• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

食品中有机氯农药和多氯联苯气相色谱-质谱分析的离子化方式

曹孝文, 邹宽, 徐丹, 沈伟健, 练鸿振, 葛欣, 沈崇钰

曹孝文, 邹宽, 徐丹, 沈伟健, 练鸿振, 葛欣, 沈崇钰. 食品中有机氯农药和多氯联苯气相色谱-质谱分析的离子化方式[J]. 岩矿测试, 2013, 32(1): 22-27.
引用本文: 曹孝文, 邹宽, 徐丹, 沈伟健, 练鸿振, 葛欣, 沈崇钰. 食品中有机氯农药和多氯联苯气相色谱-质谱分析的离子化方式[J]. 岩矿测试, 2013, 32(1): 22-27.
Xiao-wen CAO, Kuan ZOU, Dan XU, Wei-jian SHEN, Hong-zhen LIAN, Xin GE, Chong-yu SHEN. Different Ionization Modes in Gas Chromatography-Mass Spectrometric Determination of Organochlorine Pesticides and Polychlorinated Biphenyls in Food[J]. Rock and Mineral Analysis, 2013, 32(1): 22-27.
Citation: Xiao-wen CAO, Kuan ZOU, Dan XU, Wei-jian SHEN, Hong-zhen LIAN, Xin GE, Chong-yu SHEN. Different Ionization Modes in Gas Chromatography-Mass Spectrometric Determination of Organochlorine Pesticides and Polychlorinated Biphenyls in Food[J]. Rock and Mineral Analysis, 2013, 32(1): 22-27.

食品中有机氯农药和多氯联苯气相色谱-质谱分析的离子化方式

基金项目: 

国家重点基础研究发展计划(973计划)项目(2009CB421601); 国家自然科学基金项目(90913012);公益性行业科研专项基金项目(200810099)

国家自然科学基金项目 90913012

公益性行业科研专项基金项目 200810099

国家重点基础研究发展计划(973计划)项目 2009CB421601

详细信息
    作者简介:

    曹孝文,硕士,从事食品安全分析。E-mail:cherrycxw@126.com

    通讯作者:

    练鸿振,博士,教授,博士生导师,主要从事色谱/质谱分析研究。E-mail:hzlian@nju.edu.cn

    葛欣,博士,教授,主要从事色谱/质谱分析研究。E-mail:gexin@nju.edu.cn

  • 中图分类号: O657.63;S482.32; O625.21

Different Ionization Modes in Gas Chromatography-Mass Spectrometric Determination of Organochlorine Pesticides and Polychlorinated Biphenyls in Food

  • 摘要: 对食品中有机氯农药和多氯联苯的气相色谱-质谱联用(GC-MS)分析方法中三种离子化方式,电子轰击电离(EI)、正化学电离(PCI)和负化学电离(NCI)进行了总结和比较。PCI-MS/MS方法和EI-MS/MS方法都有很高的选择性和较高的灵敏度;PCI方法在分析含硝基、羰基等基团的化合物时有明显优势,EI则在分析狄氏剂、异狄氏剂、硫丹及其代谢物时比PCI表现稍好,而NCI-MS的灵敏度最高,但抗干扰能力稍弱,且不适合分析滴滴涕类和多氯联苯类化合物。在食品安全分析中,三种质谱方法的准确性好,精密度高,检测限较低,都能够满足食品中农残检测的要求,在日常检测工作中可互为补充和替代。同时指出,GC在有机氯化合物分析中仍表现出明显的优越性;常规的GC-MS尤其在EI电离模式下,易受到基质干扰而使谱图变得复杂;新型离子化方式包括高选择性化学电离技术的应用,将是食品安全中GC-MS联用分析的发展方向之一。
  • 电感耦合等离子体质谱(ICP-MS)具有灵敏度高、干扰少、多元素同时测定、线性范围大、检出限低的特点,适合地质样品中微量级多元素同时测定。对于微量元素的测定通常采用氢氟酸、硝酸在封闭溶样罐中高温、高压分解,该方法能有效分解岩石、矿物中的难溶矿物[1-2],由于ICP-MS仪器的高灵敏度,大部分微量元素的检出限可达到化探样品分析要求。Ag有两个同位素,107Ag(51.84%)和109Ag(48.16%),它们分别受到91Zr16O和93Nb16O氧化物离子的强烈干扰,由于化探样品中Zr和Nb含量大大高于Ag,即使用Zr和Nb的单标准氧化物产率进行校正,其结果误差仍然较大,因为其干扰信号强度已经超过了样品中Ag本身的强度。虽然使用膜去溶装置可以大大降低氧化物离子干扰,实现Ag的准确测定[3];但该装置价格高,拥有膜去溶装置的实验室较少。目前对于化探样品Ag的测定,国内大部分实验室仍然采用传统的发射光谱法[4-9],该方法费时、费力、结果不稳定。因此,迫切需要对化探样品Ag的测定方法进行改进。

