Method for the Analysis of 22 Organochlorine Pesticides and 8 Polychlorinated Biphenyls in Soils and Sediments Using Gas Chromatography
-
摘要: 近年来地下水、土壤和沉积物等介质中有机氯农药和多氯联苯分析方法的改善主要集中在样品前处理和分析测试条件等方面,而探讨布点、采样等方面的整套方法较少。本文建立了一套适用性较广的气相色谱法同时测定土壤和沉积物中22种有机氯农药和8种多氯联苯,方法检出限为0.09~0.48 ng/g,平均空白回收率为58.7%~133.7%。针对布点、采样、运输、保存、提取、净化、浓缩、仪器测试、数据处理和提交报告整个过程阐述了方法的有效性和实用性;并对提取、净化、测试等多个环节提供了两种或更多的选择,使方法具有更大的灵活性。本文提出,布点前应根据踏勘样品和前人资料考虑采集不同深度的样品;样品的布点、采集和制备均需选择样品,它们共同决定了样品的代表性;分析方法要灵活运用,对于很少检出的目标化合物可采用允许共峰但分析快速的方法,如果有检出再采用针对性的方法分别测定;样品的测定序列不应为了节约分析成本而过于简单。Abstract: In recent years, the main focus for improving detection methods for organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in groundwater, soils and sediments has focused mainly on pretreatment and analysis conditions. Comprehensive methods including sampling point design and sample collection were seldom studied. A new method was has been developed for the simultaneous determination of 22 OCPs and 8 PCBs in soils and sediments by Gas Chromatography coupled with electron capture detection. Method detection limits range from 0.09 ng/g to 0.48 ng/g, and the average recoveries are 58.7%-133.7%. This developed method seems to be a relatively integrated and widely applicable method, including sampling point design, sample collection, transportation, preservation, extraction, clean-up, concentration, determination, data analysis and reporting. Alternative technologies were recommended for extraction, clean-up and Gas Chromatographic condition, etc, which improves the flexibility of the method. The results show that the sampling point design for the samples collected from different depths should be considered on the basis of scouting samples and pre-existing data since the representativeness of samples comprehensively depends on selecting procedure, sampling point design, sample collection and preparation. A flexible Gas Chromatographic condition can be used for those samples with rare target compounds, and a corresponding Gas Chromatographic condition can be used further if special target compounds need to be separated. Sequence of the samples should not be oversimplified in order to save cost.
-
Keywords:
- soil /
- sediment /
- organochlorine pesticides /
- polychlorinated biphenyls /
- sampling point design /
- sampling /
- Gas Chromatography
-
