The Technological Analysis of the Ancient Ceramics Discovered from 'Nanhai No.1 Shipwreck'
-
摘要: “南海Ⅰ号”沉船位于我国广东省阳江市,出水大量陶瓷器的产地研究及腐蚀产物研究是“南海Ⅰ号”研究的重要课题。本文利用微聚焦X射线荧光谱仪(μ-XRF)对“南海Ⅰ号”沉船出水部分的青白瓷、青瓷、绿釉陶的胎釉以及绿釉陶的腐蚀物进行成分分析,并利用体视显微镜以及拉曼光谱仪对绿釉陶表面的腐蚀物进行观察和物相组成分析。元素分析结果表明:一类青白瓷样品胎体具有低铝高硅的特点(Al2O3含量低于19%,SiO2含量约73%),属江西景德镇湖田窑,而另一类青白瓷可能产自福建,具体窑口的确定还有待进一步对比分析才能得出明确的结论;青瓷样品胎体具有高硅低铝的特点(Al2O3含量13.32%~19.12%;SiO2含量72.89%~78.30%),属浙江龙泉窑;绿釉陶样品的特征与福建地区瓷土较为符合,可能来自于福建磁灶窑。拉曼光谱物相分析结果表明,绿釉陶的主要腐蚀物的矿物组成为炭黑、白铅矿与磷酸铅。此项研究成果为出水陶瓷器的产地研究、陶瓷器腐蚀机理探究、出水陶瓷器保护等提供了重要依据。Abstract: Nanhai No.1 Shipwreck' was discovered in Yangjiang City, Guangdong Province. Research on the origins of these out-water ceramics and corrosion products of ceramics play an important role. The component analysis of body and glaze of bluish-white porcelains, celadons, green glazed potteries and the corrosion products specimens of green glazed potteries have been studied by using Micro-focus X-ray Fluorescence Spectrometer (μ-XRF). Then, the observation and phase analysis of corrosion products specimens of green glazed potteries were conducted by using Stereo Microscope (OM) and Raman Spectroscopy (μ-RS). Combined with ceramic archaeological literature, it ws found that: (1) some bluish-white porcelains are characterized by low content of aluminum and high content of silicon (content of Al2O3 is less than 19%, content of SiO2 is almost 73%), which come from Jingdezhen Hutian kiln; another bluish-white porcelain may be from Fujian Province, which needs further support evidence. (2) The celadons all have a high content of silicon and low content of aluminum (Al2O3: 13.32%-19.12%; SiO2: 72.89%-78.30%), which come from Zhejiang Longquan kiln; additionally, some celadons belong to lime glaze which possess more similar characteristics to Longquan kiln of the Northern Song Dynasty; some belong to lime alkaline glaze which possess similar characteristics to Longquan kiln of Southern Song Dynasty. (3) Green glazed pottery samples possess more similar characteristics to the Fujian area, which may come from Fujian CiZao kiln; in order to have in-depth research on corrosion products of green glazed potteries, representative samples are selected to have Raman spectroscopy analysis; the main compositions are black carbon, cerusite and lead phosphate. In this work, technology analysis has been carried out with some underwater ceramic of 'Nanhai No.1 Shipwreck' to identify some origins of ceramics. The results of this study provide an important basis for the study of the origin of the out-water ceramics, corrosion mechanism of ceramics, ceramic water protection of out-water ceramics amongst other aspects of ceramic origin determination.