    本文应用P507萃淋树脂将用于ICP-MS测定常规微量元素的溶液进行简单的分离,干扰元素Zr和Nb可被有效除去,而Ag和内标元素Rh可被有效回收,实现了化探样品中低含量Ag的快速测定。

    Bruker Aurora M90电感耦合等离子体质谱仪(美国布鲁克·道尔顿公司)。在每次测试前,为了降低仪器本底,样品锥和截取锥都需仔细清洗。在5%硝酸溶液中Ag的仪器背景值通常都小于50 cps,使用普通灵敏度模式,仪器灵敏度通常调整为>400000 cps/1 ng/mL 115In,相对标准偏差(RSD)通常小于3%。本实验采用雾化器自吸进样,仪器工作参数见表 1

    P507萃淋树脂:粒径80 ~120目(北京瑞乐康分离科技有限公司)。

    表  1  仪器工作参数
    Table  1.  nstrumental operating parameters of ICP-MSI
    工作参数 设定值
    射频功率 1400 W
    反射功率 < 2 W
    等离子体气 15 L/min
    辅助气 0.90 L/min
    护鞘气 0.25 L/min
    雾化气 0.95 L/min
    扫描次数 5
    测定次数 5
    每个质量通道数 1
    测定方式 Peak Hopping
    停留时间 10 ms
    样品锥孔径 1 mm
    截取锥孔径 0.4 mm
    雾化室温度 3℃
    下载: 导出CSV 
    | 显示表格

    交换柱:采用5 mL塑料移液枪头作为交换柱,底部垫自制聚四氟乙烯棉;称取0.45 g的P507萃淋树脂于烧杯中,加入约5 mL水,转移至交换柱中,待水流尽时,在上部垫一层自制聚四氟乙烯棉;用10 mL的3 mol/L硝酸淋洗,最后用5 mL的5%硝酸平衡交换柱,待用。

    封闭溶样器:自制不锈钢-聚四氟乙烯封闭溶样装置,体积10 mL[1]

    多元素混合标准储备溶液:100 μg/mL (Accu-Standard Inc,USA)。

    硝酸:通过石英亚沸蒸馏提纯。

    氢氟酸:采用聚四氟乙烯对口瓶亚沸蒸馏提纯,实验用水用Millipore纯化装置制备,电阻率18 MΩ·cm。

    准确称取0.0500 g样品于带不锈钢外套的聚四氟乙烯密封溶样装置中,加入1 mL氢氟酸和1 mL硝酸,加盖密封,在烘箱中于185℃加热12 h,取出冷却后在电热板上低温蒸干。最后加入2 mL硝酸、1 mL 500 ng/mL的Rh内标溶液、3 mL水,重新盖上盖密封,放入烘箱中于135℃加热3 h溶解残渣。冷却后取0.4 mL溶液于15 mL离心管中,用5%硝酸稀释至6 mL。该溶液可用于ICP-MS测定常规微量元素。

