Feasibility Study of Synthesizing PGE-Bearing Sulfide Reference Material by Remelted Nickel Sulfide Fire Assay Button
-
摘要: 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)适合于直接分析硫化物矿物中痕量元素的含量及空间分布,但硫化物矿物的激光剥蚀特性与硅酸盐及氧化物不同,受到的干扰也更严重,且由于硫化物标准物质(尤其是含铂族元素、Au、Ag等贵金属元素标准物质)极度缺乏,限制了LA-ICP-MS技术在硫化物微区分析中的广泛应用。本文以贵金属标准样品GPT-9和矿石标准物质为原料合成锍镍试金扣,并封入真空管中重熔,利用背散射电子图像和LA-ICP-MS分析元素分布的均匀性,探讨真空重熔锍镍试金扣制备硫化物原位微区分析标准样品的可行性。背散射电子图像(BSE)显示真空重熔后锍镍试金扣由单相S、Ni化合物组成。LA-ICP-MS线扫描和点扫描分析表明,锍镍试金扣中S、Ni、Cr、Co、Cu、Pb、Sb、Cd、Bi等主量及微量元素分析精密度(RSD)均小于10%,均匀分布;在镍扣制备过程中Zn相对于Cu、Pb、Sb更难进入硫化物相;贵金属元素Au、Ag、Pt均一性较好,其余贵金属元素由于含量低、仪器波动及质谱干扰等影响因素造成分析数据的RSD相对较大,但可通过提高原料中贵金属元素含量、降低熔融样品淬火温度等方法进一步提高其均匀性。锍镍试金扣的组成元素对铂族元素分析的质谱干扰研究表明,重铂族元素(Os、Ir、Pt)和Au受到的干扰可忽略不计;轻铂族元素(Ru、Rh、Pd)受金属氩化物干扰较为严重,需进行干扰校正。研究认为,真空重熔技术可有效提高锍镍试金扣中各元素(包括贵金属)的均一性,达到硫化物原位微区分析标准样品的要求,利用真空重熔锍镍试金扣制备LA-ICP-MS原位微区痕量及贵金属硫化物分析标准样品具可行性。
-
关键词:
- 锍镍试金法 /
- 真空重熔 /
- 激光剥蚀电感耦合等离子体质谱法 /
- 含PGEs硫化物微区分析标准样品
Abstract: Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) is suited to analyze the abundances and spatial distributions of trace elements in sulfide. However, the spread use of the technology on micro area analysis has been hampered by the different characteristics of sulfides from silicates and oxides and the lack of sulfide reference material, especially PGE-bearing reference material. In this study, a PGE-bearing sulfide (SRMD-1) is synthesized by remelted nickel sulfide fire assay button in AN evacuated quartz tube. The examination by BSE imaging revealed that the nickel button SRMD-1 was completely of monosulfide composition. Homogeneity testing by LA-ICP-MS shows that the RSDs of elements, such as S, Ni, Cr, Co, Cu, Pb, Sb, Cd, Bi, are less than 10%. The data suggest the homogeneous distribution of these elements inside SRMD-1, but elements Mn, Zn, Sn, Tl are not as homogeneous with relatively larger RSDs. Elements Ag, Au and Pt are homogeneous inside SRMD-1, but RSDs of other noble metal elements are relatively larger according to low element content, instrument fluctuations or mass spectrometry interference. The homogeneity of the nickel button will be improved by increasing the content for the noble metal elements and lowering the quenching temperature for the molten samples. During the