研究绿松石的矿料来源对于了解古代先民的活动范围、开采运输能力和考古文化联系等问题都具有重要的意义[1-6]。而它的来源问题一直是考古学界关注而又悬而未决的问题,如何能够正确鉴定绿松石矿料来源成为当务之急,显然这一问题的解决有赖于对绿松石矿物和结构特征等诸多方面的深入研究。前人主要从成分或者结构分别对我国一些产地的绿松石进行了研究和总结,但是并没有形成一个绿松石地域特征的划分体系。在前人的研究中,通过X射线衍射 (XRD) 物相分析对绿松石的结构进行分析,在成分分析上通常采用高分辨电感耦合等离子体质谱仪 (ICP-MS)、拉曼光谱来研究不同产地绿松石的谱线特征。为了进一步研究不同产地绿松石的产地特征,本文采用ICP-MS、扫描电镜、XRD、红外吸收光谱等现代测试方法[7]分析来自不同地区绿松石的成分,尤其是分析微量元素和稀土元素的种类和含量,同时对结构特征也进行了分析,从而为古绿松石来源的无损鉴定[8]提供一定的借鉴作用。
1. 样品特征及分析方法
1.1 样品描述
选取湖北竹山县秦古镇和安徽马鞍山绿松石为研究样品,其特征和形貌见表 1和图 1。
表 1 绿松石样品特征Table 1. Characteristics of turquoise samples样品 产地 描述 CL-1 湖北竹山县秦古镇 蓝灰色,结构致密,黑色物质相间分布 CL-2 湖北竹山县楼台乡 淡绿色,围岩含较多铁矿 CL-3 湖北竹山县溢水镇 淡蓝绿色,结构松散 CL-4 安徽马鞍山 浅蓝色,被围岩包裹 1.2 分析仪器
采用能谱仪 (EDAX)、GeoLas 2005激光剥蚀系统和Agilent 7500a等离子体质谱仪 (美国Agilent公司) 进行成分分析。激光能量70 mJ,频率8 Hz,激光束斑直径32 μm。
采用PW3373/10型X射线衍射仪 (日本理学株式会社) 进行物相分析。
采用AVATAR-370DTGS傅里叶变换红外光谱仪 (Nicolet) 进行矿物基团分析。
采用JSM-350CF型环境扫描电子显微镜 (荷兰FEI公司) 进行微观形貌和结构特征分析。
2. 分析与讨论
2.1 化学成分分析
X射线能谱分析绿松石样品中氧化物含量见表 2。湖北竹山县 (CL-1) 和安徽马鞍山地区 (CL-4) 的绿松石主成分中都含有一定量的Fe和微量的SiO2,其中竹山县样品CL-2和CL-3还含有一定量的S,两地的绿松石成分都与理论值[9]相比存在一定的偏离,这可能与所选样品为绿松石原石有关,因为原石中所含围岩矿物的成分会影响绿松石的主要元素含量。
表 2 X射线能谱分析绿松石中氧化物含量Table 2. Main chemical compositions of oxides in turquoise samples by EDAX analysis样品编号 wB/% Al2O3 SiO2 P2O5 Fe2O3 CuO SO3 CL-1 41.60 0.88 42.20 1.73 13.60 - CL-2 35.31 0.57 42.23 14.36 5.99 1.54 CL-3 46.41 2.65 40.56 1.50 7.56 1.32 CL-4 40.00 0.51 39.63 3.36 16.50 - 理论值 36.84 - 34.12 - 9.57 - 绿松石样品的微量元素含量见表 3。秦古绿松石 (CL-1) 中Na、Mg、Si、Ca、Sc、Ti、V、Cr、Mn、Co、Zn、Sr、Mo、Sb和Ba元素的含量与马鞍山绿松石存在较大的差异,这与绿松石矿的地质特征紧密相关。竹山县绿松石主要的伴生矿物有多水高岭石、水铝英石、明矾石、石英、方解石、蓝铜矿和孔雀石等,而马鞍山绿松石矿床成矿围岩中富含磷灰石,并伴有铜矿体[10],所以在一定程度上来讲上述微量元素的存在也是这些伴生矿物引入的。
表 3 等离子体质谱分析绿松石中微量元素含量Table 3. Chemical compositions of micro-amount of elements in turquoise samples by ICP-MS元素 wB/(μg·g-1) CL-1 CL-4 Y 0.464 0.707 Zr 0.320 0.390 Nb 0.021 0.003 Mo 147.234 0.018 Ag 0.116 0.052 Cd 0.726 0.019 In 0.192 1.684 Sn 2.159 1.555 Sb 76.300 0.651 Li 0.115 0.139 Be 5.326 6.078 B 2.650 1.073 Na 69.630 184.435 Mg 1.651 8.220 Si 282.623 507.143 K 214.616 327.047 Ca 0.000 13.092 Sc 2.647 13.645 Ti 78.346 27.745 Cs 0.011 0.004 Ba 1597.627 Li Hf 0.015 0.020 Ta 0.017 0.008 W 0.662 0.039 Tl 0.172 0.011 Pb 0.345 2.230 Bi 0.008 0.131 Th 0.000 0.173 U 67.272 0.984 V 310.534 25.235 Cr 325.871 5.927 Mn 0.000 0.221 Co 1.313 27.831 Ni 0.768 0.857 Zn 1584.435 147.116 Ga 19.476 10.371 Ge 0.214 0.340 Rb 0.364 0.597 Sr 19.249 3.431 从矿床学的角度来分析,竹山县的绿松石矿体赋存于寒武系硅质泥质板岩中,并且它的矿化与铀的矿化分布一致,广泛分布有铀-钒-钡矿化层,这就造成了产于竹山县的绿松石在U、V、Ba元素上远大于马鞍山地区绿松石。而马鞍山地区绿松石矿的成矿围岩为富钠的碱钙性岩石,其中龙王山组富含K2O,大王山组及次火山岩相对富含Na2O,而K2O的含量也较高[11],因此在碱性元素上马鞍山地区的绿松石含量普遍高于竹山地区。
