The Concentration Changes of Major Ions in Seawater During the Methane Hydrate Formation Process
-
摘要: 本文自行研制了一套甲烷水合物合成装置,模拟海洋环境甲烷水合物的生成过程,对该过程水合物生成位置、形态、反应时间、环境温压条件进行观测,同时连续测试体系海水中常量离子K+、Na+、Ca2+、Mg2+、Cl-、SO42-的浓度及海水盐度,探讨水合物生成过程的温压变化及离子浓度变化之间的关系和离子浓度的变化规律。结果表明,海水中甲烷水合物生成具有很大的随机性,在相同的初始条件下可能有不同的水合物成核、聚集过程;甲烷水合物在生成过程中,耗气量不断增加,孔隙水的盐度和海水中常量阴阳离子的浓度也在不断增加,这种变化具有较高的线性相关性(相关系数为0.9848~0.9950),且不受甲烷水合物生成位置及状态的影响;在水合物生成过程的微环境下耗气量相同时,离子浓度存在细微的差异。这些特征为通过测定海底水合物周围孔隙水中常量离子的浓度初步推算水合物的甲烷耗气量提供了依据。Abstract: A description of the synthetic experiment of methane hydrate is given in this paper, along with a preliminary study of ion concentration changes during the process, whilst providing important technical support for the gas hydrate geochemical exploration. In this article, the development of a set of experimental devices, which simulate the formation process of methane hydrate, is also discussed in this paper. The position and shape of hydrate, the reaction time, the temperature and pressure of the experiments were observed during methane hydrate formation. The concentrations of major ions including K+, Na+, Ca2+, Mg2+, Cl-, SO42- were continuously detected during the process to investigate the relationship among the major ion concentrations, temperature and pressure. The results show that methane hydrate forms randomly in seawater. It may have a different nucleation and agglomeration process of hydrate under the same initial conditions. There was a good positive linear relationship between the ions variation and methane gas consumption in the system with the correlation coefficients between 0.9848 to 0.9950, which was not affected by the formation position and morphology of the hydrate. The ion content had small differences under the same gas consumption in the microenvironment of the methane hydrate formation process. These important features provide the basis to make a preliminary estimate of gas consumption by using the major ion content in pore water around the methane hydrate.
-
-
表 1 甲烷水合物生成过程中离子浓度的变化
Table 1 The changes of ion concentrations in the process of methane hydrate formation
合成实验 反应时间
t/h气体压力
p/MPa水合物温度
θ/℃所采水样
体积V/mL气体体积
V/mL甲烷耗气量
n/mol盐度/‰ 离子浓度ρB/(mg·L-1) Ca2+ K+ Mg2+ Na+ Cl- SO42- 第一组 0 7.9 2.0 0.0 330.0 0.0000 30.5 393 382 1233 10173 18542 2586 11 7.5 2.0 2.5 332.5 0.0713 31.5 408 391 1266 10460 18987 2593 17 7.0 2.2 2.5 335.0 0.1644 34.5 436 415 1345 10980 20118 2752 23 6.5 2.0 2.5 337.5 0.2536 36.0 454 437 1420 11570 21113 2897 35 5.5 2.0 2.5 340.0 0.4413 40.5 514 490 1601 13120 24137 3276 65 5.2 1.9 2.5 342.5 0.4915 43.0 537 505 1680 13630 25122 3466 第二组 0 8.1 2.0 0.0 330.0 0.0000 30.5 393 382 1233 10173 18542 2586 2.5 7.6 1.9 2.5 332.5 0.0914 32.0 402 395 1269 10347 19300 2717 4.5 7.4 2.0 2.5 335.0 0.1641 33.0 422 404 1302 10667 19913 2801 15 5.7 2.5 2.5 337.5 0.4947 42.5 531 510 1651 13527 25499 3565 24 5.3 2.0 2.5 340.0 0.5810 46.0 561 534 1729 14107 26823 3730 表 2 海水中常量离子浓度与甲烷耗气量之间的线性关系
Table 2 The linear relationship between the major ion concen-trations of seawater and the methane gas consumption
常量离子 线性方程 相关系数 Ca2+ ρ=303.37n+382.26 0.9950 K+ ρ=273.62n+371.28 0.9947 Mg2+ ρ=926.56n+1194.7 0.9933 Na+ ρ=7416.4n+9816 0.9921 Cl- ρ=14774n+17888 0.9931 SO42- ρ=2025.6n+2480.6 0.9848 注:ρ代表各常量离子的浓度,单位为mg/L;n代表甲烷的耗气量,单位为mol。 -
Kvenvolden K A. Worldwide distribution of subaquatic gas hydrates [J]. Geo-marine Letters, 1993,13(1): 32-40. doi: 10.1007/BF01204390
Kvenvolden K A, Lorenson T D. The global occurrence of natural gas hydrates[C]//Paull C K, Dillon W P, eds. Natural Gas Hydrates: Occurrence, Distribution, and Detection. Washington D C: American Geophysical Union,2001: 3-18.
