Feasibility Study of Synthesizing PGE-Bearing Sulfide Reference Material by Remelted Nickel Sulfide Fire Assay Button
-
摘要: 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)适合于直接分析硫化物矿物中痕量元素的含量及空间分布,但硫化物矿物的激光剥蚀特性与硅酸盐及氧化物不同,受到的干扰也更严重,且由于硫化物标准物质(尤其是含铂族元素、Au、Ag等贵金属元素标准物质)极度缺乏,限制了LA-ICP-MS技术在硫化物微区分析中的广泛应用。本文以贵金属标准样品GPT-9和矿石标准物质为原料合成锍镍试金扣,并封入真空管中重熔,利用背散射电子图像和LA-ICP-MS分析元素分布的均匀性,探讨真空重熔锍镍试金扣制备硫化物原位微区分析标准样品的可行性。背散射电子图像(BSE)显示真空重熔后锍镍试金扣由单相S、Ni化合物组成。LA-ICP-MS线扫描和点扫描分析表明,锍镍试金扣中S、Ni、Cr、Co、Cu、Pb、Sb、Cd、Bi等主量及微量元素分析精密度(RSD)均小于10%,均匀分布;在镍扣制备过程中Zn相对于Cu、Pb、Sb更难进入硫化物相;贵金属元素Au、Ag、Pt均一性较好,其余贵金属元素由于含量低、仪器波动及质谱干扰等影响因素造成分析数据的RSD相对较大,但可通过提高原料中贵金属元素含量、降低熔融样品淬火温度等方法进一步提高其均匀性。锍镍试金扣的组成元素对铂族元素分析的质谱干扰研究表明,重铂族元素(Os、Ir、Pt)和Au受到的干扰可忽略不计;轻铂族元素(Ru、Rh、Pd)受金属氩化物干扰较为严重,需进行干扰校正。研究认为,真空重熔技术可有效提高锍镍试金扣中各元素(包括贵金属)的均一性,达到硫化物原位微区分析标准样品的要求,利用真空重熔锍镍试金扣制备LA-ICP-MS原位微区痕量及贵金属硫化物分析标准样品具可行性。
-
关键词:
- 锍镍试金法 /
- 真空重熔 /
- 激光剥蚀电感耦合等离子体质谱法 /
- 含PGEs硫化物微区分析标准样品
Abstract: Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) is suited to analyze the abundances and spatial distributions of trace elements in sulfide. However, the spread use of the technology on micro area analysis has been hampered by the different characteristics of sulfides from silicates and oxides and the lack of sulfide reference material, especially PGE-bearing reference material. In this study, a PGE-bearing sulfide (SRMD-1) is synthesized by remelted nickel sulfide fire assay button in AN evacuated quartz tube. The examination by BSE imaging revealed that the nickel button SRMD-1 was completely of monosulfide composition. Homogeneity testing by LA-ICP-MS shows that the RSDs of elements, such as S, Ni, Cr, Co, Cu, Pb, Sb, Cd, Bi, are less than 10%. The data suggest the homogeneous distribution of these elements inside SRMD-1, but elements Mn, Zn, Sn, Tl are not as homogeneous with relatively larger RSDs. Elements Ag, Au and Pt are homogeneous inside SRMD-1, but RSDs of other noble metal elements are relatively larger according to low element content, instrument fluctuations or mass spectrometry interference. The homogeneity of the nickel button will be improved