-
地球化学标准物质是测试各种地质物料化学成分量值的参比标准。主要用于量值的传递与测试仪器的校准、分析质量的监控、分析方法的评定及实验室认证。地质类标准物质基体复杂,在分析测试中尽量采用基体相同,因此研制不同矿种的标准物质对于矿石样品的分析测试至关重要。我国镍矿石与镍精矿标准物质较少,镍矿石成分分析标准物质仅有1个,是湖北省地质实验研究所研制的镍矿石标准物质GBW 07283[1],样品采自甘肃金川镍矿,镍含量为4.33%,为富镍矿石,含量较高。当前已有的标准物质基本用尽,国际上目前尚没有镍精矿标准物质。
镍矿是我国紧缺矿种,为地质勘查13种重要勘查矿种之一。我国镍矿床类型主要有岩浆熔离型和风化壳型,其中主要以岩浆熔离型矿床为主,与超基性岩浆分异作用有关,占全国总储量的86%,风化壳型镍矿仅占9.6%。镍矿储量高度集中,甘肃金川镍矿的储量就占全国的63.9%。中国镍矿品位较富,平均镍大于1%的硫化镍富矿占全国储量的44.1%。另一个重要镍矿基地是吉林省红旗岭镍矿,该矿为大型的铜镍硫化物矿床。本次从矿产勘查需要出发,研制了3个镍矿石标准物质,镍含量分别为0.11%、0.33%、1.02%,覆盖边界品位到工业品位,同时根据镍精矿标准的要求,新研制2个镍精矿标准物质,镍含量分别为5.93%、9.01%,形成了一个完整的镍矿含量系列标准物质,能够满足镍矿勘查和选冶对标准物质的需求。
1. 样品采集与制备
1.1 样品采集
镍矿石与镍精矿样品采自吉林省红旗岭镍矿,该镍矿为岩浆深部熔离-单式贯入型铜镍矿床[2],矿体与镁铁-超镁铁质岩体有关,其中的3号岩体中赋存大型铜镍矿床。该矿发现于1958年,累计探明镍储量20.44万吨,镍平均品位2.30%;除镍以外,还含有3.9万吨铜(品位0.63%)和一定数量的钴和硒。矿石的金属矿物组合主要为磁黄铁矿、镍黄铁矿、黄铜矿、黄铁矿、紫硫镍矿等,脉石矿物为辉石、角闪石、斜长石和黑云母[2]。矿床伴生成矿元素有铜、钴、硒、碲、银等,铂族元素量微。
按照矿床勘查的需要和设计要求,采集镍含量较低的镍矿石,设计了一个从边界品位到工业品位的镍矿石系列,编号为GNi-1、GNi-2、GNi-3,镍含量分别为0.11%、0.33%、1.02%。镍精矿采自吉林吉恩镍业股份有限公司下属的两个不同的选矿场,编号为GNi-4和GNi-5,镍含量分别为5.93%和9.01%。
1.2 样品制备
矿石样品先采用颚式粉碎机碎至小于2 mm,然后将样品在高铝瓷球磨机中粉碎2 h,过20目筛,筛下样品放入球磨机中粉碎48 h。镍精矿样直接放入球磨机中粉碎48 h,为防止镍精矿中的硫化物在球磨过程中因高温而氧化,球磨机中充满氩气。GNi-1粒度小于75 μm(< 200目)占99.96%,GNi-2粒度小于75 μm(<200目)占99.95%,GNi-3粒度小于75 μm(< 200目)为100%,GNi-4粒度小于75 μm(< 200目)占99.90%,GNi-5粒度小于75 μm(< 200目)占99.90%,样品中大部分粒级在1.0~40 μm之间。
加工好的样品置于塑料桶中密封保存。镍精矿样品装桶前,先将氩气充入桶底,装入样品同时充氩气,装满后继续充氩气2 min。然后迅速用带密封圈的盖盖紧。外套塑料袋密封,置于冷库中保存,温度控制在8℃以下,由于镍矿石和镍精矿中硫化物含量较高,如GNi-5中硫的含量高达27.83%,室温条件下不易长期保存,在隔绝空气且低温下,有利于样品的长期保存。
2. 均匀性检验
从分装的最小包装瓶中随机抽取25瓶样品,每瓶取双份用X射线荧光光谱(XRF)压片法(称样量4 g)[3-7],测试主要成矿元素Ni、Co、Cu和S、P、Cr、Mn、Nb、Pb、Rb、Sr、Ti、Y、Zn、Zr、SiO2、Al2O3、Fe2O3、MgO、CaO、Na2O、K2O等20多种组分,均匀性检验结果见表 1。
表 1 XRF测定镍矿石与镍精矿标准物质GNi-1~GNi-5的均匀性检验结果Table 1. Analytical results of homogeneity test by XRF for nickel ore and nickel concentrates reference materials GNi-1~GNi-5样品编号 分析项目 S Co Cr Cu Mn Nb Ni Pb Zn GNi-1