analysis of the nickel sulfide fire assay button, the spectral interferences in light PGEs (Ru, Rh and Pd) by argides is serious, and must be corrected, while the interferences to Os, Ir, Pt and Au can be ignored. Compared to the button which is not remelted, the homogeneity of the elements improved significantly. According to the work documented here, it is possible to synthesized PGE-bearing sulfide reference material for LA-ICP-MS by remelted nickel sulfide fire assay button. -
电感耦合等离子体质谱(ICP-MS)具有灵敏度高、干扰少、多元素同时测定、线性范围大、检出限低的特点,适合地质样品中微量级多元素同时测定。对于微量元素的测定通常采用氢氟酸、硝酸在封闭溶样罐中高温、高压分解,该方法能有效分解岩石、矿物中的难溶矿物[1-2],由于ICP-MS仪器的高灵敏度,大部分微量元素的检出限可达到化探样品分析要求。Ag有两个同位素,107Ag(51.84%)和109Ag(48.16%),它们分别受到91Zr16O和93Nb16O氧化物离子的强烈干扰,由于化探样品中Zr和Nb含量大大高于Ag,即使用Zr和Nb的单标准氧化物产率进行校正,其结果误差仍然较大,因为其干扰信号强度已经超过了样品中Ag本身的强度。虽然使用膜去溶装置可以大大降低氧化物离子干扰,实现Ag的准确测定[3];但该装置价格高,拥有膜去溶装置的实验室较少。目前对于化探样品Ag的测定,国内大部分实验室仍然采用传统的发射光谱法[4-9],该方法费时、费力、结果不稳定。因此,迫切需要对化探样品Ag的测定方法进行改进。
本文应用P507萃淋树脂将用于ICP-MS测定常规微量元素的溶液进行简单的分离,干扰元素Zr和Nb可被有效除去,而Ag和内标元素Rh可被有效回收,实现了化探样品中低含量Ag的快速测定。
1. 实验部分
1.1 仪器及工作条件
Bruker Aurora M90电感耦合等离子体质谱仪(美国布鲁克·道尔顿公司)。在每次测试前,为了降低仪器本底,样品锥和截取锥都需仔细清洗。在5%硝酸溶液中Ag的仪器背景值通常都小于50 cps,使用普通灵敏度模式,仪器灵敏度通常调整为>400000 cps/1 ng/mL 115In,相对标准偏差(RSD)通常小于3%。本实验采用雾化器自吸进样,仪器工作参数见表 1。
1.2 材料与主要试剂
P507萃淋树脂:粒径80 ~120目(北京瑞乐康分离科技有限公司)。
表 1 仪器工作参数Table 1. nstrumental operating parameters of ICP-MSI工作参数 设定值 射频功率 1400 W 反射功率 < 2 W 等离子体气 15 L/min 辅助气 0.90 L/min 护鞘气 0.25 L/min 雾化气 0.95 L/min 扫描次数 5 测定次数 5 每个质量通道数 1 测定方式 Peak Hopping 停留时间 10 ms 样品锥孔径 1 mm 截取锥孔径 0.4 mm 雾化室温度 3℃ 交换柱:采用5 mL塑料移液枪头作为交换柱,底部垫自制聚四氟乙烯棉;称取0.45 g的P507萃淋树脂于烧杯中,加入约5 mL水,转移至交换柱中,待水流尽时,在上部垫一层自制聚四氟乙烯棉;用10 mL的3 mol/L硝酸淋洗,最后用5 mL的5%硝酸平衡交换柱,待用。
封闭溶样器:自制不锈钢-聚四氟乙烯封闭溶样装置,体积10 mL[1]。
多元素混合标准储备溶液:100 μg/mL (Accu-Standard Inc,USA)。
硝酸:通过石英亚沸蒸馏提纯。
氢氟酸:采用聚四氟乙烯对口瓶亚沸蒸馏提纯,实验用水用Millipore纯化装置制备,电阻率18 MΩ·cm。
1.3 实验步骤
准确称取0.0500 g样品于带不锈钢外套的聚四氟乙烯密封溶样装置中,加入1 mL氢氟酸和1 mL硝酸,加盖密封,在烘箱中于185℃加热12 h,取出冷却后在电热板上低温蒸干。最后加入2 mL硝酸、1 mL 500 ng/mL的Rh内标溶液、3 mL水,重新盖上盖密封,放入烘箱中于135℃加热3 h溶解残渣。冷却后取0.4 mL溶液于15 mL离心管中,用5%硝酸稀释至6 mL。该溶液可用于ICP-MS测定常规微量元素。
待微量元素测定完成后,将剩余溶液倒入交换柱中,直至加满交换柱,其余溶液弃去,并立即用水清洗离心管,用原离心管承接,该溶液即可用于以Rh为内标Ag的测定。
2. 结果与讨论
2.1 Ag与Zr和Nb的分离