任何矿石都是在某一地质历史时期,由某种地质作用在特定的地质环境中形成的。由于稀土元素 (REEs) 的离子半径和化学行为存在细微的差别,造成了不同地质作用过程中轻重稀土元素发生分馏[12-13],上述诸方面的差异均不可避免地体现在不同产地的绿松石矿中。根据REEs的指示作用可以通过讨论绿松石稀土元素的富化和亏损等对不同产地的绿松石作出鉴别,测定结果见表 4。
表 4 等离子体质谱分析绿松石稀土元素含量Table 4. Chemical compositions of REEs in turquoise samples by ICP-MS元素 wB/(μg·g-1) CL-1 CL-4 La 0.005 0.052 Ce 0.069 0.128 Pr 0.027 0.008 Nd 0.039 0.159 Sm 0.038 0.059 Eu 0.035 0.019 Gd 0.246 0.160 Tb 0.013 0.025 Dy 0.110 0.185 Ho 0.016 0.041 Er 0.051 0.090 Tm 0.016 0.030 Yb 0.080 0.168 Lu 0.011 0.019 由两地区样品稀土配分模式图 (图 2),两样品中Gd都显示正异常,但在稀土配分形式上存在一定的相似性。CL-1和CL-4的稀土元素总量均较低,分别变化于0.005~0.246 μg/g、0.008~0.185 μg/g,二者轻稀土总量均小于重稀土总量,明显富集重稀土,配分曲线向右上角倾斜。样品CL-1显示强烈的Nd负异常,CL-1和CL-4出现Pr反向,La的含量也相差较大。马鞍山绿松石CL-4配分曲线,Eu显示负异常,而Eu的负异常特征是马鞍山地区绿松石中经常可以看到的[14]。这种稀土含量特征可能与两地的克拉克值 (即每一种化学元素在地壳中所占的平均比值) 分布有关。
综上所述,绿松石由于成矿背景和地质条件不同,竹山与马鞍山地区绿松石虽然主要成分含量基本一致,但在微量元素含量存在较大差别;两地区绿松石的稀土元素均富集重稀土,二者的稀土配分模式图出现Pr反向,马鞍山地区的绿松石表现出Eu负异常;马鞍山绿松石的结晶程度优于竹山绿松石。
2.2 X射线衍射物相分析
为确定不同产地不同颜色的绿松石是否其内部结构[15]也发生变化,特别对绿松石样品进行XRD物相分析,测得的XRD图谱和数据见图 3,结果表明,样品CL-2为铁绿松石,其XRD分析结果与上述的主成分分析相一致。对照JCPDS卡片,显示样品CL-1、CL-3和CL-4的衍射谱线、矿物组分与绿松石理论谱线相吻合。绿松石样品CL-1、CL-3和CL-4的主要粉晶衍射数据分别为0.3666 nm (100)、0.3664 nm (100),二者基本相同。但马鞍山绿松石 (CL-4) 衍射峰的强度比竹山县绿松石 (CL-1、CL-3) 高,如图 4所示,说明马鞍山绿松石 (CL-4) 晶体的结晶程度优于CL-1和CL-3。从样品的外观 (见图 1) 和硬度来看,样品CL-2、CL-3所受风化程度较大,所以其衍射峰相对于CL-1和CL-4而言小些。
2.3 红外光谱分析
绿松石为含铜、铝和水的磷酸盐,OH、H2O及PO43-基团的振动模式和频率决定了绿松石红外光谱的主要特征[16]。图 4显示,竹山绿松石与马鞍山绿松石所表现出的红外吸收谱带特征基本相同,但绿松石晶体的结晶程度以及所受风化程度不同导致一些微小的差异。由绿松石中ν (OH) 伸缩振动致红外吸收锐谱带主要位于3511 cm-1、3459 cm-1处,而ν (MFe,Cu-H2O) 伸缩振动致红外吸收谱带则出现在3291 cm-1、3076 cm-1处,样品CL-3和CL-4的水区谱带被由吸附水ν (H2O) 伸缩振动致红外吸收舒宽谱带明显包络致使该区吸收谱带不够突出。由δ (H2O) 弯曲振动致红外吸收谱带位于1648 cm-1处。从图 4可以看出,由δ (H2O) 弯曲振动致红外吸收谱带与文献[17-19]报道的δ (H2O) 弯曲振动致红外吸收弱谱带存在一定的差异,可能是由于绿松石样品中水的结晶比较好所致。
由磷酸根基团伸缩振动致红外吸收谱带为:ν3 (PO4) 伸缩振动致红外吸收谱带位于1172 cm-1、1104 cm-1、1055 cm-1处,而δ (OH) 弯曲振动致红外吸收弱谱带出现在837 cm-1、787 cm-1处,由PO43-基团ν4 (PO4) 弯曲振动致红外吸收谱带主要位于645 cm-1、577 cm-1、482 cm-1处。这与文献[12]中天然绿松石的吸收谱带存在一定范围的偏差,可能是由于所选绿松石原石的结晶程度不完全所致。
2.4 微观形貌分析
样品CL-1、CL-2、CL-3和CL-4的扫描电子显微镜照片如图 5所示,5000倍下绿松石样品都呈现出鳞片状结构或针状结构,质地细腻。
3. 结语
通过两地绿松石的成分和结构特征对比,可以进一步分析不同产地绿松石的成矿背景,并且与古代著名绿松石产地的地质条件进行分析比对,进而可以从矿物成因的角度对古绿松石的产地进行判断,这就可以从源头上解决古绿松石的产地问题。
根据测试结果得出以下结论。