by increasing the content for the noble metal elements and lowering the quenching temperature for the molten samples. During the analysis of the nickel sulfide fire assay button, the spectral interferences in light PGEs (Ru, Rh and Pd) by argides is serious, and must be corrected, while the interferences to Os, Ir, Pt and Au can be ignored. Compared to the button which is not remelted, the homogeneity of the elements improved significantly. According to the work documented here, it is possible to synthesized PGE-bearing sulfide reference material for LA-ICP-MS by remelted nickel sulfide fire assay button. -
研究绿松石的矿料来源对于了解古代先民的活动范围、开采运输能力和考古文化联系等问题都具有重要的意义[1-6]。而它的来源问题一直是考古学界关注而又悬而未决的问题,如何能够正确鉴定绿松石矿料来源成为当务之急,显然这一问题的解决有赖于对绿松石矿物和结构特征等诸多方面的深入研究。前人主要从成分或者结构分别对我国一些产地的绿松石进行了研究和总结,但是并没有形成一个绿松石地域特征的划分体系。在前人的研究中,通过X射线衍射 (XRD) 物相分析对绿松石的结构进行分析,在成分分析上通常采用高分辨电感耦合等离子体质谱仪 (ICP-MS)、拉曼光谱来研究不同产地绿松石的谱线特征。为了进一步研究不同产地绿松石的产地特征,本文采用ICP-MS、扫描电镜、XRD、红外吸收光谱等现代测试方法[7]分析来自不同地区绿松石的成分,尤其是分析微量元素和稀土元素的种类和含量,同时对结构特征也进行了分析,从而为古绿松石来源的无损鉴定[8]提供一定的借鉴作用。
1. 样品特征及分析方法
1.1 样品描述
选取湖北竹山县秦古镇和安徽马鞍山绿松石为研究样品,其特征和形貌见表 1和图 1。
表 1 绿松石样品特征Table 1. Characteristics of turquoise samples样品 产地 描述 CL-1 湖北竹山县秦古镇 蓝灰色,结构致密,黑色物质相间分布 CL-2 湖北竹山县楼台乡 淡绿色,围岩含较多铁矿 CL-3 湖北竹山县溢水镇 淡蓝绿色,结构松散 CL-4 安徽马鞍山 浅蓝色,被围岩包裹 1.2 分析仪器
采用能谱仪 (EDAX)、GeoLas 2005激光剥蚀系统和Agilent 7500a等离子体质谱仪 (美国Agilent公司) 进行成分分析。激光能量70 mJ,频率8 Hz,激光束斑直径32 μm。
采用PW3373/10型X射线衍射仪 (日本理学株式会社) 进行物相分析。
采用AVATAR-370DTGS傅里叶变换红外光谱仪 (Nicolet) 进行矿物基团分析。
采用JSM-350CF型环境扫描电子显微镜 (荷兰FEI公司) 进行微观形貌和结构特征分析。
2. 分析与讨论
2.1 化学成分分析
X射线能谱分析绿松石样品中氧化物含量见表 2。湖北竹山县 (CL-1) 和安徽马鞍山地区 (CL-4) 的绿松石主成分中都含有一定量的Fe和微量的SiO2,其中竹山县样品CL-2和CL-3还含有一定量的S,两地的绿松石成分都与理论值[9]相比存在一定的偏离,这可能与所选样品为绿松石原石有关,因为原石中所含围岩矿物的成分会影响绿松石的主要元素含量。
表 2 X射线能谱分析绿松石中氧化物含量Table 2. Main chemical compositions of oxides in turquoise samples by EDAX analysis样品编号 wB/% Al2O3 SiO2 P2O5 Fe2O3 CuO SO3 CL-1 41.60 0.88 42.20 1.73 13.60 - CL-2 35.31 0.57 42.23 14.36 5.99 1.54 CL-3 46.41 2.65 40.56 1.50 7.56 1.32 CL-4 40.00 0.51 39.63 3.36 16.50 - 理论值 36.84 - 34.12 - 9.57 - 绿松石样品的微量元素含量见表 3。秦古绿松石 (CL-1) 中Na、Mg、Si、Ca、Sc、Ti、V、Cr、Mn、Co、Zn、Sr、Mo、Sb和Ba元素的含量与马鞍山绿松石存在较大的差异,这与绿松石矿的地质特征紧密相关。竹山县绿松石主要的伴生矿物有多水高岭石、水铝英石、明矾石、石英、方解石、蓝铜矿和孔雀石等,而马鞍山绿松石矿床成矿围岩中富含磷灰石,并伴有铜矿体[10],所以在一定程度上来讲上述微量元素的存在也是这些伴生矿物引入的。