P507是酸性磷类萃取剂,又名2-乙基己基膦酸单2-乙基己基酯,常用于稀土元素分离以及稀土元素的相互分离[10-13],在Sm-Nd同位素测定中也常用P507或P204萃淋树脂实现Sm与Nd的相互分离[14]。该树脂的另一个特点是对Ti、Nb、Ta、Zr、Hf、W、Sn和Mo等元素的四价离子强烈吸附,即使用高浓度的盐酸或硝酸也很难将其洗脱下来,只有用氢氟酸才能将这些元素有效洗脱,该类树脂也可用于Lu-Hf同位素分离[15-16]。本研究利用该树脂这一特性,在约1.2 mol/L的硝酸介质中成功地实现了Ag和内标元素Rh与干扰元素Zr和Nb的有效分离。
取200 ng混合标准溶液于15 mL离心管中,用1.2 mol/L硝酸稀释至5 mL,将此溶液过柱,15 mL离心管承接,用4 mL的5%硝酸分两次清洗离心管及交换柱,在承接溶液的离心管中加入100 ng的Rh 内标溶液,最后稀释至10 mL,ICP-MS测定。各元素的回收率见表 2。由表 2可以看出,98%以上的Zr和Nb被P507树脂吸附,而95%以上的Ag和Rh通过交换柱,说明P507萃淋树脂能有效地将Ag和Rh与Zr和Nb分离。
表 2 各元素在P507萃淋树脂上的回收率Table 2. The recovery of elements for P507 levextrel resin元素 回收率/% Zr 0.93 Nb 1.44 Mo 2.83 Sn 0.43 Hf 0.58 Ta 0.42 W 3.32 Cd 103.0 Ag 95.8 Rh 97.5 2.2 方法检出限
按样品前处理同样程序处理5份流程空白,测定结果见表 3。其绝对浓度值3倍标准偏差除以称样量,即为方法的检出限,计算Ag的检出限为0.005 μg/g,低于化探样品分析的检出限要求(0.02 μg/g,见DZ/T 0130.5—2006)。
表 3 方法的空白值Table 3. Blank level of the method空白 m(Ag)/μg 空白1 0.0004 空白2 0.0002 空白3 0.0003 空白4 0.0003 空白 m(Ag)/μg 空白5 0.0004 平均值 0.0003 标准偏差 0.000075 2.3 树脂的再生
交换柱使用后立即用水洗柱一次,然后用3 mol/L硝酸5 mL洗柱1次,再用水洗柱两次,最后用1.2 mol/L硝酸5 mL平衡交换柱,待用。树脂在使用一段时间后,其吸附的Ti、Zr、Nb等元素可能达到饱和,这时树脂吸附效率会降低。一般在使用5~10次后,用2 mol/L氢氟酸5 mL将这些元素洗脱下来,树脂即可继续使用。如果发现用氢氟酸洗脱后交换柱的效率仍然很低,说明P507萃取剂已流失,这时需要更换新树脂。
3. 标准物质分析
按上述分析流程对岩石及土壤系列国家一级标准物质进行分析,本方法的测定结果与标准值基本一致(见表 4),完全能够满足化探样品分析要求。
表 4 标准物质测定结果Table 4. Analytical results of Ag in reference materials标准物质
编号w(Ag)/(μg·g-1) 标准值 本法测量值 GBW 07103 0.033±0.010 0.026±0.008 GBW 07104 0.071±0.014 0.065±0.010 GBW 07105 0.040±0.012 0.051±0.009 GBW 07106 0.062±0.010 0.055±0.007 GBW 07302 0.066±0.015 0.065±0.008 GBW 07305 0.36±0.04 0.35±0.02 GBW 07306 0.36±0.04 0.31±0.05 GBW 07307 1.05±0.09 1.12±0.08 GBW 07311 3.2±0.5 3.02±0.32 GBW 07312 1.15±0.16 0.99±0.11 4. 结语
利用ICP-MS仪器的碰撞池技术可以消除氧化物离子干扰,但仪器灵敏度会降低,碰撞气体有可能带入新的干扰,Ag也需要进行单独测定;膜去溶装置可去除气溶胶中的大部分水分,降低氧化物离子干扰,提高仪器灵敏度,实现Ag与其他常规微量元素同时测定,但进样时间可能延长,设备也较贵。而本文应用P507萃淋树脂对ICP-MS用于测定常规微量元素的溶液进行简单分离,就可实现化探样品中待测元素Ag和内标元素Rh与干扰元素Zr、Nb的有效分离,Ag的检出限达到0.005 μg/g,低于化探分析要求(0.02 μg/g)。
相比于其他方法,本方法省略了称样及分解等样品前处理步骤;且由于在样品处理过程中加入了内标元素,因此最后的溶液不需要准确定容,待测元素与内标元素都具有很高的回收率,过柱分离的溶液只需3~4 mL即可,节省了时间,提高了分析效率。不足在之处在于:虽然本方法相对于传统的发射光谱法更简单、快速,但Ag也需要进行分离并单独测定。在本方法拓展应用方面,由于高含量W和Mo样品中W可能以单矿物形式存在,需要进行碱熔才能保证分解完全,利用P507萃淋树脂的这一特性,有可能实现W和Mo与大量基体元素和干扰元素的分离富集。
致谢: 国家地质实验测试中心张欣、那布其、赵素利工程师在锍镍试金扣制备过程中给予指导和帮助,在此致以衷心感谢。 -
图 2 (a) SRMD-1二次电子图像(SEM);(b) SRMD-1背散射电子图像(BSE);(c) Wohlgemuth-Ueberwasser等[16]合成Ni、S化合物的BSE图像,深色NiS,浅色Ni6-xS5