(镍矿石)x 42.49 2.79 4.92 3.24 7.51 3.69 6.61 5.38 1.54 s 0.28 0.015 0.03 0.03 0.027 0.031 0.038 0.031 0.014 RSD/% 0.65 0.55 0.60 0.91 0.36 0.83 0.57 0.58 0.93 F实测值 1.61 0.93 1.60 1.20 0.83 1.14 1.08 1.20 1.62 GNi-2
(镍矿石)x 86.2 3.83 8.17 5.79 8.37 3.32 18.19 5.13 1.39 s 0.49 0.017 0.042 0.04 0.026 0.045 0.088 0.027 0.013 RSD/% 0.57 0.44 0.52 0.68 0.31 1.37 0.49 0.54 0.96 F实测值 1.13 1.09 1.60 1.55 1.32 0.77 1.75 1.44 1.62 GNi-3
(镍矿石)x 189.7 5.9 8.05 11.14 8.36 3.07 45.93 4.4 1.28 s 1.17 0.024 0.041 0.097 0.038 0.014 0.22 0.019 0.009 RSD/% 0.62 0.41 0.51 0.87 0.46 0.45 0.48 0.42 0.68 F实测值 1.03 1.23 0.80 1.28 0.97 1.42 1.28 1.64 1.81 GNi-4
(镍精矿)x 830 15.6 5.47 61.66 4.65 1.57 160.2 3.32 1.14 s 3.03 0.037 0.025 0.17 0.018 0.013 0.43 0.019 0.013 RSD/% 0.36 0.24 0.46 0.28 0.40 0.86 0.27 0.57 1.14 F实测值 1.76 1.89 0.73 1.01 1.43 0.79 1.06 0.98 1.03 GNi-5
(镍精矿)x 1265 20.2 3.51 83 2.65 1.27 203.9 3.05 1.18 s 3.7 0.055 0.019 0.233 0.013 0.013 0.565 0.028 0.013 RSD/% 0.30 0.27 0.54 0.28 0.47 1.05 0.28 0.91 1.11 F实测值 1.03 0.73 1.76 1.40 1.11 0.76 0.77 1.16 1.40 注:x为XRF测定的相对强度的平均值,单位为kcps;s为标准偏差,单位为kcps;RSD为相对标准偏差。 采用电感耦合等离子体发射光谱法(ICP-AES)分别测试镍矿石及精矿样品中的Ba、Be、Mn、Ni、Sr、Ti、Al2O3、Fe2O3、MgO、CaO、Na2O、K2O,取样量为0.1 g,均匀性检验结果列于表 2。F的实测值均小于列表临界值F0.05(24,25)=1.96,XRF测量的各元素相对强度的相对标准偏差(RSD)<1%,取样量为0.1 g,采用ICP-AES测定结果的RSD均小于6.0%,说明样品均匀性良好。
表 2 ICP-AES测定GNi-1~GNi-5均匀性检验结果(取样量0.1 g)Table 2. Analytical results of homogeneity test by ICP-AES for nickel ore and nickel concentrates reference materials GNi-1~GNi-5 (0.1 g of sampling mass)样品编号 分析项目 Ba Mn Ni Ti Cu Co Fe2O3 GNi-1
(镍矿石)x 367 1019 1130 4055 345 46 8.64 s 8.8 26.1 26 114 16 2.24 0.21 RSD/% 2.40 2.56 2.30 2.82 4.67 4.84 2.46 F实测值 0.88 1.82 0.90 1.28 1.19 1.04 1.66 GNi-2
(镍矿石)x 227 1077 3360 2946 690 97.4 10.49 s 6.7 33 92 91 31.9 3.1 0.32 RSD/% 2.95 3.09 2.73 3.1 4.63 3.14 3.01 F实测值 0.88 0.89 0.76 1.01 0.94 0.93 0.79 GNi-3
(镍矿石)x 208 1121 9954 3743 1715 257.2 14.57 s 5.27 29 328 119 106 9.3 0.4 RSD/% 2.54 2.57 3.29 3.17 5.16 3.61 2.71 F实测值 0.81 0.88 1.12 1.06 0.93 0.95 0.86 GNi-4