    待微量元素测定完成后,将剩余溶液倒入交换柱中,直至加满交换柱,其余溶液弃去,并立即用水清洗离心管,用原离心管承接,该溶液即可用于以Rh为内标Ag的测定。

    P507是酸性磷类萃取剂,又名2-乙基己基膦酸单2-乙基己基酯,常用于稀土元素分离以及稀土元素的相互分离[10-13],在Sm-Nd同位素测定中也常用P507或P204萃淋树脂实现Sm与Nd的相互分离[14]。该树脂的另一个特点是对Ti、Nb、Ta、Zr、Hf、W、Sn和Mo等元素的四价离子强烈吸附,即使用高浓度的盐酸或硝酸也很难将其洗脱下来,只有用氢氟酸才能将这些元素有效洗脱,该类树脂也可用于Lu-Hf同位素分离[15-16]。本研究利用该树脂这一特性,在约1.2 mol/L的硝酸介质中成功地实现了Ag和内标元素Rh与干扰元素Zr和Nb的有效分离。

    取200 ng混合标准溶液于15 mL离心管中,用1.2 mol/L硝酸稀释至5 mL,将此溶液过柱,15 mL离心管承接,用4 mL的5%硝酸分两次清洗离心管及交换柱,在承接溶液的离心管中加入100 ng的Rh 内标溶液,最后稀释至10 mL,ICP-MS测定。各元素的回收率见表 2。由表 2可以看出,98%以上的Zr和Nb被P507树脂吸附,而95%以上的Ag和Rh通过交换柱,说明P507萃淋树脂能有效地将Ag和Rh与Zr和Nb分离。

    表  2  各元素在P507萃淋树脂上的回收率
    Table  2.  The recovery of elements for P507 levextrel resin
    元素 回收率/%
    Zr 0.93
    Nb 1.44
    Mo 2.83
    Sn 0.43
    Hf 0.58
    Ta 0.42
    W 3.32
    Cd 103.0
    Ag 95.8
    Rh 97.5
    下载: 导出CSV 
    | 显示表格

    按样品前处理同样程序处理5份流程空白,测定结果见表 3。其绝对浓度值3倍标准偏差除以称样量,即为方法的检出限,计算Ag的检出限为0.005 μg/g,低于化探样品分析的检出限要求(0.02 μg/g,见DZ/T 0130.5—2006)。

    表  3  方法的空白值
    Table  3.  Blank level of the method
    空白 m(Ag)/μg
    空白1 0.0004
    空白2 0.0002
    空白3 0.0003
    空白4 0.0003
    空白 m(Ag)/μg
    空白5 0.0004
    平均值 0.0003
    标准偏差 0.000075
    下载: 导出CSV 
    | 显示表格

    交换柱使用后立即用水洗柱一次,然后用3 mol/L硝酸5 mL洗柱1次,再用水洗柱两次,最后用1.2 mol/L硝酸5 mL平衡交换柱,待用。树脂在使用一段时间后,其吸附的Ti、Zr、Nb等元素可能达到饱和,这时树脂吸附效率会降低。一般在使用5~10次后,用2 mol/L氢氟酸5 mL将这些元素洗脱下来,树脂即可继续使用。如果发现用氢氟酸洗脱后交换柱的效率仍然很低,说明P507萃取剂已流失,这时需要更换新树脂。

    按上述分析流程对岩石及土壤系列国家一级标准物质进行分析,本方法的测定结果与标准值基本一致(见表 4),完全能够满足化探样品分析要求。

    表  4  标准物质测定结果
    Table  4.  Analytical results of Ag in reference materials
    标准物质
    编号
    w(Ag)/(μg·g-1)
    标准值 本法测量值
    GBW 07103 0.033±0.010 0.026±0.008
    GBW 07104 0.071±0.014 0.065±0.010
    GBW 07105 0.040±0.012 0.051±0.009
    GBW 07106 0.062±0.010 0.055±0.007
    GBW 07302 0.066±0.015 0.065±0.008
    GBW 07305 0.36±0.04 0.35±0.02
    GBW 07306 0.36±0.04 0.31±0.05
    GBW 07307 1.05±0.09 1.12±0.08
    GBW 07311 3.2±0.5 3.02±0.32
    GBW 07312 1.15±0.16 0.99±0.11
    下载: 导出CSV 
    | 显示表格