Figure 2. (a) Secondary electron image of SRMD-1,(b) Backscattered electron image of SRMD-1,(c) Backscattered electron image of the Ni1-xS composition synthesized by Wohlgemuth-Ueberwasser et al (2007)[16]
表 1 SRMD-1的LA-ICP-MS分析数据RSD值
Table 1 RSD values of SRMD-1 analyzed by LA-ICP-MS
待测元素 第Ⅰ次 第Ⅱ次 第Ⅲ次 第Ⅳ次 第Ⅴ次 重熔前
(n=22)A
(n=10)A
(n=13)A
(n=25)B
(n=20)T
(n=45)A
(n=51)B
(n=80)T
(n=130)A
(n=60)B
(n=110)T
(n=170)F MASS-1
(n=23)34S - - - - - - - - 2.9 5.0 4.4 0.03 11 0.0 52Cr 4.6 2.5 2.8 4.7 3.9 2.7 4.1 5.8 2.7 4.2 3.8 1.87 5.1 6.3 55Mn 3.9 6.7 3.9 6.1 5.1 8.8 31 31 21 185 41 16.6 1.7 9.8 57Fe 2.9 2.0 3.2 3.4 3.6 2.8 3.1 3.1 - - - - - 5.3 59Co 2.6 2.5 3.0 3.7 3.4 2.9 2.5 2.7 2.2 3.2 2.9 0.29 2.2 6.3 60Ni 3.3 2.8 3.9 3.4 3.8 2.6 2.8 2.7 2.2 3.1 2.9 2.61 7.5 4.1 65Cu 3.5 3.6 3.7 7.6 5.7 4.5 5.8 5.5 3.1 5.4 4.8 2.04 3.1 11 66Zn 9.5 5.5 13 128 12 4.0 6.0 7.0 12 19 13.7 0.02 5.9 11 99Ru 28 23 19 20 20 29 37 34 70 136 118 0.02 - 59 101Ru 10 8.2 10 9.9 10 8.0 14 12 19 25 23 2.19 - 10 102Ru 6.2 6.4 7.2 6.9 7.7 4.7 8.6 7.6 13 25 21 0.48 - 11 103Rh 9.8 7.8 7.0 7.5 7.7 7.6 13 11 15 22 20 0.11 - 11 105Pd 7.0 4.5 5.1 8.5 7.0 5.4 8.8 7.7 11 19 17 6.36 - 9.6 106Pd 7.1 4.1 11 8.0 10 13 28 23 41 79 61 3.37 - 21 108Pd 5.2 4.4 7.4 10 8.8 9.3 20 16 31 91 73 1.04 - 27 107Ag 4.8 3.9 5.4 9.6 7.7 4.8 5.4 7.0 4.8 7.2 6.5 0.07 9.9 9.5 111Cd 11 6.0 13 11 14 8.0 7.3 11 7.5 12 10 0.05 23 12 118Sn 15 7.7 7.2 15 13 11 20 19 25 54 45 0.92 5.5 24 121Sb 5.6 3.9 5.6 5.2 5.4 7.5 9.5 10 7.8 7.9 7.9 0.04 10 - 189Os 12 9.7 12 15 13 18 26 25 27 52 44 5.73 - 25 192Os 8.3 4.3 8.9 7.5 8.3 12 15 17 17 28 25 18.9 - 16 191Ir 16 14 13 17 15 18 31 27 32 75 54 0.74 - 29 193Ir 8.6 12 15 8.5 13 12 24 21 33 71 58 5.27 - 24 194Pt 6.2 5.6 6.1 11 8.9 7.7 7.3 10 6.4 9.4 8.7 0.36 - 19 195Pt 4.8 5.0 6.6 10 8.6 6.8 7.4 10 6.5 9.5 10 2.07 - 14 197Au 4.8 6.0 5.0 9.8 7.4 6.1 6.8 9.8 9.4 9.4 9.3 0.21 - 16 205Tl 5.7 4.3 5.4 11 8.2 9.1 7.9 15 9.1 15 14 10.0 - 11 207Pb 3.3 5.0 3.5 9.4 6.7 9.3 4.8 14 6.4 7.9 7.4 0.06 - 10 209Bi 4.9 4.1 3.7 7.7 5.8 10 4.8 16 7.1 7.1 7.1 0.04 14 10 表 2 PGEs主要质谱干扰及SRMD-B贵金属空白样品分析信号
Table 2 Mass interference of PGEs and signal intensity of SRMD-B