(镍精矿)x 82.96 621.5 58727 1130 1.36 1238 34.75 s 2.31 16.2 1346 42 0.076 53.8 0.9 RSD/% 2.79 2.61 2.29 3.7 5.56 4.35 2.6 F实测值 1.00 1.2 0.85 0.77 1.09 0.97 1.24 GNi-5
(镍精矿)x 20.5 280.3 90770 227.6 2.33 2005 48 s 1.04 7.29 2252 15.2 0.18 98 1.3 RSD/% 5.08 2.60 2.48 5.68 5.91 4.91 2.71 F实测值 0.85 1.19 1.20 0.96 1.23 1.15 0.97 注:x为ICP-AES测定25次的平均值,Ba、Mn、Ni、Ti、Cu、Co单位为wB/(μg·g-1),Fe2O3的单位为wB/%;s为标准偏差;RSD为相对标准偏差。 3. 稳定性检验
自2009年12月开始至2011年11月的两年时间内,对镍矿石和镍精矿的Ni、S、Co、Cu、Pb、Mn、V、SiO2、CaO、Fe2O3分别进行4次测试,每次做4个重复测定,测定结果与计算结果列于表 3。两年时间内4次不同时间分析结果的平均值均在正常的分析误差和标准值的不确定度范围内,未发现方向性变化和统计学上的明显差异。对稳定性检验的数据采用以下统计方法进行计算[8-9]。
表 3 镍矿石与镍精矿标准物质稳定性检验结果Table 3. Stability test for nickel ore and nickel concentrate reference materials元素 测定时间 w/% GNi-1 GNi-2 GNi-3 GNi-4 GNi-5 Ni 标准值 0.11±0.01 0.33±0.02 1.02±0.04 5.93±0.10 9.01±0.13 2009年12月 0.110 0.33 1.04 5.89 8.93 2010年7月 0.111 0.33 1.02 5.92 9.02 2010年11月 0.110 0.33 1.03 5.82 8.92 2011年11月 0.113 0.33 1.03 5.96 8.99 b1 0.0001 0.00000001 0.00000002 0.000002 0.00007 t0.05×s(b1) 0.0002 0.00030938 0.00215776 0.015536 0.02626 S 标准值 0.74±0.06 1.53±0.06 3.78±0.07 18.14±0.41 27.83±0.65 2009年12月 0.78 1.58 3.78 18.46 28.21 2010年7月 0.73 1.52 3.82 17.95 27.61 2010年11月 0.74 1.53 3.81 18.27 27.67 2011年11月 0.72 1.52 3.74 18.07 27.92 b1 0.0021 0.000006 0.000001 0.000009 0.0006 t0.05×s(b1) 0.0045 0.007558 0.010589 0.085252 0.0969 SiO2 标准值 54.89±0.29 52.38±0.30 46.91±0.21 27.45±0.18 14.13±0.22 2009年12月 55.01 52.30 46.99 27.24 13.94 2010年7月 54.71 52.27 46.76 27.50 14.05 2010年11月 54.87 52.37 46.89 27.32 14.04 2011年11月 54.78 52.375 46.85 27.47 14.19 b1 0.007 0.0000002 0.0000004 0.000006 0.00003 t0.05×s(b1) 0.033 0.0031067 0.0060386 0.008995 0.01627 CaO 标准值 4.58±0.10 4.02±0.08 4.70±0.10 2.55±0.04 1.16±0.04 2009年12月 4.67 4.05 4.78 2.41 1.06 2010年7月 4.51 3.98 4.64 2.50 1.12 2010年11月 4.58 3.99 4.72 2.58 1.14 