(1) 在成分上,两地绿松石的主要化学成分基本一致,而微量元素含量有一定的区别,尤其是稀土元素的含量具有显著的地域特征。由于在测试化学成分上所采用的仪器和方法都属于无损鉴定,因此在以后的研究中可以通过测试化学成分来标定各个产地绿松石的产地特点,从而为古绿松石产地的无损鉴定形成一个标准体系。
(2) 在结构上,两地的绿松石具有特征的绿松石谱线特征,并且马鞍山地区的样品结晶程度优于竹山县样品。
(3) 在形貌上,两地绿松石表现出质地细腻的特性。其中马鞍山绿松石具有明显的鳞片状集合体微观形貌结构,而竹山县绿松石呈现细鳞片状或针状结构。
绿松石可以采用X射线衍射和红外光谱以及扫描电镜进行鉴定。绿松石成分上的区别,尤其是某些微量元素和稀有元素含量上的差别可以用于判别地域,这些差别与绿松石矿的成矿背景有关。所以只有深入了解不同地区绿松石的成矿背景,才能为绿松石的产地划分提供依据。本文采用的测试化学成分的方法都是可以应用于古绿松石地域判别的无损鉴定。
不同产地的绿松石具有不同的矿物和结构特征,而且这些特征可以在不破坏绿松石外观的基础上来进行分析和判断。通过分析现代不同产地绿松石的特征能够得出绿松石的地域体系。这将对古绿松石的产地划分有很大的帮助,从而进一步推断出考古挖掘出来的古物的产地。
-
表 1 不同深度的土壤中DDTs的浓度
Table 1 Concentrations of DDTs in soils with different depth
化合物 土壤样品1
(数据单位:ng/g干重)土壤样品2
(数据单位:ng/g干重)0~20
cm20~40
cm40~60
cm60~80
cm0~20
cm20~40
cm40~60
cm60~80
cmp,p'-DDE 5.04 0.41 23.73 19.76 179.86 233.61 46.01 3.93 p,p'-DDD 1.40 < 0.10 2.27 3.96 1.44 10.43 0.94 < 0.10 o,p'-DDT 2.50 < 0.10 < 0.10 < 0.10 6.19 7.00 < 0.10 0.33 p,p'-DDT 15.11 < 0.10 4.18 3.94 42.41 85.10 7.85 1.33 ∑DDTs 24.05 0.41 30.18 27.66 229.90 336.14 54.80 5.59 表 2 不同净化处理的方法回收率
Table 2 Method recoveries for OCPs and PCBs with different clean-up procedures
有机氯农药化合物 方法回收率/% 浓硫酸磺化法 佛罗里硅土柱法 α-HCH 89.8 85.8 β-HCH 90.0 80.8 γ-HCH 89.2 84.3 δ-HCH 105.7 86.1 p,p'-DDE 111.4 96.4 p,p'-DDD 110.4 100.5 o,p'-DDT 117.7 94.0 p,p'-DDT 115.0 112.5 HCB 87.3 82.4 七氯 108.7 118.0 艾氏剂 85.5 76.7 环氧七氯 85.2 95.7 γ-氯丹 86.8 91.9 α-硫丹 86.2 84.1 α-氯丹 87.9 106.3 狄氏剂 27.3 97.9 异狄氏剂 41.7 123.6 β-硫丹 85.9 90.0 异狄氏剂醛 30.4 58.7 硫丹硫酸酯 78.1 86.7 异狄氏剂酮 95.7 88.0 甲氧滴滴涕 75.2 133.7 PCB 28 92.7 82.9 PCB 52 92.9 83.9 PCB 103 92.7 88.6 PCB 101 93.7 86.5 PCB 118 96.5 94.1 PCB 153 96.0 90.3 PCB 138 96.9 94.7 PCB 180 99.0 93.7 表 3 样品测定序列
Table 3 Sequence of sample for detection
序列次序 分析内容 1 进样口裂解监测溶液 2 正己烷溶液1 3 标准曲线序列(一般4~7个标准) 4 正己烷溶液2 5 实验室空白 6 野外空白 7 样品组1(一般10~20个样品) 8 连续校准溶液1 9 正己烷溶液3 10 样品组2(一般10~20个样品) 11 连续校准溶液2 12 正己烷溶液4 13 重复7~12 14 重复3和4 表 4 土壤和沉积物中22种有机氯农药和8种多氯联苯的方法检出限
Table 4 Method detection limits of 22 OCPs and 8 PCBs in soils and sediments
序号 目标化合物 方法检出限
/(ng·g-1)1 α-HCH 0.14 2 β-HCH 0.17 3 γ-HCH 0.15 4 δ-HCH 0.18 5 p,p'-DDE 0.14 6 p,p'-DDD 0.20 7 o,p'-DDT 0.29 8 p,p'-DDT 0.38 9 HCB 0.15 10 七氯 0.11 11 艾氏剂 0.12 12 环氧七氯 0.15 13 γ-氯丹 0.14 14 α-硫丹 0.26 15 α-氯丹 0.24 16 狄氏剂 0.24 17 异狄氏剂 0.28 18 β-硫丹 0.30 19 异狄氏剂醛 0.48 20 硫丹硫酸酯 0.27 21 异狄氏剂酮 0.29 22 甲氧滴滴涕 0.34 23 PCB 28 0.11 24 PCB 52 0.13 25 PCB 103 0.09 26 PCB 101 0.12 27 PCB 118 0.15 28 PCB 153 0.18 29 PCB 138 0.10 30 PCB 180 0.12 -