    利用ICP-MS仪器的碰撞池技术可以消除氧化物离子干扰,但仪器灵敏度会降低,碰撞气体有可能带入新的干扰,Ag也需要进行单独测定;膜去溶装置可去除气溶胶中的大部分水分,降低氧化物离子干扰,提高仪器灵敏度,实现Ag与其他常规微量元素同时测定,但进样时间可能延长,设备也较贵。而本文应用P507萃淋树脂对ICP-MS用于测定常规微量元素的溶液进行简单分离,就可实现化探样品中待测元素Ag和内标元素Rh与干扰元素Zr、Nb的有效分离,Ag的检出限达到0.005 μg/g,低于化探分析要求(0.02 μg/g)。

    相比于其他方法,本方法省略了称样及分解等样品前处理步骤;且由于在样品处理过程中加入了内标元素,因此最后的溶液不需要准确定容,待测元素与内标元素都具有很高的回收率,过柱分离的溶液只需3~4 mL即可,节省了时间,提高了分析效率。不足在之处在于:虽然本方法相对于传统的发射光谱法更简单、快速,但Ag也需要进行分离并单独测定。在本方法拓展应用方面,由于高含量W和Mo样品中W可能以单矿物形式存在,需要进行碱熔才能保证分解完全,利用P507萃淋树脂的这一特性,有可能实现W和Mo与大量基体元素和干扰元素的分离富集。

  • El-Shahawi M S, Hamza A, Bashammakh A S, Al-Saggaf W T. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants[J].Talanta, 2010, 80: 1587-1597. doi: 10.1016/j.talanta.2009.09.055

    Qin Y Y, Leung C K M, Lin C K, Leung A O W, Wang H S, Giesy J P, Wong M H. Halogenated POPs and PAHs in blood plasma of Hong Kong residents[J].Environmental Science & Technology, 2011, 45: 1630-1637.

    Iozza S, Muller C E, Schmid P, Bogdal C, Oehme M. Historical profiles of chlorinated paraffins and polychlorinated biphenyls in a dated sediment core from Lake Thun (Switzerland)[J].Environmental Science & Technology, 2008, 42: 1045-1050.

    Hopf N B, Ruder A M, Succop P. Background levels of polychlorinated biphenyls in the US population[J].Science of the Total Environment, 2009, 407: 6109-6119. doi: 10.1016/j.scitotenv.2009.08.035

    Henriquez-Hernandez L A, Luzardo O P, Almeida-Gonzalez M, Alvarez-Leon E E, Serra-Majem L, Zumbado M, Boada L D. Background levels of polychlorinated biphenyls in the population of the Canary Islands (Spain)[J].Environmental Reviews, 2011, 111: 10-16.

    Chia K J, Huang S D. Analysis of organochlorine pesticides in wine by solvent bar microextraction coupled with gas chromatography with tandem mass spectrometric detection[J].Rapid Communications in Mass Spectrometry, 2006, 20: 118-124. doi: 10.1002/(ISSN)1097-0231

    Jeon H R, Abd El-Aty M, Cho S K, Chio J H, Kim K Y, Park R D, Shim J H. Multiresidue analysis of four pesticide residues in water dropwort (Oenanthe javanica) via pressurized liquid extraction, supercriticall fluid extraction, and liquid-liquid extraction and gas chromatographic determination[J].Journal of Separation Science, 2007, 30: 1953-1963. doi: 10.1002/(ISSN)1615-9314

    Zawiyah S, Man Y B C, Nazimah S A H, Chin C K, Tsukamoto I, Hamanyza A H, Norhaizan I. Determination of organochlorine and pyrethroid pesticides in fruit and vegetables using SAX/PSA clean-up column[J].Food Chemistry, 2007, 102: 98-103. doi: 10.1016/j.foodchem.2006.05.003

    Wilkowska A M, Biziuk M. Rapid method for the deter-mination of organochlorine pesticides and PCBs in fish muscle samples by microwave-assisted extraction and analysis of extracts by GC-ECD[J].Journal of AOAC International, 2010, 93: 1987-1994.