待测元素 主要干扰 信号强度/cps 背景 SRMD-B贵金属空白样品 99Ru 59Co40Ar 25 24 101Ru 61Ni40Ar 15 691 102Ru 62Ni40Ar,102Pd 126 2469 103Rh 63Cu40Ar,206Pb2+ 150 522 105Pd 65Cu40Ar 53 170 106Pd 66Zn40Ar,106Cd 1854 1950 108Pd 68Zn40Ar,108Cd 837 743 189Os 173Yb16O 0 0 192Os 176Hf16O,192Pt 0 7 191Ir 175Lu16O 0 5 193Ir 177Hf16O 0 11 194Pt 178Hf16O 10 0 195Pt 179Hf16O 8 3 -
Axelsson M D, Rodushkin I. Determination of major and trace elements in sphalerite using laser ablation double focusing sector field ICP-MS [J].Journal of Geochemical Exploration, 2001,72(2):81-89. doi: 10.1016/S0375-6742(00)00166-7
Houghton J, Shanks W, Seyfried W. Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Rdge [J].Geochimica et Cosmochimica Acta, 2004,68(13):2863-2873. doi: 10.1016/j.gca.2003.12.023
Cook N J, Ciobanu C L, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini-Eidukat B, Melcher F. Trace and minor elements in sphalerite:A LA-ICPMS study [J].Geochimica et Cosmochimica Acta, 2009,73(16): 4761-4791. doi: 10.1016/j.gca.2009.05.045
周涛发,张乐骏,袁峰,范裕, Cook D R. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约[J].地学前缘, 2010,17(2):306-319. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002035.htm Piña R, Gervilla F, Barnes S J, Ortega L, Lunar R. Distribution of platinum-group and chalcophile elements in the Aguablanca Ni-Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study [J].Chemical Geology, 2012,302: 61-75.
Bockrath C, Ballhaus C, Holzheid A. Fractionation of the platinum-group elements during mantle melting [J].Science, 2004,305(5692): 1951-1953. doi: 10.1126/science.1100160
Lorand J P, Luguet A, Alard O, Bezos A, Meisel T. Abundance and distribution of platinum-group elements in orogenic lherzolites; a case study in a Fontete Rouge lherzolite (French Pyrénées) [J].Chemical Geology, 2008,248(3): 174-194.
Lorand J P, Luguet A, Alard O. Platinum-group element systematics and petrogenetic processing of the continental upper mantle: A review [J].Lithos, 2013,164-167: 2-21. doi: 10.1016/j.lithos.2012.08.017
Alard O. Nonchondritic distribution of the highly sider-ophile elements in mantle sulfides [J].Nature, 2000,407: 891-894. doi: 10.1038/35038049
McDonald I. Development of sulphide standards for the in-situ analysis of platinum-group elements by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS)[C]//10th Intern Platinum Symp, 2005: 468-471.
