Determination of Aluminum Oxide in Rare Earth Ore by Inductively Coupled Plasma-Atomic Emission Spectrometry
-
摘要: 铝是稀土矿石常检的杂质元素,目前采用电感耦合等离子体发射光谱法(ICP-AES)基体匹配校正模式测定矿石中的铝量,对基体中铝的空白及基体量有一定的要求;且稀土矿石的品种很多,铝在其中的存在形式也较复杂,简单的酸溶很难彻底地将铝转入溶液中进行准确测定。本文采用碱熔法处理样品,滤液酸化后用ICP-AES测定稀土矿石中的Al2O3。通过共存元素干扰实验发现样品中的稀土元素及钍对铝的测定产生严重的光谱干扰,提出预先以碱分离除去消除干扰,有效地降低了检测下限;采用基体校正模式,消除了盐分对测定的影响。方法检出限为0.021~0.035 mg/g,测定范围为0.50%~8.00%,精密度(RSD) < 7.1%。对不同含量的样品进行分析,测定值与化学容量法测定结果基本相符。该方法具有测定含量范围宽、分析速度快、结果准确等优点。
-
关键词:
- 稀土矿石 /
- 三氧化二铝 /
- 碱熔 /
- 电感耦合等离子体发射光谱法
Abstract: The element Al is determined frequently in rare earth ore since Al is a common impurity element in this ore. At present, the Inductively Coupled Plasma-Atomic Emission Spectrometric (ICP-AES) method, which has certain requirements of the Al blank and the matrix concentration, is used to determine the content of Al in ore with a matrix matching calibration. Because Al has complicated patterns in many kinds of rare earth ores, it is difficult to dissolve Al completely into solution for determination by a routine acid-leaching method. In this paper, a new method is described, whereby the sample is digested by alkali fusion and the filtrate acidulated before the content Al in rare earth ore is determined by ICP-AES. The effect of spectrum interferences of REEs and Th on the Al was studied. The detection limit was reduced effectively by eliminating the interferences of coexisting elements. The matrix correction mode was undertaken to eliminate the salt influence. The determination limit of the method was from 0.021 mg/g to 0.035 mg/g and the determination content range was from 0.50 % to 8.00%. The RSD was less than 7.1%. The result of the samples with the presented method is consistent with the volumetric method. The method is fast with a wide measuring range and extremely high precision. -
1. 祖母绿的基本结构特性
