Determination of Trace Amounts of Pb, Cd, Cu and Ag in High Salinity Water by ICP-AES with Sulfhydryl Cotton Separation and Preconcentration
-
摘要: 矿山企业的冶金废水含有多种污染环境的金属元素,必须经过化学沉淀法处理达标后排放。冶金废水经化学沉淀后引入了大量盐分,使得金属元素含量变得极低给分析测试造成困难。针对此类高盐冶金废水,本文采用巯基棉分离富集其中的金属元素,建立了运用电感耦合等离子体光谱(ICP-AES)测定铅、镉、铜、银的分析方法。通过优化实验表明,巯基棉可有效地分离实际样品中大量存在的硫酸根离子和钠离子基体,富集待测元素的效果显著,硫酸根离子和钠离子回收率均小于0.05%,待测元素的回收率在88.7%~113.0%之间。实验条件方面,待测溶液的pH值对巯基棉吸附有较大的影响,使用巯基棉富集前应将溶液调节至适宜的pH值;待测溶液在富集柱中的流速和洗脱剂盐酸的浓度对分离富集效果也有一定的影响。在最佳实验条件下,本法回收率为95.0%~102.0%,精密度(RSD)为3.1%~9.4%,方法快速简便、准确度高,能够满足冶金废水中痕量金属元素的检测需求。Abstract: Wastewater from mining enterprises contains a variety of heavy metals, and therefore requires treatment before discharge to render it non-toxic. After treatment by chemical precipitation, the content of metal is extremely low but has a large amount of salt introduced, which increases the difficulty of metal analysis in wastewater. A method for enrichment of trace elements from high salinity wastewater is described in this paper. Pb, Cd, Cu and Ag were determined by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) after separating and enriching with sulfhydryl cotton. Optimization experiment results showed that sulthydryl cotton could effectively separate a large number of sulfate ions and sodium ions, and could obviously enrich trace elements in the actual samples. The recovery rates of sulfate ion and sodium ion were all less than 0.05%, and the recovery rates of test target elements were at the rate of 88.7%-113.0%. Moreover, the effect of pH, flow rate of solution and the concentration of hydrochloric acid were investigated. Under optimal instrument conditions, the recoveries of these elements were 95.0%-102.0% and RSDs were 3.1%-9.4%, respectively. The method is rapid and convenient, with high accuracy and good precision, and should satisfy the analysis of metallurgical wastewater.
-
Keywords:
- metallurgical wastewater /
- Pb /
- Cd /
- Cu /
- Ag /
- sulfhydryl cotton /
- Inductively Coupled Plasma-Atomic Emission Spectrometry
-