表 3 等离子体质谱分析绿松石中微量元素含量Table 3. Chemical compositions of micro-amount of elements in turquoise samples by ICP-MS元素 wB/(μg·g-1) CL-1 CL-4 Y 0.464 0.707 Zr 0.320 0.390 Nb 0.021 0.003 Mo 147.234 0.018 Ag 0.116 0.052 Cd 0.726 0.019 In 0.192 1.684 Sn 2.159 1.555 Sb 76.300 0.651 Li 0.115 0.139 Be 5.326 6.078 B 2.650 1.073 Na 69.630 184.435 Mg 1.651 8.220 Si 282.623 507.143 K 214.616 327.047 Ca 0.000 13.092 Sc 2.647 13.645 Ti 78.346 27.745 Cs 0.011 0.004 Ba 1597.627 Li Hf 0.015 0.020 Ta 0.017 0.008 W 0.662 0.039 Tl 0.172 0.011 Pb 0.345 2.230 Bi 0.008 0.131 Th 0.000 0.173 U 67.272 0.984 V 310.534 25.235 Cr 325.871 5.927 Mn 0.000 0.221 Co 1.313 27.831 Ni 0.768 0.857 Zn 1584.435 147.116 Ga 19.476 10.371 Ge 0.214 0.340 Rb 0.364 0.597 Sr 19.249 3.431 从矿床学的角度来分析,竹山县的绿松石矿体赋存于寒武系硅质泥质板岩中,并且它的矿化与铀的矿化分布一致,广泛分布有铀-钒-钡矿化层,这就造成了产于竹山县的绿松石在U、V、Ba元素上远大于马鞍山地区绿松石。而马鞍山地区绿松石矿的成矿围岩为富钠的碱钙性岩石,其中龙王山组富含K2O,大王山组及次火山岩相对富含Na2O,而K2O的含量也较高[11],因此在碱性元素上马鞍山地区的绿松石含量普遍高于竹山地区。
任何矿石都是在某一地质历史时期,由某种地质作用在特定的地质环境中形成的。由于稀土元素 (REEs) 的离子半径和化学行为存在细微的差别,造成了不同地质作用过程中轻重稀土元素发生分馏[12-13],上述诸方面的差异均不可避免地体现在不同产地的绿松石矿中。根据REEs的指示作用可以通过讨论绿松石稀土元素的富化和亏损等对不同产地的绿松石作出鉴别,测定结果见表 4。
表 4 等离子体质谱分析绿松石稀土元素含量Table 4. Chemical compositions of REEs in turquoise samples by ICP-MS元素 wB/(μg·g-1) CL-1 CL-4 La 0.005 0.052 Ce 0.069 0.128 Pr 0.027 0.008 Nd 0.039 0.159 Sm 0.038 0.059 Eu 0.035 0.019 Gd 0.246 0.160 Tb 0.013 0.025 Dy 0.110 0.185 Ho 0.016 0.041 Er 0.051 0.090 Tm 0.016 0.030 Yb 0.080 0.168 Lu 0.011 0.019 由两地区样品稀土配分模式图 (图 2),两样品中Gd都显示正异常,但在稀土配分形式上存在一定的相似性。CL-1和CL-4的稀土元素总量均较低,分别变化于0.005~0.246 μg/g、0.008~0.185 μg/g,二者轻稀土总量均小于重稀土总量,明显富集重稀土,配分曲线向右上角倾斜。样品CL-1显示强烈的Nd负异常,CL-1和CL-4出现Pr反向,La的含量也相差较大。马鞍山绿松石CL-4配分曲线,Eu显示负异常,而Eu的负异常特征是马鞍山地区绿松石中经常可以看到的[14]。这种稀土含量特征可能与两地的克拉克值 (即每一种化学元素在地壳中所占的平均比值) 分布有关。
综上所述,绿松石由于成矿背景和地质条件不同,竹山与马鞍山地区绿松石虽然主要成分含量基本一致,但在微量元素含量存在较大差别;两地区绿松石的稀土元素均富集重稀土,二者的稀土配分模式图出现Pr反向,马鞍山地区的绿松石表现出Eu负异常;马鞍山绿松石的结晶程度优于竹山绿松石。
2.2 X射线衍射物相分析