祖母绿,由Cr致色,属环状硅酸盐矿物,六方晶系,空间群D6h2-P6/mcc,[SiO4]、[BeO4]和[AlO6]以6︰3︰2的比例组成Be3A12[Si6O18]。结构中[SiO4]四面体以两个角顶联结在平面上,形成封闭的六方环,垂直c轴平行排列。上下两环错动25°,环之间由Al3+和Be2+连接,铝配位数为6,铍配位数为4。[AlO6]八面体和[BeO4]四面体以共棱的方式连结,分布在环的外侧[3-6]。环中心平行于c轴,为连通性较好的结构通道,可容纳Na+、K+、Cs+等大半径离子和水分子。由于环状结构的离子堆积程度较差,晶格中部分Al、Be可被Cr、Fe、Mg、Mn、Li等类质同象替代[1,3]。
2. 新疆祖母绿产地和主要特性
2.1 新疆祖母绿的产地
新疆祖母绿矿区位于西昆仑、喀喇昆仑、帕米尔构造单元的结合处。东北部属塔里木板块南缘活动带公格尔—喀拉塔什中间地块的西北段;西南部属华南板块羌塘微板块的一部分。
该区域祖母绿多产在碳酸盐岩脉中,碳酸盐岩脉主要以斜交脉、顺层脉产于片岩、片麻岩、炭质页岩中,以脉状、透镜状、雁行状为主,走向以北西向为主[7-9]。
2.2 新疆祖母绿的主要特性
新疆祖母绿晶体多呈绿色、翠绿色;半透明—透明;短柱状或长柱状,长1~8 cm,对径0.5~3 cm,玻璃光泽,摩氏硬度为7.5,密度2.70 g/cm3;多为非均质体,具一轴晶,有负光性;折射率1.574~1.576,双折射率0.005~0.009。
3. 新疆祖母绿测试分析
采用EPMA和XRD测试技术,对新疆祖母绿成分及结构的研究非常重要。为此,作者利用XRD对新疆祖母绿典型样品进行测试分析,从而获取一些初步研究结果,对进一步深入研究新疆祖母绿具有重要的矿物学研究意义。
3.1 电子探针分析
3.1.1 化学成分分析
本次EPMA测试分析样品,采用产于新疆的天然祖母绿典型样品,粗粒状,翠绿色。利用日本电子公司JXA-733探针-扫描电子显微镜,测定新疆天然祖母绿的化学成分,结果见表 1[9]。
表 1 新疆祖母绿电子探针显微成分分析Table 1. Analytical results of components in emeralds from Xinjiang by EPMA原编号 样品名称 wB/% SiO2 Al2O3 K2O FeO CaO MgO Cr2O3 TiO2 MnO Na2O 总计 08TY-1 祖母绿 66.21 16.39 0.03 1.13 0.13 1.33 0.32 0.01 0.00 1.02 86.57 08TY-2 祖母绿 67.66 15.04 0.02 0.86 0.06 1.57 0.21 0.03 0.04 0.71 86.20 08TY-3 祖母绿 65.78 16.28 0.09 1.50 0.12 1.61 0.54 0.03 0.03 0.88 86.86 由表 1可见,样品主要成分为:SiO2 (65.78 %~67.66%)、Al2O3 (15.04%~16.39%)、K2O (0.02%~0.09%)、FeO (0.86%~1.50%)、CaO (0.06%~0.13%)、MgO (1.33%~1.61%)、Cr2O3 (0.21%~0.54%)、TiO2 (0.01%~0.03%)、MnO (0.00%~0.04%)、Na2O (0.71%~1.02%) 等。
祖母绿晶体中Cr2O3含量一般为0.15%~0.20%,深绿色晶体可达0.50%~0.60%;绿柱石中SiO2含量为66.90%,Al2O3含量为19.0%[1,10]。
新疆祖母绿较之绿柱石,SiO2和Al2O3均有大量类质同像替代存在。较之祖母绿理论含量,新疆祖母绿中Cr2O3含量较高,所呈颜色多在翠绿至深绿之间。
3.1.2 环带成分差异
新疆祖母绿样品存在同心圆状颜色环带,环带间颜色有明显差异,特征如下 (见表 2):①外环颜色显深绿色,内环颜色明显较浅。从成分上分析,祖母绿 (外环) Cr2O3含量明显高于祖母绿 (内环)[9]。②祖母绿 (外环) FeO含量明显高于祖母绿 (内环)。③外环K2O+Na2O总量明显低于内环;且碱 (Na2O+K2O) 含量有较宽的变化范围 (0.36%~1.17%)。
表 2 新疆祖母绿电子探针成分分析Table 2. Analytical results of components in emeralds from Xinjiang by EPMA样品名称 wB/% SiO2 Al2O3 K2O FeO CaO MgO Cr2O3 TiO2 MnO Na2O 总计 祖母绿 (内环) 65.30 16.36 0.15 1.26 0.18 1.72 0.43 0.02 0.02 0.95 86.39 祖母绿 (外环) 66.25 16.20 0.04 1.74 0.06 1.50 0.65 0.05 0.03 0.81 87.33 3.2 X射线衍射分析