Ussler Ⅲ W, Paull C K. Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition [J].Geo-Marine Letters, 1995,15: 37-44. doi: 10.1007/BF01204496
Kastner M, Sample J C, Whiticar M J, Hovland M, Cragg B A, Parkes R J.Geochemical evidence for fluid flow and diagenesis at the cascadia convergent margin[C]//Carson B, Westbrook G K, Musgrave R J, Suess E, eds. Proceedings of the Ocean Drilling Program Scientific Results,1995,146: 375-384.
Egeberg P K, Dickens G R.Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997(Blake Ridge)[J]. Chemical Geology,1999, 153: 53-79. doi: 10.1016/S0009-2541(98)00152-1
Torres M E, Mcmanus J. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposition Hydrate Ridge,OR. Ⅰ: Hydro logical provinces[J]. Earth and Planetary Science Letters, 2002,201: 525-540. doi: 10.1016/S0012-821X(02)00733-1
Borowski W S, Bohrmann G, Claypool G E. Shipboard Scientific Party, Leg 204 Summary [C]//Gerhard B, Anne M T, Frank R R, eds. Ocean Drilling Program, Drilling Gas Hydrates on Hydrate Ridge, Leg 204 Preliminary Report. Texas: Texas A & M University,2002,204: 23-24.
蒋少勇,杨涛,薛紫晨,杨竞红,凌洪飞,吴能友,黄永样,刘坚,陈道华.南海北部海区海底沉积物中孔隙水的Cl-和SO42-浓度异常特征及其对天然气水合物的指示意义[J].现代地质,2005,19(1): 45-54. 蒋少勇,凌洪飞,杨竞红,陆尊礼,陈道华,倪培.海洋浅表层沉积物和孔隙水的天然气水合物地球化学异常识别标志[J].海洋地质与第四纪地质,2003,23(1): 88-94. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200301014.htm 刘昌岭,陈敏,业渝光.海洋天然气水合物元素地球化学异常的实验研究[J].现代地质,2005,19(1): 96-100. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ20050100D.htm 宋永臣,杨明军,刘瑜,李清平.离子对甲烷水合物相平衡的影响[J].化工学报,2009,60(6): 1363-1366. 李艳苹,潘献辉,刘小骐.ICP-AES法测定海水中钾、钠、钙、镁、锂、锶、锰[J].中国给水排水,2010,26(4): 86-88. http://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201004026.htm 李国兴,施青红,郭莹莹,周瑾,朱岩.离子色谱-抑制电导法分别测定海水中阴离子和阳离子[J].分析科学学报,2006,22(2): 153-156. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKX200602007.htm 石东坡.状态方程法计算气体PVT性质的准确性研究[J].广东化工,2009(10): 161-162. doi: 10.3969/j.issn.1007-1865.2009.10.073 Zatsepine O Y, Buffett B A. Nulcleation of CO2-hydratie in a porous medium [J]. Fluid Phase Equilibria, 2002, 200(2): 263-275. doi: 10.1016/S0378-3812(02)00032-8
刘昌岭,业渝光.海洋天然气水合物生成机制的实验研究[J].海洋地质与第四纪地质, 2003, 23(2): 89-96. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200302014.htm Skovborg P, Rasmussen P.A mass transport limited model for the growth of methane and ethane gas hydrates [J]. Chemical Engineering Science, 1994, 49(8): 1131-1143. doi: 10.1016/0009-2509(94)85085-2
刘小平,杨晓兰.海底天然气水合物地球化学方法勘查进展[J].天然气地球科学,2007,18(2): 312-316. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200702029.htm