为确定不同产地不同颜色的绿松石是否其内部结构[15]也发生变化,特别对绿松石样品进行XRD物相分析,测得的XRD图谱和数据见图 3,结果表明,样品CL-2为铁绿松石,其XRD分析结果与上述的主成分分析相一致。对照JCPDS卡片,显示样品CL-1、CL-3和CL-4的衍射谱线、矿物组分与绿松石理论谱线相吻合。绿松石样品CL-1、CL-3和CL-4的主要粉晶衍射数据分别为0.3666 nm (100)、0.3664 nm (100),二者基本相同。但马鞍山绿松石 (CL-4) 衍射峰的强度比竹山县绿松石 (CL-1、CL-3) 高,如图 4所示,说明马鞍山绿松石 (CL-4) 晶体的结晶程度优于CL-1和CL-3。从样品的外观 (见图 1) 和硬度来看,样品CL-2、CL-3所受风化程度较大,所以其衍射峰相对于CL-1和CL-4而言小些。
2.3 红外光谱分析
绿松石为含铜、铝和水的磷酸盐,OH、H2O及PO43-基团的振动模式和频率决定了绿松石红外光谱的主要特征[16]。图 4显示,竹山绿松石与马鞍山绿松石所表现出的红外吸收谱带特征基本相同,但绿松石晶体的结晶程度以及所受风化程度不同导致一些微小的差异。由绿松石中ν (OH) 伸缩振动致红外吸收锐谱带主要位于3511 cm-1、3459 cm-1处,而ν (MFe,Cu-H2O) 伸缩振动致红外吸收谱带则出现在3291 cm-1、3076 cm-1处,样品CL-3和CL-4的水区谱带被由吸附水ν (H2O) 伸缩振动致红外吸收舒宽谱带明显包络致使该区吸收谱带不够突出。由δ (H2O) 弯曲振动致红外吸收谱带位于1648 cm-1处。从图 4可以看出,由δ (H2O) 弯曲振动致红外吸收谱带与文献[17-19]报道的δ (H2O) 弯曲振动致红外吸收弱谱带存在一定的差异,可能是由于绿松石样品中水的结晶比较好所致。
由磷酸根基团伸缩振动致红外吸收谱带为:ν3 (PO4) 伸缩振动致红外吸收谱带位于1172 cm-1、1104 cm-1、1055 cm-1处,而δ (OH) 弯曲振动致红外吸收弱谱带出现在837 cm-1、787 cm-1处,由PO43-基团ν4 (PO4) 弯曲振动致红外吸收谱带主要位于645 cm-1、577 cm-1、482 cm-1处。这与文献[12]中天然绿松石的吸收谱带存在一定范围的偏差,可能是由于所选绿松石原石的结晶程度不完全所致。
2.4 微观形貌分析
样品CL-1、CL-2、CL-3和CL-4的扫描电子显微镜照片如图 5所示,5000倍下绿松石样品都呈现出鳞片状结构或针状结构,质地细腻。
3. 结语
通过两地绿松石的成分和结构特征对比,可以进一步分析不同产地绿松石的成矿背景,并且与古代著名绿松石产地的地质条件进行分析比对,进而可以从矿物成因的角度对古绿松石的产地进行判断,这就可以从源头上解决古绿松石的产地问题。
根据测试结果得出以下结论。
(1) 在成分上,两地绿松石的主要化学成分基本一致,而微量元素含量有一定的区别,尤其是稀土元素的含量具有显著的地域特征。由于在测试化学成分上所采用的仪器和方法都属于无损鉴定,因此在以后的研究中可以通过测试化学成分来标定各个产地绿松石的产地特点,从而为古绿松石产地的无损鉴定形成一个标准体系。
(2) 在结构上,两地的绿松石具有特征的绿松石谱线特征,并且马鞍山地区的样品结晶程度优于竹山县样品。
(3) 在形貌上,两地绿松石表现出质地细腻的特性。其中马鞍山绿松石具有明显的鳞片状集合体微观形貌结构,而竹山县绿松石呈现细鳞片状或针状结构。
绿松石可以采用X射线衍射和红外光谱以及扫描电镜进行鉴定。绿松石成分上的区别,尤其是某些微量元素和稀有元素含量上的差别可以用于判别地域,这些差别与绿松石矿的成矿背景有关。所以只有深入了解不同地区绿松石的成矿背景,才能为绿松石的产地划分提供依据。本文采用的测试化学成分的方法都是可以应用于古绿松石地域判别的无损鉴定。
不同产地的绿松石具有不同的矿物和结构特征,而且这些特征可以在不破坏绿松石外观的基础上来进行分析和判断。通过分析现代不同产地绿松石的特征能够得出绿松石的地域体系。这将对古绿松石的产地划分有很大的帮助,从而进一步推断出考古挖掘出来的古物的产地。
致谢: 国家地质实验测试中心张欣、那布其、赵素利工程师在锍镍试金扣制备过程中给予指导和帮助,在此致以衷心感谢。 -
图 2 (a) SRMD-1二次电子图像(SEM);(b) SRMD-1背散射电子图像(BSE);(c) Wohlgemuth-Ueberwasser等[16]合成Ni、S化合物的BSE图像,深色NiS,浅色Ni6-xS5
Figure 2. (a) Secondary electron image of SRMD-1,(b) Backscattered electron image of SRMD-1,(c) Backscattered electron image of the Ni1-xS composition synthesized by Wohlgemuth-Ueberwasser et al (2007)[16]
表 1 SRMD-1的LA-ICP-MS分析数据RSD值
Table 1 RSD values of SRMD-1 analyzed by LA-ICP-MS