    Beyer A, Biziuk M. Comparison of efficiency of different sorbents used during clean-up of extracts for determination of polychlorinated biphenyls and pesticide residues in low-fat food[J].Food Research International, 2010, 43: 831-837. doi: 10.1016/j.foodres.2009.11.018

    Cieslik E, Sadowska-Rociek A, Ruiz J M M, Surma-Zadora M. Evaluation of QuEChERS method for the determination of organochlorine pesticide residues in selected groups of fruits[J]. Food Chemistry, 2011, 125: 773-778. doi: 10.1016/j.foodchem.2010.09.019

    Garcia-Rodriguez D, Carro A M, Cela R, Lorenzo R A. Microwave-assisted extraction and large-volume injection gas chromatography tandem mass spectrometry determination of multiresidue pesticides in edible seaweed[J].Analytical and Bioanalytical Chemistry, 2010, 398: 1005-1016. doi: 10.1007/s00216-010-4006-z

    Alder L, Greulich K, Kempe G, Vieth B. Residue analysis of 500 high priority pesticides: Better by GC-MS or LC-MS/MS[J].Mass Spectrometry Reviews, 2006, 25: 838-865. doi: 10.1002/(ISSN)1098-2787

    Chusaksri S, Sutthivaiyakit S, Sutthivaiyakit P. Confir-matory determination of organochlorine pesticides in surface waters using LC/APCI/tandem mass spectrometry[J].Analytical and Bioanalytical Chemistry, 2006, 384: 1236-1245. doi: 10.1007/s00216-005-0248-6

    Famiglini G, Palma P, Pierini E, Trufelli H, Cappiello A. Organochlorine pesticides by LC-MS[J].Analytical Chemistry, 2008, 80: 3445-3449. doi: 10.1021/ac8000435

    Ramesh A, Vijayalakshmi A. Environmental exposure to residues after aerial spraying of endosulfan: Residues in cow milk, fish, water, soil and cashew leaf in Kasargode, Kerala, India[J].Pest Management Science, 2002, 58: 1048-1054. doi: 10.1002/(ISSN)1526-4998

    Blasco C, Fernandez M, Pena A, Lino C, Silveira M I, Font G, Pico Y. Assessment of pesticide residues in honey samples from Portugal and Spain[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 8132-8138. doi: 10.1021/jf034870m

    Zhang Z L, Ohiozebau E, Rhind S M. Simultaneous extraction and clean-up of polybrominated diphenyl ethers and polychlorinated biphenyls from sheep liver tissue by selective pressurized liquid extraction and analysis by gas chromatography-mass spectrometry[J].Journal of Chromatography A,2011,1218:1203-1209. doi: 10.1016/j.chroma.2010.12.098

    Frenich A G, Plaza-B R, Vidal J L M. Compari-son of tandem-in-space and tandem-in-time mass spectrometry in gas chromatography determination of pesticides: Application to simple and complex food samples[J].Journal of Chromatography A, 2008, 1203: 229-238. doi: 10.1016/j.chroma.2008.07.041

    Kosikowska M, Biziuk M. Review of the determination of pesticide residues in ambient air[J].Trends in Analytical Chemistry, 2010, 29: 1064-1072. doi: 10.1016/j.trac.2010.06.008

