Application of in-situ Micro-X-ray Fluorescence Spectrometry in the Identification of Lead-Zinc Ore
-
摘要: 自然界很多矿物存在类质同象现象,它们在显微镜下特征相似难以区分,对于这类矿物的鉴定,需要借助X射线衍射分析、电子显微镜、电子探针分析和离子探针分析等手段,获取矿物的化学成分和结构,为矿物鉴别提供有用的信息。本文以铅锌矿石中比较典型且易于收集的方铅矿(Pb 86.60%、S 13.40%)和闪锌矿(Zn 67.10%、S 32.90%)为例,借助偏反光显微镜,初步鉴定矿石的矿物特征;再利用X射线荧光光谱仪微区分析功能,对铅锌矿石标本进行定性和定量鉴定,对矿石所表现的各种特征做矿物学解释。实验结果表明,铅锌矿石标本中存在S、Pb、Zn、Cd等异常元素,并对闪锌矿标本中Zn、S、Fe、Cd等异常元素进行分布分析,绘制组分的二维或三维分布图显示各元素分布的异常区域高度一致;在电荷耦合器的实时监控下,对铅锌矿石标本靶区进行定点定量测定,根据所测组分含量,并结合矿物化学成分理论值定名为方铅矿和闪锌矿。本方法测定闪锌矿标本各组分的相对标准偏差(RSD,n=11)均小于4%,测定结果与电子探针测定结果吻合。本方法只要将矿石制成光片,无需喷碳处理,即可对铅锌矿石中主次量元素进行原位微区定性和定量分析,测定速度快且不破坏矿石标本,解决了类质同象矿物(如方铅矿和硒铅矿、闪锌矿和含铁闪锌矿等)在光学显微镜下鉴定困难的问题,提高了铅锌矿石定名的准确性,为岩矿鉴定工作提供一种新的技术手段。Abstract: Since isomorphous properties are common in many natural minerals, it is difficult to distinguish these minerals due to their similar characteristics under a microscope. The chemical composition and structure of these kinds of minerals can be obtained by using X-ray Diffraction Analysis, Electron Microscope Analysis, Electron Microprobe Analysis and Ion Probe Analysis, which can provide useful information for mineral identification. Galena (Pb 86.60%, S 13.40%) and sphalerite (Zn 67.10%, S 32.90%) contained in lead-zinc ore are more typical and are readily available to use as examples. The characteristic of minerals were determined preliminarily under the optical microscopy, and then the lead-zinc ore were qualitatively determined by using the in-situ micro-analysis function of RIGAKU ZSX Primus X-ray Fluorescence Spectrometer, which was applied to explain various characteristic of minerals. The experimental results show that the anomaly elements (S, Pb, Zn and Cd) were distinguished in some lead-zinc ores. According to the distribution analysis of the anomaly elements (Zn, S, Fe and Cd) in some sphalerite, 2D or 3D distribution images were established and the anomaly areas of elements are highly consistent. Under the real-time monitoring by charge-coupled device, the target area at the ore sample was quantitatively analyzed to identify the ore with its theoretical chemical components. The relative standard deviation (RSD, n=11) of determination of sphalerite sample components was less than 4%, which is comparable to the values obtained by Electron Microprobe. A new in-situ micro-analysis method of determining major and minor elements in lead-zinc ore is presented and is proved to be a fast non-invasive analytical technique. On the basis of the above analysis, a novel reasonable qualitative or quantitative analytical method for the identification of lead-zinc ore has been established, which provides a new method for the identification rock and minerals.
-
Keywords:
- lead-zinc ore /
- X-ray Fluorescence Spectrometry /
- Micro-analysis
-
不知你是否有过这样的经历,终于得到那本向往已久的好书,或是觅得那张曾经深深触动你的CD,你是即刻拆封?还是放进书包带回家,等外界嘈杂喧嚣退去,静候自己那颗久别重逢的心都准备好了,才打开来细细品读或是聆听?