Jarvis K E, Williams J G, Parry S J, Bertalan E. Quantitative determination of the platinum-group elements and gold using NiS fire assay with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS ) [J].Chemical Geology, 1995,124(1 2): 37-46.
Norman M, Robinson P, Clark D. Major-and trace-element analysis of sulfide ores by laser-ablation ICP-MS, solution ICP-MS, and XRF: New data on international materials [J].The Canadian Mineralogist, 2003,41: 293-305. doi: 10.2113/gscanmin.41.2.293
Barnes S J, Cox R A, Zientek M L. Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril′sk, Russia [J].Contributions to Mineralogy and Petrology, 2006,152(2): 187-200. doi: 10.1007/s00410-006-0100-9
Godel B, Barnes S J. Platinum-group elements in sulfide minerals and the whole rocks of the J-M Reef (Stillwater Complex): Implication for the formation of the reef [J].Chemical Geology, 2008(248): 272-294.
Wilson S A, Ridley W I, Koenig A E. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique [J].Journal of Analytical Atomic Spectrometry, 2002,17(4): 406-409. doi: 10.1039/B108787H
Wohlgemuth-Ueberwasser C C, Ballhaus C, Berndt J, Stotternée P V, Meisel T. Synthesis of PGE sulfide standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) [J].Contributions to Mineralogy and Petrology, 2007,154(5): 607-617. doi: 10.1007/s00410-007-0212-x
袁继海,詹秀春,范晨子,赵令浩,孙冬阳,贾泽荣,胡明月,蒯丽君. 玻璃标样结合硫内标归一定量技术在激光剥蚀-等离子体质谱分析硫化物矿物中的应用[J].分析化学, 2012,40(2): 201-207. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201202008.htm 袁继海,詹秀春,樊兴涛,胡明月. 硫化物矿物中痕量元素的激光剥蚀-电感耦合等离子体质谱微区分析进展 [J].岩矿测试, 2011,30(2): 121-130. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201102003.htm Perkins W T, Pearce N J G, Westgate J A. The development of laser ablation ICP-MS and calibration strategies: Examples from the analysis of trace elements in volcanic glass shards and sulfide minerals [J].Geostandards Newsletter, 1997,21: 175-190. doi: 10.1111/ggr.1997.21.issue-2
Figueiredo A M, Enzweiler J, Sarkis J E, Jorge A P, Shibuya E. NAA and UV laser ablation ICP-MS for platinum group elements and gold determination in NiS fire assay buttons: A comparison between two methods [J].Journal of Radioanalytical and Nuclear Chemistry, 2000,244(3): 623-625. doi: 10.1023/A:1006725618998
Gros M, Lorand J P, Luguet A. Analysis of platinum group elements and gold in geological materials using NiS fire assay and Te coprecipitation; the NiS dissolution step revisited [J]. Chemical Geology, 2002,185(3): 179-190.
Sylvester P, Cabri L, Tubrett M, McMahon G, Laflamme J, Peregoedova A. Synthesis and evaluation of a fused pyrrhotite standard reference material for platinum group element and gold analysis by laser ablation-ICPMS[C]//10th International Platinum Symposium. Finland: Geological Survey of Finland, 2005: 16-20.
Wang X, Zeng Z, Yin X, Wang X. Study on the constituents of nickel sulfide assay button [J].Precious Metals, 2007,28(4): 45-49.
Q/GD 008—2002,岩石、土壤、水系沉积物中铂族元素的锍镍试金-电感耦合等离子体质谱(ICP-MS)法测定[S]. Sylvester P. A practical guide to platinumgroup element analysis of sulphides by laser ablation ICPMS[M].Toronto: Mineralogical Association of Canada, 2001: 203-211.
Shibuya E K, Sarkis J E S, Enzweiler J, Jorge A P S, Figueiredo A M G. Determination of platinum group elements and gold in geological materials using an ultraviolet laser ablation high-resolution inductively coupled plasma mass spectrometric technique [J].Journal of Analytical Atomic Spectrometry,1998,13(9): 941-944. doi: 10.1039/a801477i