2): 41-53. doi: 10.1016/j.epsl.2008.03.008
Burnham C W, Ohmoto H. Late-stage processes of felsic magma [J]. Mining Geology, 1980, 8(Special Issue): 1-11.
Hattori K. High-sulfur magma, a product of fluid dis-charge from underlying mafic magma: Evidence from Mount Pinatubo, Philippines [J].Geology,1993,21(12): 1083-1086. doi: 10.1130/0091-7613(1993)021<1083:HSMAPO>2.3.CO;2
Hattori K, Sato H. Magma evolution recorded in plagio-clase zoning in 1991 Pinatubo eruption products [J]. American Mineralogist, 1996, 81(7): 982-994.
Hattori K H, Keith J D. Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA [J]. Mineralium Deposita, 2001, 36(8): 799-806. doi: 10.1007/s001260100209
孙艺,赖勇,陈静,舒启海.岩浆残余富集和流体叠加对稀土配分的影响: 熔融包裹体原位LA-ICP-MS研究 [J].矿物学报, 2011(Z1): 291-292. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1149.htm Glaus R, Kaegi R, Krumeich F, Günther D. Pheno-menological studies on structure and elemental composition of nanosecond and femtosecond laser-generated aerosols with implications on laser ablation inductively coupled plasma mass spectrometry [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(9-10): 812-822. doi: 10.1016/j.sab.2010.07.005
Paul B, Woodhead J D, Hergt J, Danyushevsky L, Kunihiro T, Nakamura E. Melt inclusion Pb-isotope analysis by LA-MC-ICPMS: Assessment of analytical performance and application to OIB genesis [J]. Chemical Geology, 2011, 289(3-4): 210-223. doi: 10.1016/j.chemgeo.2011.08.005
Martin A J, Gehrels G E, DeCelles P G. The tectonic significance of (U,Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal [J]. Chemical Geology, 2007, 244(1-2): 1-24. doi: 10.1016/j.chemgeo.2007.05.003