激光拉曼光谱分析作为一种非破坏性的分析方法,可以快速方便地对单个包裹体进行定性、半定量分析,现已成为流体包裹体研究的基本工具之一[1, 2]。近年来随着仪器精度的提高以及科研的需要,激光拉曼针对包裹体的定量分析的研究发展迅速。定量分析主要涉及包裹体的气[3, 4, 5, 6, 7]、液相[8, 9, 10, 11, 12, 13, 14, 15]以及同位素[16, 17, 18, 19, 20]等化学组成分析以及包裹体的内压[21, 22, 23, 24]、密度[25, 26]、有机质热成熟度[27, 28]等物理参数的获取。而作为包裹体重要成分的各种无机和有机气相组分,由于其一般具有较强的拉曼活性,在拉曼谱图上表现出尖锐而特征的谱峰,因此被认为是进行拉曼定量分析的重要研究对象[29]。国内外学者对包裹体中常见的C-H-O-N-S体系的气相组分开展了比较广泛的定量研究[3, 4, 5, 6, 7],取得了显著的成果。由于气相组分的拉曼定量分析与分子性质、温度、压力、仪器性能等诸多因素有关[3, 4, 29],造成前人结果存在比较明显的差异,难以相互借用,如李维华等[5]与Wopenka等[30]测定的SO2的定量因子有近5倍的差别。因此在进行气相成分的定量分析之前,需要利用一系列混合气体标样对仪器进行标定。前人一般使用商用钢瓶装混合气进行仪器标定[3, 4, 5],虽然上述标样易于购置、配比准确,却存在气体组成单一无法调节、费用高、需要经常更换钢瓶等缺点。如按10%的梯度对10%~90%的两种气体的混合物进行标定,需要购置9瓶钢瓶气轮换使用,并且钢瓶气一定的使用期限,超过期限需要重新购置。针对上述不足,本文提出了一种在线配置不同浓度和压力条件下混合气体标样的方法,以实现快速准确地对激光拉曼探针进行标定及测定气体拉曼定量因子的研究目的。
1. 在线标样制备装置和在线标样的制备
为了实现混合气体标样的制备,本次研究搭建了一套在线标样制备装置(图 1)。该装置可以同时接入三路钢瓶气体,每路钢瓶气分别连接一个减压阀用于控制气体的输出压力;利用带有刻度和活塞的体积转移器量取实验所需体积的气体并将量取的气体注入高压容器中进行混合;增压泵用于对高压容器中的混合气体进行增压;真空泵用于对装置进行抽真空;装置的输出端与石英毛细管相连接;管路中安装有真空表以及压力表用于监控系统的真空度以及线路中气体的压力值;线路中还设有两个排气孔用于排气及管路清洗。
实验所用的钢瓶气为高纯气体,浓度≥99.999%;毛细管规格为内径0.1 mm,外径0.3 mm,表面涂有一层聚酰亚胺保护膜,厚度约0.025 mm(美国Polymicro Technologies公司)。激光拉曼分析的仪器为Renishaw Invia型激光拉曼光谱仪(英国Renishaw公司),使用Ar+激光器,波长为514 nm,光谱分辨率为2 cm-1。
在线混合气体标样制备的实验步骤如下。
(1) 打开阀门1~6、8、10,关闭阀门7、9、11,打开真空泵对管路、体积转移器及高压容器抽真空,待真空表读数≤10Pa时,关闭真空泵。
(2) 关闭阀门2~4、6、8、10,打开气瓶1的减压阀并调节至实验所需压力值,用体积转移器量取实验所需气体体积。
(3) 关闭阀门1、5、气瓶1的减压阀,打开阀门6、8,将体积转移器中的气体转移至高压容器中。
(4) 关闭阀门8,打开阀门1~6、8、10,对系统抽真空,待真空表读数≤10Pa时,关闭真空泵。
(5) 重复步骤(2)~(4),量取实验所需体积及压力条件下的气体2并注入到高压容器中,使气体1和2充分混合。
(6) 关闭阀门6,打开阀门8、11,利用高压容器中的混合气体对管路进行清洗。
(7) 关闭阀门11,打开阀门9,打开电动增压泵,对高压容器中的气体进行增压,待达到实验所需的气体压力时,停止增压并进行激光拉曼分析,然后继续增压至下一个压力点并进行拉曼分析。
2. 结果与讨论
2.1 在线样品准确性验证
为了验证制样方法的准确性及重复性,将本研究制备的70% N2+30% CO2的在线标样与购置于大连大特气体公司生产的同等浓度的商用标样,在10 MPa条件下分别进行了激光拉曼分析。结果表明,本次研究制备的混合气体与商用钢瓶装标样具有相似的峰形(图 2)。利用英国Renishaw公司出品的Wire3.0软件对上述拉曼谱图进行了分析,结果表明本方法制备的混合气体与商用标样具有相似的CO2与N2的相对峰高以及相对峰面积值,其相对误差小于4%,并具有较好的重现性,能够满足实验要求。
2.2 CH4及CO2相对拉曼定量因子的测定
在测定单个包裹体气体组成方面,国内外多沿用“相对拉曼定量因子”的方法,即通常将N2的定量因子定为1.00,其他气体与N2进行比较,得到相对拉曼定量因子[3, 4]。本次研究分别对拉曼峰面积及峰高计算了相对拉曼定量因子,具体公式如下:
式中,Ag为气体g的拉曼峰面积;AN2为N2的拉曼峰面积;Cg为气体g的摩尔分数;CN2为N2的摩尔分数;Hg为气体g的拉曼峰高;HN2为N2的拉曼峰高;Fgr代表以峰面积为参考值时气体g相对于N2的拉曼定量因子;Ggr代表以峰高为参考值时气体g相对于N2的拉曼定量因子。
为了测定CO2以及CH4的相对拉曼定量因子,在室温、5 MPa和10 MPa压力条件下,分别制备了N2摩尔分数为30%、50%和70%的N2-CO2混合气体标样以及N2-CH4混合气体标样。
在上述标样的激光拉曼谱图(图 3)中能清晰地辨识出N2、CO2以及CH4的拉曼特征峰。气体的拉曼峰强度随浓度以及压力的增加而增加,信噪比随着压力由5 MPa增加到10 MPa增大约一倍。
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
虽然CO2在1286 cm-1附近以及1386 cm-1附近出现两个峰值,但是由于1286 cm-1附近的峰强度要小于1386 cm-1附近峰强度。因此本文仅针对CO2在1386 cm-1附近的峰计算了相对拉曼定量因子。
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
求得CH4和CO2相对拉曼定量因子之后,便可以对包裹体中CH4和CO2的相对含量进行计算,具体计算公式如下:
3. 地质样品应用
选取四川金沙岩孔剖面,震旦系的藻云岩样品进行应用研究。该样品溶洞发育,被后期亮晶白云石充填。溶洞充填的亮晶白云石中发育气液两相盐水包裹体。选取个体较大并且靠近样品表面的包裹体,对其气泡进行激光拉曼分析,结果表明包裹体的气泡主要由CH4和CO2组成(图 6)。
利用wire3.0对图 6中两个包裹体的拉曼相关参数进行求解,并分别利用公式(3) 和(4) 对包裹体a和b中的CH4和CO2摩尔浓度进行了计算,得到包裹体中CH4的摩尔分数为27.60%~31.63%,CO2的摩尔分数为68.37%~72.40%(表 1)。上述结果表明,利用本文所求得的拉曼定量因子F和G所得到计算的结果基本一致(两者的绝对偏差在2.5%以内);包裹体a和b气相组成较接近,可能为同期捕获的产物。
表 1 包裹体样品分析结果Table 1. The analytical composition of gas in fluid inclusions包裹体 ACO2 HCO2 ACH4 HCH4 CCH4(%) CCO2(%) 据公式(3) 据公式(4) 据公式(3) 据公式(4) 包裹体a 3461.54 594.541 17891.2 4115.24 31.63 31.25 68.37 68.75 包裹体b 3137.87 732.481 14694.8 4251.27 29.54 27.60 70.46 72.40 4. 结语
本文利用自主搭建的在线标样制备装置,对N2-CH4以及N2-CO2进行在线混合增压,制备了N2摩尔浓度为30%、50%和70%,压力为5 MPa和10 MPa的N2-CH4以及N2-CO2混合气体在线标样。通过与商用混合钢瓶气体标样对比表明,该方法所使用的装置操作简单,制备的混合气体具有较高的准确性及重现性,能够方便、准确地对拉曼光谱仪进行标定,实现了不同压力和浓度条件下气体的相对拉曼定量因子的测定。通过对CH4及CO2的相对定量因子测定表明,气体压力在5~10 MPa的范围时,定量因子不受压力变化的影响,为固定值。地质样品应用表明,本方法可以方便、灵活、准确地按任意比例将两瓶及两瓶以上纯气体钢瓶样品进行混合及增压,弥补了商用钢瓶装混合气体标样费用高、气体组成单一固定等不足。
由于本次研究仅在5 MPa和10 MPa两个压力点进行了分析,因此对于相对定量因子在 < 5 MPa及 > 10 MPa压力条件下的变化规律还有待于进一步研究。另外由于缺乏已知气体组成的人工合成包裹体标样,对于本方法在包裹体应用中的误差范围还有待于进一步研究。
-
表 1 ICP-AES仪器工作条件
Table 1 Working parameters of the ICP-AES instrument
工作参数 设定条件 工作参数 设定条件 功率 1300 W 雾化气(Ar)流量 0.8 L/min 冷却气(Ar)流量 15 L/min 蠕动泵转速 1.5 mL/min 辅助气(Ar)流量 0.2 L/min 重复测定次数 3 表 2 巯基棉分离富集的效果
Table 2 Effect of separation and enrichment for sulfhydryl cotton
