坚韧,坚持,坚信
-
-
锗、硒、碲是非常重要的稀有金属,在地壳中含量均不高。锗的含量约为1.13×10-6~1.6×10-6,碲的含量约为0.1×10-6,硒的含量为0.05×10-6。锗、硒、碲的分布信息对研究地球化学环境成因具有重要意义,在半导体工业、医药、保健品等领域它们的用途也十分广泛[1]。由于很少有独立的矿床,多伴生于其他矿物中,故研究出一种切实可行、简便快速的分析方法,对调查和开发利用这三种稀有金属资源具有重要意义。
测定锗、硒、碲三元素通常需要采用两种溶样体系两种仪器,对于大批量地质样品的分析成本高、测试效率低。即单独测定锗元素采用硝酸-氢氟酸-高氯酸-磷酸体系分解试样,原子荧光光谱(AFS)[2-4]或电感耦合等离子体质谱(ICP-MS)测定[5-8];在地质样品多元素分析配套方法中,则采用分取一定体积碱熔溶液,磷酸冒烟后AFS测定锗。对于硒、碲两元素,都可以采用硝酸-氢氟酸-高氯酸体系或王水Carius管密封分解试样,AFS测定[9-17]或ICP-MS测定[7, 18-22]。硝酸-氢氟酸-高氯酸体系分解试样的过程比较简单,但是硒和锗不能同时兼顾。王水Carius管密封分解试样可以避免样品制备过程中锗、碲的损失,但操作复杂,特别是需要用氧气-乙炔火焰将玻璃管顶端熔化密封,操作有一定的危险性,而且使用一次性Carius管的成本较高,不适于大批量样品的处理。在ICP-MS分析过程中,由于Se(9.75 eV)、Te(9.01 eV)的电离电位较高,电离程度较低,测定时灵敏度偏低。而且在氩等离子体气氛中,如Se这类质荷数小于80的元素会受多原子复合离子干扰,如40Ar40Ar干扰80Se,40Ar38Ar干扰78Se,40Ar37Cl干扰77Se,影响了测定结果的准确度。
本文对样品前处理过程作了简化处理,用硝酸-氢氟酸-硫酸体系分解试样,以乙醇为样品溶液介质,利用碳原子对硒、碲电离的影响提高了ICP-MS测定硒、碲的灵敏度,结合碰撞池技术(CCT)消除氩复合离子对硒测定的干扰,建立了在同一份溶液中用ICP-MS同时测定锗、硒、碲三元素的快速分析方法。
1. 实验部分
1.1 仪器及工作条件
X-Series Ⅱ型电感耦合等离子体质谱仪,六极杆碰撞池(美国Thermo Scientific公司),仪器参数见表 1。
表 1 ICP-MS仪器工作参数Table 1. Working parameters of the ICP-MS instrument工作参数 设定条件 功率 1350 W 冷却气(Ar)流量 13.0 L/min 辅助气(Ar)流量 0.70 L/min 雾化气(Ar)流量 1.0 L/min 采样锥(Ni)孔径 1.0 mm 截取锥(Ni)孔径 0.7 mm 测量方式 跳峰 扫描次数 50 停留时间/通道 10 ms 每个质量通道数 3 总采集时间 20 s 碰撞气流量(氦氢气) 6.5 mL/min 1.2 标准溶液和主要试剂
标准溶液:各元素标准储备溶液均采用国家标准物质溶液。根据各元素间有没有干扰和化学反应的原则,将待测各元素逐级稀释后混合成标准溶液(见表 2、表 3),介质为3%硝酸-3%乙醇。
表 2 Ge、Te混合标准溶液的分组及元素浓度Table 2. Mixed standard solutions and concentration for ICP-MS标准溶液序号 元素 浓度(ng/mL) S1 Ge,Te 0.05 S2 Ge,Te 0.10 S3 Ge,Te 0.50 S4 Ge,Te 2.00 表 3 Se标准溶液浓度Table 3. Se standard solutions and concentration for ICP-MS标准溶液序号 元素 浓度(ng/mL) S1 Se 0.20 S2 Se 0.50 S3 Se 1.00 S4 Se 3.00 硝酸、氢氟酸、盐酸、高氯酸、硫酸,均为超纯,购自苏州晶瑞化学有限公司;乙醇(优级纯)。
高纯水(电阻率大于18 MΩ·cm)。
1.3 样品制备
准确称取0.0500 g样品于聚四氟乙烯坩埚中,加水润湿后置于控温电热板上,加3 mL硝酸、5 mL氢氟酸、5 mL 50%硫酸,加盖低温溶解2.5 h后,升温至250℃溶解30 min后降温至100℃保温2.5 h,浸泡过夜。次日,升温至360℃冒烟,待溶液呈湿盐状,取下坩埚,冷却后用水吹洗坩埚壁和盖,继续冒烟,至浓烟完全冒尽,再次取下稍冷后,加3 mL 50%硝酸提取,用水吹洗坩埚壁,放电热板上煮至溶液清亮取下,用3%乙醇溶液定容至50 mL(在样品分解过程中硫酸烟较难冒尽,需要用水吹洗坩埚壁上附着的酸,此操作最好在坩埚冷却后进行,防止样品跳溅损失)。
2. 结果与讨论
2.1 乙醇的增敏作用及浓度的选择