待测元素 第Ⅰ次 第Ⅱ次 第Ⅲ次 第Ⅳ次 第Ⅴ次 重熔前
(n=22)A
(n=10)A
(n=13)A
(n=25)B
(n=20)T
(n=45)A
(n=51)B
(n=80)T
(n=130)A
(n=60)B
(n=110)T
(n=170)F MASS-1
(n=23)34S - - - - - - - - 2.9 5.0 4.4 0.03 11 0.0 52Cr 4.6 2.5 2.8 4.7 3.9 2.7 4.1 5.8 2.7 4.2 3.8 1.87 5.1 6.3 55Mn 3.9 6.7 3.9 6.1 5.1 8.8 31 31 21 185 41 16.6 1.7 9.8 57Fe 2.9 2.0 3.2 3.4 3.6 2.8 3.1 3.1 - - - - - 5.3 59Co 2.6 2.5 3.0 3.7 3.4 2.9 2.5 2.7 2.2 3.2 2.9 0.29 2.2 6.3 60Ni 3.3 2.8 3.9 3.4 3.8 2.6 2.8 2.7 2.2 3.1 2.9 2.61 7.5 4.1 65Cu 3.5 3.6 3.7 7.6 5.7 4.5 5.8 5.5 3.1 5.4 4.8 2.04 3.1 11 66Zn 9.5 5.5 13 128 12 4.0 6.0 7.0 12 19 13.7 0.02 5.9 11 99Ru 28 23 19 20 20 29 37 34 70 136 118 0.02 - 59 101Ru 10 8.2 10 9.9 10 8.0 14 12 19 25 23 2.19 - 10 102Ru 6.2 6.4 7.2 6.9 7.7 4.7 8.6 7.6 13 25 21 0.48 - 11 103Rh 9.8 7.8 7.0 7.5 7.7 7.6 13 11 15 22 20 0.11 - 11 105Pd 7.0 4.5 5.1 8.5 7.0 5.4 8.8 7.7 11 19 17 6.36 - 9.6 106Pd 7.1 4.1 11 8.0 10 13 28 23 41 79 61 3.37 - 21 108Pd 5.2 4.4 7.4 10 8.8 9.3 20 16 31 91 73 1.04 - 27 107Ag 4.8 3.9 5.4 9.6 7.7 4.8 5.4 7.0 4.8 7.2 6.5 0.07 9.9 9.5 111Cd 11 6.0 13 11 14 8.0 7.3 11 7.5 12 10 0.05 23 12 118Sn 15 7.7 7.2 15 13 11 20 19 25 54 45 0.92 5.5 24 121Sb 5.6 3.9 5.6 5.2 5.4 7.5 9.5 10 7.8 7.9 7.9 0.04 10 - 189Os 12 9.7 12 15 13 18 26 25 27 52 44 5.73 - 25 192Os 8.3 4.3 8.9 7.5 8.3 12 15 17 17 28 25 18.9 - 16 191Ir 16 14 13 17 15 18 31 27 32 75 54 0.74 - 29 193Ir 8.6 12 15 8.5 13 12 24 21 33 71 58 5.27 - 24 194Pt 6.2 5.6 6.1 11 8.9 7.7 7.3 10 6.4 9.4 8.7 0.36 - 19 195Pt 4.8 5.0 6.6 10 8.6 6.8 7.4 10 6.5 9.5 10 2.07 - 14 197Au 4.8 6.0 5.0 9.8 7.4 6.1 6.8 9.8 9.4 9.4 9.3 0.21 - 16 205Tl 5.7 4.3 5.4 11 8.2 9.1 7.9 15 9.1 15 14 10.0 - 11 207Pb 3.3 5.0 3.5 9.4 6.7 9.3 4.8 14 6.4 7.9 7.4 0.06 - 10 209Bi 4.9 4.1 3.7 7.7 5.8 10 4.8 16 7.1 7.1 7.1 0.04 14 10 表 2 PGEs主要质谱干扰及SRMD-B贵金属空白样品分析信号
Table 2 Mass interference of PGEs and signal intensity of SRMD-B
待测元素 主要干扰 信号强度/cps 背景 SRMD-B贵金属空白样品 99Ru 59Co40Ar 25 24 101Ru 61Ni40Ar 15 691 102Ru 62Ni40Ar,102Pd 126 2469 103Rh 63Cu40Ar,206Pb2+ 150 522 105Pd 65Cu40Ar 53 170 106Pd 66Zn40Ar,106Cd 1854 1950 108Pd 68Zn40Ar,108Cd 837 743 189Os 173Yb16O 0 0 192Os 176Hf16O,192Pt 0 7 191Ir 175Lu16O 0 5 193Ir 177Hf16O 0 11 194Pt 178Hf16O 10 0 195Pt 179Hf16O 8 3 -