硫酸钠质量(g) 元素 测定值(μg/L) 回收率(%) 2 Pb 177 88.7 Cd 19.5 97.2 Cu 444 88.8 Ag 206 103.0 SO42- 10000 0.05 Na+ 11000 0.017 5 Pb 222 111.0 Cd 20.0 100.0 Cu 480 96.0 Ag 200 99.8 SO42- 15000 0.03 Na+ 10000 0.015 7 Pb 227 113.0 Cd 20.0 100.0 Cu 476 95.2 Ag 201 101.0 SO42- 20000 0.03 Na+ 15000 0.007 10 Pb 223 111.0 Cd 19.7 98.2 Cu 491 98.2 Ag 196 98.0 SO42- 14000 0.02 Na+ 24000 0.007 表 3 pH值对巯基棉吸附的影响
Table 3 Effect of pH value on the adsorption of sulfhydryl cotton
pH值 待测元素 元素浓度(μg/L) 回收率(%) 加标量 测定值 4 Pb 100 9.01 9.00 Cd 10 0.20 2.00 Cu 250 168 67.0 Ag 100 105 105.0 5 Pb 100 4.10 4.10 Cd 10 0.20 2.00 Cu 250 210 84.0 Ag 100 98.2 98.2 6 Pb 100 90.2 90.2 Cd 10.0 0.20 2.00 Cu 250 240 96.0 Ag 100 99.1 99.1 7 Pb 100 96.7 96.7 Cd 10 10.0 100.0 Cu 250 268 107.0 Ag 100 100 101.0 8 Pb 100 79.9 79.9 Cd 10 9.30 93.0 Cu 250 248 99.0 Ag 100 98.5 98.5 9 Pb 100 80.3 80.3 Cd 10 9.60 96.0 Cu 250 298 119.0 Ag 100 97.6 97.6 表 4 溶液流速对巯基棉吸附的影响
Table 4 Effect of flow rate of the solution on adsorption of sulfhydryl cotton
流速(mL/min) 待测元素 测定值(μg/L) 回收率(%) 4 Pb 202 101.0 Cd 20.1 101.0 Cu 531 106.0 Ag 202 101.0 10 Pb 199 99.7 Cd 19.7 98.5 Cu 503 101.0 Ag 198 99.1 15 Pb 200 100.0 Cd 19.8 99.0 Cu 496 99.2 Ag 201 101.0 30 Pb 196 98.0 Cd 20.2 101.0 Cu 492 98.3 Ag 196 98.0 表 5 盐酸浓度对洗脱效果的影响
Table 5 Influence of hydrochloric acid concentration on the adsorption effect
盐酸浓度(mol/mL) 待测元素 测定值(μg/L) 回收率(%) 0.5 Pb 208 104.0 Cd 20.6 103.0 Cu 555 111.0 Ag 190 94.8 1.0 Pb 219 110.0 Cd 21.4 107.0 Cu 535 107.0 Ag 213 106.0 1.5 Pb 205 102.0 Cd 20.6 103.0 Cu 525 105.0 Ag 205 102.0 2.0 Pb 192 96.0 Cd 20.4 102.0 Cu 505 101.0 Ag 208 104.0 3.0 Pb 197 98.4 Cd 19.8 99.0 Cu 505 101.0 Ag 197 98.4 表 6 加标回收率
Table 6 Spiked recovery tests of the method
样品编号 待测元素 浓度(μg/L) 回收率(%) 平均值 加标量 测定值 1 Pb 25.0 20.0 44.5 97.5 Cd 1.50 2.00 3.40 95.0 Cu 152 100 252 99.5 Ag 20.1 10.0 29.9 98.0 2 Pb 20.1 20.0 40.5 102.0 Cd 2.0 2.0 3.90 95.0 Cu 150 100 250 99.8 Ag 15.1 10.0 25.3 102.0 3 Pb 30.2 20.0 49.8 98.0 Cd 1.50 2.00 3.40 95.0 Cu 50.3 100 147 96.2 Ag 5.00 10.0 14.6 95.0 表 7 方法精密度
Table 7 Precision tests of the method