选择具有典型代表性的新疆祖母绿 (绿柱石),利用D/MAX-3A X射线衍射仪 (日本理学公司) 对粉末样品进行分析。所得祖母绿样品的晶胞参数为:a0=0.9233 nm,c0=0.9206 nm,Z=2,主要粉晶谱线为2.871 (100)、3.257 (100)、7.996 (100),详见图 1和表 3。
表 3 新疆祖母绿X射线衍射数据Table 3. X-ray diffractometric data of emeralds from Xinjiang序号 d hkl 第一次 第二次 第三次 平均值 1 7.993 7.997 7.997 7.996 100 2 4.594 4.594 4.594 4.594 110,002 3 3.984 3.984 3.984 3.984 200,102 4 3.257 3.257 3.257 3.257 112 5 3.017 3.018 3.018 3.018 210,202 6 2.871 2.871 2.871 2.871 211 7 2.525 2.526 2.526 2.526 212 8 2.297 2.297 2.297 2.297 220,302 9 2.208 2.207 2.207 2.207 104 10 2.155 2.155 2.155 2.155 311 11 1.992 1.992 1.992 1.992 312,204 12 1.835 1.835 320,402 13 1.797 1.797 1.797 1.797 321,313 14 1.741 1.741 1.741 1.741 304 15 1.715 1.715 1.715 1.715 411 16 1.629 1.628 1.629 1.629 412,224 17 1.600 1.600 1.600 1.600 500,314 18 1.571 1.571 1.571 323 19 1.532 1.532 1.532 1.532 006 20 1.517 1.517 1.517 1.517 413 21 1.460 1.460 1.460 1.460 116 22 1.436 1.434 1.436 1.435 510,422 23 1.371 1.371 1.371 1.371 512 祖母绿晶体发生类质同象替代,会对祖母绿的晶胞参数产生影响。如Me类质同象代替Al,导致Me—O键长变长,八面体体积增大,由此挤压c轴方向致使八面体发生形变。a轴方向键长变长也会影响晶胞参数a的值。四面体配位中Li+代替Be2+,使Me—O键长增加,伴随着c值的增加。绿柱石理论晶胞参数为a=0.9188 nm,c=0.9189 nm,c/a为0.997~0.998,据c/a比值可将绿柱石分为以下两种类型[11-13]。
(1) 以Al3+的八面体类质同象替代为主的绿柱石。c/a为0.991~0.998,随替代量增加,其a值增加,c值保持稳定。
(2) 以Li+→Be2+的四面体替代为主的绿柱石。c/a为0.999~1.003,随替代量增加,a值保持稳定,c值增加。
由图 1和表 2可见,新疆祖母绿样品的X射线衍射线的主要峰位置与强度几乎吻合,a0=0.9233 nm,c0=0.9206 nm,Z=2。样品晶胞参数a、c值 (c/a=0.997) 与标准绿柱石相比,表明新疆祖母绿晶体晶格中存在大量Al的类质同相替代,这与本文化学成分分析结果一致。测定的c/a值表明新疆祖母绿以[A1O6]八面体类质同象替代为主。
4. 结语
(1) 新疆祖母绿化学成分中Cr2O3含量较高,一般为0.21%~0.54%。测得样品晶胞参数为:a0=0.9233 nm,c0=0.9206 nm,Z=2,主要粉晶谱线为2.871 (100)、3.257 (100)、7.996 (100)。
(2) 新疆祖母绿较之标准绿柱石,其SiO2和Al2O3均有大量类质同像替代存在。
(3) 测定的c/a值表明,新疆祖母绿属于以[A1O6]八面体类质同象替代为主的绿柱石。
新疆祖母绿是我国的又一种高档宝石,在一定程度上填补了我国优质祖母绿宝石的空白。多项测试数据表明,新疆祖母绿具有高品质祖母绿宝石的特征,对其研究工作需要多角度、全方面深入。本文仅从电子探针显微分析 (EPMA) 和X射线衍射 (XRD) 测试结果与晶体结构的角度进行了分析,对新疆祖母绿晶体化学特征进行了初探,以供进一步工作参考。
-
表 1 熔剂的选择
Table 1 Choice of alkali dissolution flux
稀土矿石
样品种类氢氧化钠+过氧化钠 碳酸钠+硼酸
(质量比2∶1)包头矿 清亮 清亮 四川矿 清亮 有不溶物(少量) 独居石 清亮 有不溶物(大量) 表 2 熔剂配比的影响
Table 2 Effect of flux ratio