2011年11月 4.59 4.01 4.71 2.50 1.11 b1 0.002 0.00004 0.00003 0.00004 0.00003 t0.05×s(b1) 0.019 0.01321 0.02239 0.03029 0.01084 Fe2O3 标准值 8.58±0.10 10.71±0.10 14.69±0.12 34.71±0.32 48.37±0.38 2009年12月 8.59 10.74 14.66 34.85 49.11 2010年7月 8.65 10.78 14.52 34.74 48.16 2010年11月 8.56 10.72 14.80 34.85 48.68 2011年11月 8.62 10.72 14.62 34.64 48.33 b1 0.0002 0.0001 2.70 0.0003 0.00004 t0.05×s(b1) 0.0115 0.0347 8.17 0.0696 0.04605 元素 测定时间 w/(μg·g-1) GNi-1 GNi-2 GNi-3 GNi-4 GNi-5 Co 标准值 49±2 104±5 262±9 0.13±0.01* 0.20±0.01* 2009年12月 48 102 257 0.14 0.20 2010年7月 47 102 268 0.13 0.20 2010年11月 50 108 259 0.14 0.21 2011年11月 50 104 263 0.13 0.20 b1 0.094 0.002 0.0004 0.0000003 0.0000001 t0.05×s(b1) 0.319 0.197 0.1373 0.0000606 0.0012403 Cu 标准值 330±11 681±20 0.16±0.01* 1.52±0.04* 2.47±0.06* 2009年12月 327 672 0.17 1.55 2.49 2010年7月 350 701 0.16 1.56 2.49 2010年11月 343 691 0.16 1.54 2.48 2011年11月 336 678 0.16 1.51 2.48 b1 0.16 0.0009 0.0000001 0.0000002 0.0000006 t0.05×s(b1) 2.92 0.1041 0.0000195 0.0050863 0.0014736 Cu 标准值 330±11 681±20 0.16±0.01* 1.52±0.04* 2.47±0.06* 2009年12月 327 672 0.17 1.55 2.49 2010年7月 350 701 0.16 1.56 2.49 2010年11月 343 691 0.16 1.54 2.48 2011年11月 336 678 0.16 1.51 2.48 b1 0.16 0.0009 0.0000001 0.0000002 0.0000006 t0.05×s(b1) 2.92 0.1041 0.0000195 0.0050863 0.0014736 Pb 标准值 21±1 25±3 25±2 77±4 116±4 2009年12月 20 22 23 78 117 2010年7月 22 24 25 81 117 2010年11月 22 24 25 76 114 2011年11月 21 25 25 77 116 b1 0.030 0.005 0.005 0.0002 0.0004 t0.05×s(b1) 0.271 0.314 0.202 0.4190 0.0557 Mn 标准值 960±30 0.11±0.01* 0.11±0.01* 614±24 295±23 2009年12月 966 0.11 0.11 597 276 2010年7月 960 0.10 0.11 625 306 2010年11月 965 0.10 0.11 617 294 2011年11月 963 0.11 0.11 612 304 b1 0.08 0.000000005 0.0000 0.00 0.0003 t0.05×s(b1) 0.77 0.000015959 0.0000 2.92 0.0596 V 标准值 102±7 93±6 112±7 61±6 30±6 2009年12月 101 94 112 59 27 2010年7月 108 98 118 70 36 2010年11月 99 91 112 62 31 2011年11月 101 92 113 63 29 b1 0.093 0.001 0.0008 0.0009 0.005 t0.05×s(b1) 1.152 0.087 0.0909 0.1196 0.194 注: 表中元素Co、Cu、Mn数据中带“*”的组分质量分数为w/%。 以x代表时间,y代表标准物质的特性值,拟合成一条直线,则有斜率b1:
截距由下式计算:
直线的标准偏差可由下式计算:
斜率的不确定度用下式计算:
s(b1)=s∑ni=1(xi-x)2自由度为n-2和p=0.95(95%置信水平),t=12.7。
采用以上公式计算得到的拟合直线的斜率b1均不显著,|b1| < t0.05×s(b1),因而未观测到不稳定性。例如,样品GNi-4四次测定Ni的含量范围为5.89%~5.96%,均在不确定度范围之内,拟合直线的b1为0.000002,远小于t0.05×s(b1)值0.15536。
GNi-4的主要伴生元素Co、Cu等元素四次测定的值也均在标准值不确定范围之内。四次测定的硫元素的变化范围均在不确定范围之内,但可以发现硫元素测定的变化范围较宽,主要是由于硫元素测定的精度较差引起,并且第一次测定结果偏高,而从计算斜率b1和t0.05×s(b1)比较来看,仍是符合要求的。因此,在良好的保存条件下,本系列标准物质的稳定性是可靠的。研制单位将会在今后进行长期的检测,观测本系列标准物质的稳定性。
4. 定值测试
本次镍矿石和镍精矿标准物质定值测试采用多个实验室联合定值测试的方法,共邀请了国内不同系统的19家实验室参与定值。定值测试方法的选择力求采用不同原理的可靠方法进行测试,每种成分的测试方法基本要求2种以上。
在定值方法的选择上,以准确度高为优先考虑条件,镍矿石与镍精矿中镍采用EDTA滴定法与丁二酮肟重量法测定为主[10],配合以ICP-AES方法。其他主量成分的测试也以经典化学分析方法为主[11-12],如SiO2以重量法为主,Al2O3以容量法为主,H2O+采用重量法测定,S的测定采用燃烧碘量法与硫酸钡重量法。微量元素的分析采用了准确度高、受基体影响小和干扰少的多元素分析方法[13-14],如ICP-AES法、电感耦合等离子体质谱法(ICP-MS)、原子荧光光谱法等。各元素的测定方法见表 4。
表 4 镍矿石和镍精矿标准物质各元素的测试方法Table 4. Analytical methods used for the elements deterimination in nickel ore and nickel concentrate reference materials元素 数据数 主要的样品
分解方法元素测定方法 Ag 10 DF ICP-MS Al2O3 20 DA,DF,FU ICP-AES, VOL, AAS As 16 DA AFS, ICPMS CaO 19 DF,FU ICP-AES, VOL Cd 20 DA,DF ICP-MS, AAS Co 19 DMA,DF ICP-M, ICP-AES, AAS Cr 10 DF,FU ICP-MS, ICP-AES, AAS, XRF Cu 19 DA,DMA,DF ICP-MS, ICP-AES, AAS Fe2O3 19 DF,DMA ICP-AES,COL,VOL H2O+ 6 - GR Hg 9 DA AFS,AAS K2O 19 DA,DF DMA,FU ICP-AES,AAS MgO 19 DF,DMA,FU ICP-AES,VOL Mn 19 DF,DMA ICP-AES,ICP-MS Na2O 19 DF,DMA ICP-AES,AAS,VOL Ni 19 DF,DA VOL,GR,AAS,ICP-AES P 12 DF ICP-AES,COL Pb 18 DMA,DF ICP-MS,ICP-AES,AAS S 11 - VOL,IR Sc 17 DMA,DF ICP-MS,ICP-AES SiO2 11 - COL,VOL,GR Ti 13 DF ICP-MS,ICP-AES,COL V 13 DF FU ICP-MS,ICP-AES,COL Zn 16 DF,DMA ICP-AES,ICP-MS,AAS 注: ①分解与富集方法解释,DF—含氢氟酸的混合酸分解,
DA—王水分解,FU—熔融,DMA—混合酸分解。
②测定方法解释,AFS—原子荧光光谱法,AAS—原子吸收光谱法,COL—分光光度法,GR—重量法,ICP-AES—电感耦合等离子体发射光谱法,ICP-MS—电感耦合等离子体质谱法,IR燃烧碘量法,VOL—容量法,XRF—X射线荧光光谱法。5. 数据统计与计算