Axelsson M D, Rodushkin I. Determination of major and trace elements in sphalerite using laser ablation double focusing sector field ICP-MS [J].Journal of Geochemical Exploration, 2001,72(2):81-89. doi: 10.1016/S0375-6742(00)00166-7
Houghton J, Shanks W, Seyfried W. Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Rdge [J].Geochimica et Cosmochimica Acta, 2004,68(13):2863-2873. doi: 10.1016/j.gca.2003.12.023
Cook N J, Ciobanu C L, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini-Eidukat B, Melcher F. Trace and minor elements in sphalerite:A LA-ICPMS study [J].Geochimica et Cosmochimica Acta, 2009,73(16): 4761-4791. doi: 10.1016/j.gca.2009.05.045
周涛发,张乐骏,袁峰,范裕, Cook D R. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约[J].地学前缘, 2010,17(2):306-319. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002035.htm Piña R, Gervilla F, Barnes S J, Ortega L, Lunar R. Distribution of platinum-group and chalcophile elements in the Aguablanca Ni-Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study [J].Chemical Geology, 2012,302: 61-75.
Bockrath C, Ballhaus C, Holzheid A. Fractionation of the platinum-group elements during mantle melting [J].Science, 2004,305(5692): 1951-1953. doi: 10.1126/science.1100160
Lorand J P, Luguet A, Alard O, Bezos A, Meisel T. Abundance and distribution of platinum-group elements in orogenic lherzolites; a case study in a Fontete Rouge lherzolite (French Pyrénées) [J].Chemical Geology, 2008,248(3): 174-194.
Lorand J P, Luguet A, Alard O. Platinum-group element systematics and petrogenetic processing of the continental upper mantle: A review [J].Lithos, 2013,164-167: 2-21. doi: 10.1016/j.lithos.2012.08.017
Alard O. Nonchondritic distribution of the highly sider-ophile elements in mantle sulfides [J].Nature, 2000,407: 891-894. doi: 10.1038/35038049
McDonald I. Development of sulphide standards for the in-situ analysis of platinum-group elements by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS)[C]//10th Intern Platinum Symp, 2005: 468-471.