氢氧化钠+
过氧化钠配比空白测定值
ρ(Al)/(μg·mL-1)w(Al2O3)/% 5 g+1 g 0.007 2.03 5 g+2 g 0.007 2.04 4 g+1 g 0.007 2.09 4 g+2 g 0.007 2.08 表 3 过滤条件选择
Table 3 Choice of filter conditions
w(Al2O3)/% 稀土矿石
样品种类碱分离,过滤洗涤测定 直接定容,
干过滤滤液中
Al2O3的含量滤液中
Al2O3的含量残渣中
Al2O3的含量包头矿 0.40 0.02 0.45 四川矿 1. 47 0.07 1.62 独居石 4.12 0.05 4.34 包头矿标准样品 1.90 0.10 2.09 表 4 放置时间的选择
Table 4 Choice of standing time
w(Al2O3)/% 放置时间
t/h包头稀土矿标准样品
Al2O3测定值0 2.09 0.25 2.07 0.50 2.09 0.75 2.00 1.0 1.97 2.0 1.81 3.0 1.69 24.0 1.50 表 5 共存元素的干扰实验
Table 5 Interference test of co-existing ions
分析波长
λ/nm干扰元素限量/% Ca Mg Fe Mn Th P Ni La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y 308.2 - - 40 32 0.61 - 89 - - 0 36 - 50 0.4 1.5 - - 0 21 50 - - 309.2 - - 40 56 - - 89 - - - 0 16 12 25 36 36 6 32 - - 13 36 237.3 20 25 - 58 - - - - - 2 48 5 36 - - - 14 - 23 - - 45 394.4 26 80 10 64 - - 23 3 0 0.5 4 3 10 6 - - 13 - - - - - 396.1 40 - 70 50 - - - - 17 2 3 - - 21 25 25 16 - - - - - 表 6 基体效应
Table 6 Matrix effect
稀土矿石
样品种类基体校正因子 盐分稀释5倍 盐分稀释10倍 盐分稀释20倍 包头矿 0.78 0.91 0.95 四川矿 0.82 0.92 0.95 独居石 0.85 0.91 0.96 铁矿石 0.81 0.91 0.95 表 7 方法测定下限
Table 7 Detection limits of the method
分析波长
λ/nm标准偏差
s/(mg·g-1)方法检出限
3s/(mg·g-1)测定下限
30s/(mg·g-1)308.2 0.012 0.035 0.35 309.2 0.0096 0.029 0.29 237.3 0.011 0.034 0.34 396.1 0.0070 0.021 0.21 表 8 方法精密度
Table 8 Precision tests of the method
稀土矿石
样品种类w(Al2O3)/% RSD/% 11次测定值 平均值 包头矿 0.51 0.48 0.46 0.44 0.42 0.49 0.457 7.1 0.47 0.48 0.45 0.42 0.41 四川矿
(加标)1.67 1.62 1.71 1.74 1.79 1.59 1.680 4.4 1.59 1.69 1.60 1.69 1.79 独居石 4.35 4.34 4.38 4.24 4.24 4.35 4.310 1.4 4.30 4.29 4.33 4.21 4.38 表 9 方法对照实验
Table 9 Comparison of analytical results of Al2O3 by analytical methods
稀土矿石
样品种类w(Al2O3)/% 相对偏差/% ICP-AES法 化学容量法 独居石 4.310 4.280 0.70 包头矿 0.457 0.472 -3.18 四川矿(加标) 1.680 1.697 1.00 -