Turusov V, Rakitsky V, Tomatis L.Dichlorodi-phenyl-trichloroethane (DDT): Ubiquity, persistence, and risks[J].Environmental Health Perspectives, 2002, 110(2): 125-128. doi: 10.1289/ehp.02110125
Concha-Graña E, Fernández-González V, Grueiro-Noche G, Muniategui-Lorenzo S, López-Mahía P, Fernández-Fernández E, Prada-Rodriguez D. Development of an environmental friendly method for the analysis of organochlorine pesticides in sediments[J].Chemosphere, 2010, 79(7): 698-705. doi: 10.1016/j.chemosphere.2010.02.052
Smalling K L, Kuivila K M. Multi-residue method for the analysis of 85 current-use and legacy pesticides in bed and suspended sediments[J].Journal of Chromatography A, 2008, 1210(1): 8-18. doi: 10.1016/j.chroma.2008.09.023
佟玲,吴淑琪,杨佳佳,张玲金.土壤中25种有机氯农药和多氯联苯的气相色谱分析方法研究[J].岩矿测试, 2010, 29(3): 277-281. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201003018.htm 蒋雯菁,庞伟,祝艳涛,周淑春.地表水中24种有机氯农药和19种多氯联苯的自动SPE-GC-MS/MS分析[J].环境化学, 2012, 31(9): 1458-1459. 汪雨,支辛辛,张玲金.利用碳纳米管固相萃取气相色谱法对水中有机氯农药和多氯联苯的测定[J].分析测试学报, 2008, 27(5): 493-496. http://www.cnki.com.cn/Article/CJFDTOTAL-TEST200805009.htm 史双昕,张烃,董亮,周丽,张利飞,黄业茹.降尘/沉积物样品中多环芳烃(PAHs)和有机氯农药(OCPs)同时测定的固相萃取小柱净化条件[J].环境化学,2011,30(3): 632-637. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201103011.htm 佟玲,黄园英,张玲金,吴淑琪.土壤中持久性有机污染物分析的前处理方法[J].岩矿测试,2008,27(2): 81-86. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200802003.htm Luo Y B, Yuan B F, Yu Q W, Feng Y Q. Substrateless graphene fiber: A sorbent for solid-phase microextraction[J].Journal of Chromatography A,2012,1268: 9-15. doi: 10.1016/j.chroma.2012.10.035
李春江,陈式.论地下水水质监测中的布点与采样[J].水文地质工程地质,1998(2): 49-50. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG802.014.htm 张文平.环境监测采样的误差来源及其质量保证[J].中国环境监测,1991,7(4): 11-14. http://www.cnki.com.cn/Article/CJFDTOTAL-IAOB199104003.htm 陈辉,张广鑫,惠怀胜.污染场地环境调查的土壤监测点位布设方法初探[J].环境保护科学,2010,36(2): 61-64. http://www.cnki.com.cn/Article/CJFDTOTAL-HJBH201002020.htm 刘素云.农田土壤监测样点布设与样品采集[J].农业环境科学学报,1987,6(5): 24-26. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH198705008.htm HJ/T 166-2004,土壤环境监测技术规范[S]. Zhang H B, Luo Y M, Li Q B. Burden and depth distribution of organochlorine pesticides in the soil profiles of Yangtze River Delta Region, China: Implication for sources and vertical transportation[J].Geoderma, 2009, 153: 69-75. doi: 10.1016/j.geoderma.2009.07.016