    Wong J W, Zhang K, Tech K, Hayward D G, Makovi C M, Krynitsky A J, Schenck F J, Banerjee K, Dasgupta S, Brown D. Multiresidue pesticide analysis in fresh produce by capillary gas chromatography-mass spectro-metry/selective ion monitoring (GC-MS/SIM) and -tandem mass spectrometry (GC-MS/MS)[J].Journal of Agricultural and Food Chemistry, 2010, 58: 5868-5883. doi: 10.1021/jf903854n

    Vidal J L M, Arrebola F J, Mateu-Sanchez M. Appli-cation of gas chromatography-tandem mass spectrometry to the analysis of pesticides in fruits and vegetables[J].Journal of Chromatography A, 2002, 959: 203-213. doi: 10.1016/S0021-9673(02)00444-2

    Frenich A G, Moreno J L F, Vidal J L M, Liebanas F J A. Application of gas chromatography coupled to triple quadrupole mass spectrometry for the multiresidue analysis of pesticides in olive oil[J].Journal of Agricultural and Food Chemistry, 2007, 55: 8346-8352. doi: 10.1021/jf071615j

    Bolanos P P, Frenich A G, Vidal J L M. Application of gas chromatography-triple quadrupole mass spectrometry in the quantification-confirmation of pesticides and polychlorinated biphenyls in eggs at trace levels[J].Journal of Chromatography A, 2007, 1167: 9-17. doi: 10.1016/j.chroma.2007.08.019

    Gomara B, Garcia-Ruiz C, Gonzalez M J, Marina M J. Fractionation of chlorinated and brominated persistent organic pollutants in several food samples by pyrenyl-silica liquid chromatography prior to GC-MS determination[J].Analytica Chimica Acta, 2006, 565: 208-213. doi: 10.1016/j.aca.2006.02.053

    Saito K, Sjodin A, Sandau C D, Davis M D, Nakazawa H, Matsuki Y, Patterson D G. Development of a accelerated solvent extraction and gel permeation chromatography analytical method for measuring persistent organohalogen compounds in adipose and organ tissue analysis[J].Chemosphere, 2004, 57: 373-381. doi: 10.1016/j.chemosphere.2004.04.050

    Rivera-Rodriguez L B, Rodriguez-Estrella R, Ellington J J, Evans J J. Quantification of low levels of organochlorine pesticides using small volumes (≤100μl) of plasma of wild birds through gas chromatography negative chemical ionization mass spectrometry[J].Environmental Pollution, 2007, 148: 654-662. doi: 10.1016/j.envpol.2006.11.018

    Yoon H R, Cho S Y, Kim J M, Yoon I B, Park M K, Park J H. Analysis of multi-component pesticide residues in herbal medicines by GC-MS with electron impact ionization and with positive- and negative-ion chemical ionization[J].Chromatographia, 1999, 49: 525-534. doi: 10.1007/BF02467753

    Chaler R, Vilanova R, Santiago-Silva M, Fernandez P, Grimalt J O. Enhanced sensitivity in the analysis of trace organochlorine compounds by negative-ion mass spectrometry with ammonia as reagent gas[J].Journal of Chromatography A, 1998, 823: 73-79. doi: 10.1016/S0021-9673(98)00516-0

    Rothweiler B, Berset J D. High sensitivity of ortho-substituted polychlorobiphenyls in negative ion mass spectrometry (NCI-MS): A comparison with EI-MS and ECD for the determination of regulatory PCBs in soils[J].Chemosphere, 1999, 38: 1517-1532. doi: 10.1016/S0045-6535(98)00372-5

    Chernetsova E S, Revelsky A I, Revelsky I A, Mikhasenko I A, Sobolevsky T G. Determination of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls by gas chromatography/mass spectrometry in the negative chemical ionization mode with different reagent gases[J].Mass Spectrometry Reviews, 2002, 21: 373-387. doi: 10.1002/(ISSN)1098-2787

    Niessner G, Buchberger W, Eckerstorfer R. Multi-residue screening methods for the determination of pesticides in plant materials[J].Journal of Chromatography A, 1999, 846: 341-348. doi: 10.1016/S0021-9673(99)00198-3