冯静.稀土矿石成分分析标准物质的研制[J].化学分析计量,2005,14(4): 1-3,27. http://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ200504000.htm 孙肃,白立忠,于化琴.降低氯化钕溶液中铝离子的工艺研究[J].无机盐工业,2007,39(11): 34-35. doi: 10.3969/j.issn.1006-4990.2007.11.011 程明焱,刘和连,吴伟明,罗飞扬,孙仙源,李安运,陈金清.稀土分析检测方法标准述评[J].有色金属科学与工程,2012,3(4): 108-114. http://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201204021.htm 黎香荣,陈永欣,吕泽娥,罗明贵,谢毓群,刘顺琼,阮贵武.乳化剂增敏铬天青S分光光度法测定铜精矿中的铝[J].分析化学,2009,37(Z1): B142. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGHY200910003240.htm 熊维巧,张霞铝.试剂示差光度法测定砂岩矿中的三氧化二铝[J].中国非金属矿工业导刊,2005(6): 40-42. http://www.cnki.com.cn/Article/CJFDTOTAL-LGFK200506012.htm 刘建华.分光光度法测定硅铝矿渣中铝的含量[J].武汉化工学院学报,2006,28(2): 20-21. http://www.cnki.com.cn/Article/CJFDTOTAL-WHHG200602005.htm 赵树宝.EDTA络合滴定法连续测定铁矿石中铝铅锌[J].冶金分析,2011,31(11): 66-69. doi: 10.3969/j.issn.1000-7571.2011.11.014 孟亚东,孙洛新,傅晓强.氟盐取代-EDTA滴定法测定铝土矿中铝量[J].岩矿测试,2008,27(6): 475-476. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200806016.htm 孙哲平.高铝岩矿中Fe、A1、Ti的EDTA滴定[J].现代科学仪器,2005(5): 71-73. 殷凤玲.铝镁尖晶石中铝、钛、钙、镁的测定[J].矿业快报,2008(12): 110-111. http://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200812041.htm 周尚元.肖伟.铝镁碳砖中三氧二铝的测定[J].湖南冶金,2003,31(1): 44-45. 于永生,王艳蕊,王景霞.珍珠岩矿中Si、Al、Ti含量的测定[J].信阳师范学院学报:自然科学版,2010,23(2): 278-280. http://www.cnki.com.cn/Article/CJFDTOTAL-XYSK201002031.htm 皮业华,光红琼.王啸群.炉渣中铝的测定[J].资源环境与工程,2007,21(5): 613-614. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200705026.htm 胡顺峰,王霞,郭合颜,金伟.电感耦合等离子体发射光谱法测定红土镍矿石中镍铬镁铝钴[J].岩矿测试,2011,30(4): 465-468. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201104019.htm 张超,李享.电感耦合等离子体发射光谱法测定镍矿石中镍铝磷镁钙[J].岩矿测试,2011,29(4): 473-476. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201104021.htm 吕新明,贺国庆,赵晶晶.电感耦合等离子体发射光谱法测定铅精矿中锌、铜、铝、镁含量[J].分析仪器,2010(1): 43. http://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ201001015.htm 孙喜顺,王彦茹,阎雪.电感耦合等离子体原子发射光谱法测定钒钛铁精矿中的钒钛铝镁锰[J].冶金分析,2011,31(8): 79-82. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201108021.htm 刘稚,丁仕兵,闵国华.电感耦合等离子体原子发射光谱法测定镍矿中镍铝铬镁钴[J].冶金分析,2008, 28(Z1): 621-623. 金献忠,谢健梅,梁帆,朱丽辉,陈建国.碱熔融-电感耦合等离子体原子发射光谱法测定铬矿石中铬铝铁镁硅[J].冶金分析,2010,30(1): 29-33. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201001006.htm
计量
- 文章访问数: 1150
- HTML全文浏览量: 398
- PDF下载量: 15