甘志芬,赵兴茹,梁淑轩,高世珍,张雷,秦延文,郑丙辉.天津塘沽海滨浴场沉积物中POPs的垂直分布[J].环境科学研究, 2010, 23(2): 152-157. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201002003.htm NY/T 395-2000, 农田土壤环境质量监测技术规范[S]. Capdeville M J, Budzinski H.Trace-level analysis of organic contaminants in drinking waters and groudwaters[J].Trends in Analytical Chemistry,2011,30(4): 586-606.
王立,汪正范,牟世芬,丁晓静.色谱分析样品处理[M].北京:化学工业出版社, 2001: 1-8. 李攻科,胡玉玲,阮贵华.样品前处理仪器与装置[M].北京:化学工业出版社, 2007: 1-10. Ozcan S, Tor A, Aydin M E.Application of miniaturised ultrasonic extraction to the analysis of organochlorine pesticides in soil[J].Analytica Chimica Acta, 2009, 640(1-2): 52-57. doi: 10.1016/j.aca.2009.03.030
Farahani H, Yamini Y, Shariati S, Khalili-Zanjani M R, Mansour-Baghahi S.Development of liquid phase microextraction method based on solidification of floated organic drop for extraction and preconcentration of organochlorine pesticides in water samples[J].Analytica Chimica Acta, 2008, 626(2): 166-173. doi: 10.1016/j.aca.2008.08.001
Ke Y, Zhu F, Zeng F, Luan T, Su C, Ouyang G. Preparation of graphene-coated solid-phase microextraction fiber and its application on organochlorine pesticides determination[J].Journal of Chromatography A, 2013, 1300: 187-192. doi: 10.1016/j.chroma.2012.11.072
许桂苹,欧小辉,梁柳玲,秦旭芝.加速溶剂萃取-固相萃取及铜粉净化技术在土壤有机氯农药分析中的应用[J].环境科学学报,2010, 30(11): 2250-2255. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201011014.htm 陈卫明,邓天龙,张勤,李庆霞.土壤中有机氯农药残留的分析技术研究进展[J].岩矿测试,2009,28(2):151-156. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200902020.htm 魏峰,吕爱娟,陈海英,郑荣华,骆宏玉,沈加林.水中多环芳烃前处理过程中的污染来源及去除方法[J].岩矿测试, 2011, 30(2): 169-173. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201102011.htm 宋淑玲,饶竹,赵威,李松.地质调查样品中有机氯农药分析存在的困难和解决方法[J].岩矿测试,2010,29(3): 271-276. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201003016.htm 康跃惠,盛国英,傅家谟,麦碧娴.沉积物内多氯联苯测定中有机氯农药的排除及质量控制/质量保证研究[J].分析化学,1999, 27(11): 1258-1263. doi: 10.3321/j.issn:0253-3820.1999.11.004 林峥,麦碧娴,张干,盛国英,闵育顺,傅家谟.沉积物中多环芳烃和有机氯农药定量分析的质量保证和质量控制[J].环境化学,1999,18(2): 115-121. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX199902003.htm 宋春满,师君丽,逄涛.色谱分析中校准曲线制作的探讨[J].光谱实验室,2011,28(5): 2562-2565. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201105100.htm 魏峰,陈海英,沈小明,吕爱娟.地下水中半挥发性有机污染物痕量分析的5个问题探讨[J].岩矿测试,2012, 31(6): 1043-1049. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201206027.htm
计量
- 文章访问数: 1636
- HTML全文浏览量: 246
- PDF下载量: 10