文献报道在待测样品溶液中加入适当浓度的乙醇能够有效地增加Te、Se的灵敏度,且实验证明3%的乙醇增敏效果最好[7, 23-26]。选取Ge、Se、Te含量范围具有代表性的国家一级标准物质(GBW 07304a、GBW 07305a、GBW 07319、GBW 07321),按照1.3节前处理过程溶矿,一组用3 mL 50%硝酸提取后直接用水定容至50 mL,另一组用3 mL 50%硝酸提取后用3%乙醇定容至50 mL。ICP-MS在普通模式下测定Ge、Te,开启CCT模式(碰撞反应池)测定Se。
分别测定3%硝酸介质的试液和3%硝酸-3%乙醇介质的试液。如图 1所示,相比无乙醇的试液,3%硝酸-3%乙醇为介质,分析溶液对Se、Te增敏作用明显。Se、Te的信号强度分别是无乙醇样品溶液的信号值的2.2倍、3.7倍。
文献[7]报道采用3%硝酸-3%乙醇提取复溶样品,本实验发现该操作会使乙醇的增敏效果降低。分析认为,这是因为乙醇的损失导致试液中乙醇浓度降低所致。常温下乙醇就极易挥发,高温提取时其挥发速度更快,乙醇的大量损失使不同试液中乙醇浓度不一致,达不到最佳增敏作用所需的浓度,从而影响测定效果。所以,本方法采用配制的3%乙醇定容,避免乙醇在复溶时的损失,有效地控制了试液中乙醇浓度的一致性,保证试液中乙醇浓度为达到增敏作用所需最佳值。
2.2 氯离子对锗和碲分析的影响
Ge极易与氯离子生成GeCl4,其挥发温度为86℃。Te会和氯离子生成TeCl4、TeCl2,其沸点分别为390℃、327℃,高温下Ge、Te均容易挥发损失。在等离子体的氩氛围中,氯离子与氩生成复合粒子40Ar37Cl也会干扰Se的测定。所以,在溶矿过程中应该尽量避免直接引入氯离子。同时,样品前处理的过程也不宜在长时间使用盐酸、王水的工作场所进行。
2.3 CCT碰撞池模式测定硒
CCT是采用氦气为主的氦氢混合气,通过提供一个通用气和适当条件,以满足绝大部分样品去干扰的要求。氦气是惰性气体主要起碰撞多原子离子,降低其动能的作用,氢气是弱反应气,主要通过反应去除干扰。本方法在ICP-MS的CCT模式下测定80Se,复合离子40Ar40Ar+的干扰非常强,要去除40Ar40Ar+的干扰,氦气效果不佳。Ar2+具有较强的质子亲和力,而氢气分子具有很强的质子供给能力,它们能结合生成Ar2H+。Ar2H+是极不稳定的,它进一步分解为氩分子和H+,从而消除40Ar40Ar+对80Se的干扰[27-28]。
2.4 方法检出限和精密度
按照1.3节样品制备方法,全流程处理制备12份空白,以3σ计算方法检出限,Ge、Se、Te三元素的检出限分别为12.5、13.2、11.4 ng/g。文献[19]用氢氟酸-硝酸密封溶样,乙醇增强-电感耦合等离子体质谱法测定Te,检出限为20 ng/g。文献[7]用王水Carius管密封溶样,乙醇增强ICP-MS测定Ge、Se、Te三元素的检出限分别为20、7.5、11 ng/g。本方法分析Ge、Te的检出限较以上文献方法相当甚至更好,Se的检出限稍高,但是完全能够满足地质样品的分析测定要求。
以本法分析国家一级标准物质(GBW 07304a、GBW 07305a、GBW 07319、GBW 07321),每个标准物质各制备4份,分析值与标准值见表 4,结果显示本法分析精密度小于5%。
表 4 标准物质测定结果Table 4. Analytical results of elements in the national reference standard materials元素 GBW 07304a GBW 07305a GBW 07319 GBW 07321 标准值
(μg/g)平均值
(μg/g)RSD
(%)标准值
(μg/g)平均值
(μg/g)RSD
(%)标准值
(μg/g)平均值
(μg/g)RSD
(%)标准值
(μg/g)平均值
(μg/g)RSD
(%)Ge 1.48 1.51 4.3 1.59 1.56 3.2 1.32 1.30 3.0 1.34 1.31 3.6 Te 0.09 0.07 4.4 0.30 0.28 4.5 0.86 0.84 3.7 0.05 0.04 4.9 Se 0.57 0.54 3.9 0.37 0.38 4.8 2.80 2.84 4.5 0.16 0.15 3.5 3. 结语
本文研究了硝酸-氢氟酸-硫酸体系分解试样,ICP-MS测定Ge、Se、Te的方法。试样分解过程中没有使用盐酸,避免了氯离子对Te、Ge分析的影响,试样分解后用50%硝酸提取,再以3%乙醇溶液定容,有效地避免了乙醇在复溶时的挥发损失,保证了各试样溶液中乙醇浓度一致,且均为达到增敏作用所需最佳值。在3%硝酸-3%乙醇介质中,利用乙醇对Se、Te的增敏作用,使这两个元素的信号强度分别提高了2.2倍、3.7倍,有效地克服了ICP-MS测定Se、Te时难电离、灵敏度低的问题。结合CCT碰撞池技术消除氩的复合粒子对Se测定的干扰,实现了同一台仪器在同一份溶液中对Ge、Se、Te的测定,提高了分析效率。
计量
- 文章访问数: 640
- HTML全文浏览量: 313
- PDF下载量: 13