待测元素 测定值 (μg/L) RSD(%) Pb 29.8 3.8 Cd 1.50 9.7 Cu 50.6 3.1 Ag 5.00 9.4 -
郭燕妮,方增坤,胡杰华,谢洪珍,李黎婷,叶志勇.化学沉淀法处理含重金属废水的研究进展[J].工业水处理,2011,31(12):9-13. doi: 10.11894/1005-829x.2011.31(12).9 刘立华,吴俊,李鑫,令玉林.重金属螯合絮凝剂对废水中铅、镉的去除性能[J].环境工程学报,2001, 5(5):1029-1034. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201105013.htm 陈洁,鲁安怀,姚志健.天然铁的硫化物处理含Pb(Ⅱ)废水的实验研究[J].岩石矿物学杂志,1999,18(4):323-328. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199904006.htm 杨富新.中和法处理酸性含铜、锌离子污水的pH控制[J].冶金丛刊,1995(4):30-31. http://www.cnki.com.cn/Article/CJFDTOTAL-YJCO199504008.htm 于景娣,何秀梅.ICP-AES测定冶炼废水中七种杂质元素[J].环境化学,2008,27(2):271-272. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX200802037.htm 杨朝勇,陈发荣,庄峙厦,谷胜,王小如.微柱固相萃取-电感耦合等离子体质谱联用技术用于测定高盐样品中痕量的铅[J].厦门大学学报,2001, 40(5):1062-1066. http://www.cnki.com.cn/Article/CJFDTOTAL-XDZK200105010.htm 张辉,朱爱美,张俊,何连花,刘季花,李华芹,高晶晶,崔菁菁.高盐分海洋沉积物样品洗盐预处理方法的研究[J].海洋科学进展,2012,30(3):423-431. http://www.cnki.com.cn/Article/CJFDTOTAL-HBHH201203017.htm 陆胜龙,倪圣亚,薛民琪,任彬.腐植酸树脂富集-原子荧光法测定高盐水样中铅含量[J].现代农业科技,2012(7):14-15. http://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201207003.htm 周聪.草酸共沉淀火焰AAS测定高盐食品、海水及工业废水中痕量铅、镉、铜、锰、锌、铁[J].热带作物研究,1994(1):63-66. http://www.cnki.com.cn/Article/CJFDTOTAL-RDNK401.015.htm 张莹,石敏.巯基棉分离富集-火焰原子吸收光谱法测定钠盐试剂中的痕量镉[J].光谱实验室,1997, 14(6):54-57. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS199706015.htm 张莹,彭茵,佟淑娟,张国娟.巯基棉分离富集-火焰原子吸收光谱法测碱土金属试剂中的痕量铅[J].化学试剂,1997,19(2):92-94. http://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ702.008.htm 费书香.巯基棉富集-原子吸收光谱法测定尿中铅[J].铁道劳动安全卫生与环保,1989(4):55-57. http://www.cnki.com.cn/Article/CJFDTOTAL-TDLD198904023.htm 戴开平,李焰,施文赵.巯基棉纤维分离、衍生气相色谱法测定痕量砷(Ⅲ)和砷(Ⅴ)[J].分析化学,1992, 20(2):165-168. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX199202010.htm 陈永欣,黎香荣,杨俊,谢毓群,罗明贵.新型巯基棉分离富集-ICP-AES法测定含铜物料中的金、银[J].黄金,2009,30(2):49-52. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ200902021.htm 游建南.微量汞分析的研究——SCF分离富集-胶束增溶光度法[J].铀矿冶,2002,21(3):154-157. http://www.cnki.com.cn/Article/CJFDTOTAL-YKYI200203013.htm
计量
- 文章访问数: 1462
- HTML全文浏览量: 231
- PDF下载量: 13