    Zhang X A, Mobley N, Zang J G, Zheng X M, Lu L, Ragin O, Smith C J. Analysis of agricultural residues on tea using d-SPE sample preparation with GC-NCI-MS and UHPLC-MS/MS[J].Journal of Agricultural and Food Chemistry, 2010, 58: 11553. doi: 10.1021/jf102476m

    Medina C M, Pitarch E, Portoles T, Lopez F J, Hernandez F. GC-MS/MS multi-residue method for the determination of organochlorine pesticides, polychlori-nated biphenyls and polybrominated diphenyl ethers in human breast tissues[J].Journal of Separation Science, 2009, 32: 2090-2102. doi: 10.1002/jssc.v32:12

    Hernando M D, Aguera A, Fernandez-Alba A R, Piedra L, Contreras M. Gas chromatographic determination of pesticides in vegetable samples by sequential positive and negative chemical ionization and tandem mass spectrometric fragmentation using an ion trap analyzer[J].Analyst, 2001, 126: 46-51. doi: 10.1039/b006933g

    Haib J, Hofer I, Renaud J M. Analysis of multiple pesticide residues in tobacco using pressurized liquid extraction, automated solid-phase extraction clean-up and gas chromatography-tandem mass spectrometry[J].Journal of Chromatography A, 2003, 1020: 173-187. doi: 10.1016/j.chroma.2003.08.049

    Louter A J H, van Doornmalen J, Vreuls J J, Brinkman U A T. On-line solid-phase extraction thermal desorp-tion gas chromatography with ion trap detection tandem mass spectrometry for the analysis of microcontaminants in water[J].Journal of High Resolution Chromatography, 1996, 19: 679-685. doi: 10.1002/(ISSN)1521-4168

    Sauret N, Millet M, Herckes P, Mirabel P, Wortham H. Analytical method using gas chromatography and ion trap tandem mass spectrometry for the determination of S-triazines and their metabolites in the atmosphere[J].Environmental Pollution, 2000, 110: 243-252. doi: 10.1016/S0269-7491(99)00299-7

    Aguera A, Contreras M, Crespo J, Fernandez-Alba A R. Multiresidue method for the analysis of multiclass pesticides in agricultural products by gas chromatography-tandem mass spectrometry[J].Analyst, 2002, 127: 347-354. doi: 10.1039/b109499h

    Hernando M D, Piedra L, Belmonte A, Aguera A, Fernandez-Alba A R. Determination of traces of five antifouling agents in water by gas chromatography with positive/negative chemical ionisation and tandem mass spectrometric detection[J]. Journal of Chromatography A, 2001, 938: 103-111. doi: 10.1016/S0021-9673(01)01201-8

    Mastovska K, Lehotay S J. Rapid sample preparation method for LC-MS/MS or GC-MS analysis of acrylamide in various food matrices[J].Journal of Agricultural and Food Chemistry, 2006, 54: 7001-7008. doi: 10.1021/jf061330r

    Cao X W, Shen W J, Zhu J, Zhang J, Jiang Y, Zhao Z Y, Wu B, Yu K Y, Liu H, Lian H Z, Shen C Y. A comparative study of the ionization modes in GC-MS multi-residue method for the determination of organo-chlorine pesticides and polychlorinated biphenyls in crayfish[J].Food Analytical Method, DOI: 10.1007/s12161-012-9447-x.

    Portoles T, Sancho J V, Hernandez F, Newton A, Hancock P. Potential of atmospheric pressure chemical ionization source in GC-QTOF MS for pesticide residue analysis[J].Journal of Mass Spectrometry, 2010, 45: 926-936. doi: 10.1002/jms.1784

计量
  • 文章访问数:  1313
  • HTML全文浏览量:  326
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-23
  • 录用日期:  2012-06-08
  • 发布日期:  2013-01-31

目录

/

返回文章
返回