Jarvis K E, Williams J G, Parry S J, Bertalan E. Quantitative determination of the platinum-group elements and gold using NiS fire assay with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS ) [J].Chemical Geology, 1995,124(1 2): 37-46.
Norman M, Robinson P, Clark D. Major-and trace-element analysis of sulfide ores by laser-ablation ICP-MS, solution ICP-MS, and XRF: New data on international materials [J].The Canadian Mineralogist, 2003,41: 293-305. doi: 10.2113/gscanmin.41.2.293
Barnes S J, Cox R A, Zientek M L. Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril′sk, Russia [J].Contributions to Mineralogy and Petrology, 2006,152(2): 187-200. doi: 10.1007/s00410-006-0100-9
Godel B, Barnes S J. Platinum-group elements in sulfide minerals and the whole rocks of the J-M Reef (Stillwater Complex): Implication for the formation of the reef [J].Chemical Geology, 2008(248): 272-294.
Wilson S A, Ridley W I, Koenig A E. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique [J].Journal of Analytical Atomic Spectrometry, 2002,17(4): 406-409. doi: 10.1039/B108787H
Wohlgemuth-Ueberwasser C C, Ballhaus C, Berndt J, Stotternée P V, Meisel T. Synthesis of PGE sulfide standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) [J].Contributions to Mineralogy and Petrology, 2007,154(5): 607-617. doi: 10.1007/s00410-007-0212-x
袁继海,詹秀春,范晨子,赵令浩,孙冬阳,贾泽荣,胡明月,蒯丽君. 玻璃标样结合硫内标归一定量技术在激光剥蚀-等离子体质谱分析硫化物矿物中的应用[J].分析化学, 2012,40(2): 201-207. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201202008.htm 袁继海,詹秀春,樊兴涛,胡明月. 硫化物矿物中痕量元素的激光剥蚀-电感耦合等离子体质谱微区分析进展 [J].岩矿测试, 2011,30(2): 121-130. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201102003.htm Perkins W T, Pearce N J G, Westgate J A. The development of laser ablation ICP-MS and calibration strategies: Examples from the analysis of trace elements in volcanic glass shards and sulfide minerals [J].Geostandards Newsletter, 1997,21: 175-190. doi: 10.1111/ggr.1997.21.issue-2
Figueiredo A M, Enzweiler J, Sarkis J E, Jorge A P, Shibuya E. NAA and UV laser ablation ICP-MS for platinum group elements and gold determination in NiS fire assay buttons: A comparison between two methods [J].Journal of Radioanalytical and Nuclear Chemistry, 2000,244(3): 623-625. doi: 10.1023/A:1006725618998
Gros M, Lorand J P, Luguet A. Analysis of platinum group elements and gold in geological materials using NiS fire assay and Te coprecipitation; the NiS dissolution step revisited [J]. Chemical Geology, 2002,185(3): 179-190.
Sylvester P, Cabri L, Tubrett M, McMahon G, Laflamme J, Peregoedova A. Synthesis and evaluation of a fused pyrrhotite standard reference material for platinum group element and gold analysis by laser ablation-ICPMS[C]//10th International Platinum Symposium. Finland: Geological Survey of Finland, 2005: 16-20.
Wang X, Zeng Z, Yin X, Wang X. Study on the constituents of nickel sulfide assay button [J].Precious Metals, 2007,28(4): 45-49.
Q/GD 008—2002,岩石、土壤、水系沉积物中铂族元素的锍镍试金-电感耦合等离子体质谱(ICP-MS)法测定[S]. Sylvester P. A practical guide to platinumgroup element analysis of sulphides by laser ablation ICPMS[M].Toronto: Mineralogical Association of Canada, 2001: 203-211.
Shibuya E K, Sarkis J E S, Enzweiler J, Jorge A P S, Figueiredo A M G. Determination of platinum group elements and gold in geological materials using an ultraviolet laser ablation high-resolution inductively coupled plasma mass spectrometric technique [J].Journal of Analytical Atomic Spectrometry,1998,13(9): 941-944. doi: 10.1039/a801477i