上大学时,笔者第一次听到了德沃夏克的第九交响曲“自新大陆”。乐中蕴含着一股强大而内敛的力量,气势恢弘,充满自信与自豪,是充满生机的号角和热血生命的召唤,让当时年轻的心澎湃不已,至今不能忘怀。那个时候有年轻的心,有远方的梦,在时间和生命的轨迹上自由地延伸。自那时起,找寻和聆听这首交响曲,就成了心中一份默默的寄托。不知等了多少年,终于觅得了这一珍贵CD。当时拿到CD,真恨不得马上回家就听。然而,真正回到家,却总也不敢拆开那精美的包装,担心里面那颗澎湃的心所掳掠的这么多年的找寻和期待稍纵即逝,或流于指缝,或散于世俗。要重温这张CD,必须有一种“仪式”:最悦耳的音响,最静谧的夜,最清澈的星空……,只有这个时候,再奏响这火红的乐章,才能让心在足够的宁静中再一次澎湃,让灵魂再一次感受久违的呼唤与震撼。穿越这数十年的流觞,与那个年轻的自己一起,坐在大学校园的静夜里,沉醉、省思和积淀。这一等,就又是十年。
如果说科学和艺术是一双智慧和反智慧的孪生体,那么这样的“反”中,必然免不去这诸多的“同”。不久前看到一段话,大意是说,只会开卷勤读,不会掩卷悲喜,这一生就算做到中文系教授,也不过是一个文学的绝缘体。对于搞科研的人来说,这掩卷后的触动和省思更为重要。没有这点滴的“省”,你不仅会渐渐绝缘于真正意义上的科研,甚至也绝缘于自己———你永远无法体验多年后与曾经的自己再一次邂逅的快乐。2013年在《岩矿测试》上发表的文字,既有踏雪寻梅,一层一层曲折着向科学深处走去的探索,又有山重水复疑无路的回转,以及攻克了诸多技术难题的实验新作。邈远空茫之处,探寻的精神与攻克难关的乐趣尽显。
“氧同位素在岩石成因研究中的新进展”一文(Vo1.32,No.6,p841-849),初看似如入云山雾海,那些氧同位素组成的变化和分馏效应的差异,如何用来识别不同来源、不同期次岩石的形成、混染和演化?技术手段的改变,又如何否定了前人的假设与假说,导致了多种岩石成因学说的进步?层层叠叠,庐山面目不得识。然而这反倒促使你静下心来,仔细阅读,去理解科学道理与自然规律的天然自成。自然之美在这里一览无余。也不得不使你感受到作者对于该门学科独到的思辨与洞察。
“应用纤维素示踪北京市PM2.5天然植被排放来源的研究”(Vo1.32,No.5,p738-746)实在是一篇需要推荐给大家去读的文章。现在举国上下,直至欧美诸国,都在广泛谈论PM2.5与北京和全国各地的雾霾。当北京重度污染的时候,还会收到国际友人的邮件关注。印象中,我们谈论的雾霾来源都是工业污染、沙尘,甚或汽车尾气。然而,该文作者们通过精巧的设计和实验方法的改进,通过与国外文献的方法及数据对比,表明在北京,天然植被排放量占据了PM2.5质量浓度的1.37%的份额,天然植被排放源对有机碳的最大贡献可达9.2%,天然植被排放成为北京市PM2.5重要来源之一。该研究与我们大家的生活息息相关,其重要性和科学意义不言而喻。
微区定量分析中,标准物质的缺乏是其重要制约因素之一。标准物质与待测样品基体的不一致是分析误差的主要来源。“激光剥蚀电感耦合等离子体质谱分析石笋样品中多元素比值及45种元素含量”(Vo1.32,No.3,p383-391)一文,在实验与方法上,采取了一系列富有创意的、绕口令一般的“桥梁”设计,有效地避免了碳元素无法准确检测的问题,获得了与Ca内标法相匹配的校正结果。“磷灰石Sr-Nd同位素的激光剥蚀-多接收器电感耦合等离子体质谱微区分析”(Vo1.32,No.4,p547-554)研究中,作者们不仅进行了深入的研究,还详尽地进行了国内外方法与数据的比较,佐证了所建方法的先进性和可靠性。这一点十分值得推荐,这样做也需要有渊博的学识、扎实的功底和探求真知的勇气。一年来,这样的研究还有很多……
这些文字,或充满丰富的奇思妙想,或构思着精巧的实验设计,智慧、坚韧与探求,无不浸润在文中的字里行间。
于是,就想,一定要集撰这样一本好书,也一定会有这样一卷好书,在星星聚齐的时候,我们一起开卷细品,掩卷遐思!
主编:罗立强
2013年10月26日
于北京
-
表 1 仪器参数
Table 1 Working parameters of the instrument
仪器参数 种类及范围 X射线管 端窗型,Rh靶材,4 kW 工作电压 20~60 kV 工作电流 2~160 mA 铍窗厚度 30 μm 视野光栏 0.5~30 mm 准直器 S2,S4 探测器 PC,SC 探测器窗膜厚度 0.6 μm 滤光片 Zr,Cu,Ti,Al 分光晶体 RX25,Ge,PET,LiF200,LiF220 样品观察装置 电荷耦合器 测试位置指定法 样品台驱动装置 表 2 分析元素测定条件
Table 2 Determination conditions of analyzed elements
元素 分析线 分析晶体 准直器 探测器 电压 电流 2θ/(°) 背景/(°) 脉冲高度分析器(PHA) 滤光片 U/kV i/mA LL UL S Kα Ge S4 PC 55 60 110.81 116.70 130 300 无 Fe Kα LiF200 S4 SC 55 60 57.51 60.30 90 380 无 Zn Kα LiF200 S4 SC 55 60 41.79 42.50 90 340 无 Pb Lβ1 LiF200 S4 SC 55 60 28.24 29.60 90 300 无 Cd Kα LiF200 S4 SC 55 60 15.29 17.50 100 300 Zr 表 3 实验用标准物质
Table 3 Standard reference materials in experiment
分类使用编号 标准物质名称 D14 钨酸锌 J6 铁 J10 锌 J18 铅 J31 镉 J72 硫化锑 J73 碲镉汞 J74 铅锡 K3 歪长石 K4 蔷薇辉石 K7 白铅矿 K18 黄铁矿 K21 橄榄石 K26 磷灰石 K31 钼铅矿 K32 硫砷玻璃 K37 蓝晶石 K51 方铅矿 K52 闪锌矿 K55 辉铋矿 K56 辉钼矿 K58 辰砂 K60 黄铜矿 K64 毒砂 K68 铬铅矿 K69 黑钨矿 K73 硫化镉 K81 硬玉 K82 菱镁矿 K83 氟化铅 表 4 精密度试验
Table 4 Precision tests of the method
组分 测定平均值
w/%RSD/% S 31.88 1.9 Fe 5.78 3.6 Zn 60.70 0.4 表 5 XRF微区分析与电子探针分析结果对照
Table 5 Comparison of analytical results by XRF microanalysis and electron microprobe analysis
元素 方铅矿1 方铅矿2 闪锌矿1 闪锌矿2 XRF
微区
分析电子
探针XRF
微区
分析电子
探针XRF
微区
分析电子
探针XRF
微区
分析电子
探针S 13.37 13.86 13.25 12.97 32.60 32.85 32.32 33.34 Fe - - - - 8.83 8.11 4.96 4.57 Zn - - - - 57.55 57.38 61.46 60.93 Pb 84.51 85.48 85.60 85.67 - - - - 表 6 铅锌矿石定性鉴定条件
Table 6 The conditions for qualitative analysis of lead-zinc ore
2θ/(°) 滤光片 分光晶体 探测器 衰减器 11~17 Zr LiF200 SC 1/1 20~64 无 LiF200 SC 1/10 107~114 无 Ge PC 1/1 -
潘巨祥,吴应荣,肖延安.北京同步辐射光源的微区X射线荧光分析[J].物理,1995,24(11): 691-693. http://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ511.011.htm 闻莺,袁汉章,朱腾,刘亚雯.半导体硅材料中掺杂元素锗的SRXRF微区分析研究[J].分析试验室,1994,13(3): 77-79. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY403.025.htm 吴强,刘亚雯,魏成连,袁汉章.用XRF微探针研究掺杂元素锗在单晶硅中的分布[J].光谱学与光谱分析,1995,15(2): 99-102. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN502.020.htm 吴强,刘亚雯,魏成连,袁汉章,朱腾,闻莺.用同步辐射X射线荧光微区分析技术测定单晶硅中的掺杂元素As[J].核技术,1994,17(8): 476-480. http://www.cnki.com.cn/Article/CJFDTOTAL-HJSU408.004.htm 刘亚雯,范钦敏,吴应荣,魏成连,肖辉.硅中掺杂元素砷的三维微分析[J].光谱学与光谱分析,1997,17(4): 96-99. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN704.020.htm 吴应荣,潘巨祥.同步辐射微束X射线荧光分析及其在生物医学中的应用[J].广东微量元素科学, 1998,10(5): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYS199810000.htm Adams F.Synchrotron radiation micro-X-ray fluorescence analysis: A tool to increase accuracy in microscopic analysis[J]. Nuclear Instruments and Methods in Physics Research B,2003,199: 375-381. doi: 10.1016/S0168-583X(02)01563-X
吴应荣,巢志瑜,潘巨祥,洪蓉,肖延安,李光诚,黄宇营,赵利敏.同步辐射微束X射线荧光分析实验站[J].高能物理与核物理,1997,21(5): 475-480. http://www.cnki.com.cn/Article/CJFDTOTAL-KNWL705.013.htm 罗立强.2004欧洲X射线光谱分析会议[J].岩矿测试,2004,23(4): 285-286. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200404010.htm 初学莲,林晓燕,程琳,潘秋丽,杨君,丁训良.微束X射线荧光分析谱仪及其对松针中元素的分布分析[J].北京师范大学学报(自然科学版),2007,43(5): 530-532. http://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ200705014.htm Vittiglio G, Janssens K, Vekemans B, Adams F, Oost A.A compact small-beam XRF instrument for in-situ analysis of objects of historical and/or artistic value[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,1999,54: 1697-1710. doi: 10.1016/S0584-8547(99)00100-7
Alsecz A. Analytical performance of different X-ray spectroscopic techniques for the environmental monitoring of the recultivated uranium mine site[J]. Spectrochimica Acta Part B: Atomic Spectroscopy , 2007,62: 769-776. doi: 10.1016/j.sab.2007.06.002
宋卫杰,葛良全,杨健,张帮,殷经鹏.微束微区X荧光探针分析仪在矿石微粒分析中的应用[J].核电子学与探测技术,2009,29(4): 828-831. http://www.cnki.com.cn/Article/CJFDTOTAL-HERE200904028.htm Isaure M P.Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy[J]. Spectro-chimica Acta Part B: Atomic Spectroscopy ,2006,61: 1242-1252. doi: 10.1016/j.sab.2006.10.009
Ramos S S.Study and dating of medieval ceramic tiles by analysis of enamels with atomic absorption spectroscopy, X-ray fluorescence and electron probe microanalysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy ,2002,57: 689-700. doi: 10.1016/S0584-8547(01)00395-0