参照ISO导则35[9, 15-17]和国家一级标准物质研制规范[18]的要求对定值数据进行处理、标准值确定与不确定度的计算。
5.1 原始数据统计与标准值计算
各定值实验室提供定值数据与测定方法,首先对各实验室的分析方法与数据进行初步分析,剔除分析方法不合理的数据组,对部分离群数据要求实验室复核或重新分析。镍矿石与镍精矿共获得8429次有效测定结果,取得了2002组数据。
原始数据采用Grubbs准则剔除离群数据,镍矿石与镍精矿标准物质共剔除了23组平均值数据,占总数的1.2%。用夏皮罗-威尔克法(Shapiro-Wilk)进行正态检验。镍矿石中As、Cd、Co、Cr、Cu、Ni、S、Sc、Ti、V、Zn、Al2O3、CaO、Fe2O3、H2O+、K2O、MgO、Na2O、SiO2等元素呈正态分布,Ag、Pb、Mn等元素呈偏态或近似正态分布。镍精矿中As、Cd、Co、Cr、Cu、Mn、Ni、P、S、Sc、Ti、V、Zn、CaO、Fe2O3、H2O+、Na2O、SiO2等元素呈正态分布,Pb、Al2O3、K2O、MgO等元素呈偏态或近似正态分布。
当元素的定值数据呈正态分布时,以算术平均值为标准值,当数据组呈偏态或近似正态分布时,以中位值作为标准值。
5.2 不确定度计算
化学成分测量分析测试过程复杂,不确定度来源较多[19-21],其不确定度评定较为困难。在ISO导则35和国家一级标准物质研制规范的基础上,采用鄢明才[22]提出的地球化学标准物质不确定度估算方法,A类不确定度以各实验室定值数据平均值的标准偏差、测量次数及95%的置信水平计算得到ua作为第一部分不确定度的估算值(包含了样品分解、分离富集、测量全过程的误差)。
式中,s—实验室平均值数据间的标准偏差;N—实验室平均值数据数。
用定值分析方法平均值间的误差估计B类不确定度:
式中,R—分析方法平均值数据间的极差;sm—分析方法平均值间的标准偏差;m—参与统计的分析方法数。
总扩展不确定度(U)估算:包含因子取 t0.05n-1 (表示置信概率为95%,自由度为n-1的t的列表值),则标准值的扩展不确定度(U)为:
5个镍矿石与镍精矿的标准值与不确定度列于表 5。
表 5 镍矿石与镍精矿标准物质的标准值和不确定度Table 5. Certified values and uncertainty of chemical composition for nickel ore and nickel concentrate reference materials元素 w/(μg·g-1) GNi-1 GNi-2 GNi-3 GNi-4 GNi-5 Ag 0.56±0.08 0.75±0.08 1.1±0.1 9.3±0.4 15.2±0.5 As 5.3±0.4 5.1±0.3 5.4±0.4 25±3 37±4 Cd 0.28±0.04 0.34±0.05 0.44±0.07 2.5±0.2 4.0±0.3 Co 49±2 104±5 262±9 - - Cr 790±49 - - (720) (457) Cu 330±11 681±20 - - - Mn 960±30 - - 614±24 295±23 P 728±25 485±25 829±33 266±36 (130) Pb 21±1 25±3 25±2 77±4 116±4 Sc 15.6±0.4 15.8±0.5 17.6±0.5 9.1±0.5 2.5±0.3 Ti - - - - 422±21 V 102±7 93±6 112±7 61±6 (30) Zn 79±3 77±7 77±6 102±10 134±11 元素 w/% GNi-1 GNi-2 GNi-3 GNi-4 GNi-5 Co - - - 0.13±0.01 0.20±0.01 Cr - 0.13±0.01 0.12±0.02 - - Cu - - 0.16±0.01 1.52±0.04 2.47±0.06 Mn - 0.11±0.01 0.11±0.01 - - Ni 0.11±0.01 0.33±0.02 1.02±0.04 5.93±0.10 9.01±0.13 S 0.74±0.06 1.53±0.06 3.78±0.07 (18.14) (27.83) Ti 0.42±0.02 0.32±0.02 0.41±0.02 0.14±0.01 - Al2O3 12.21±0.17 9.09±0.12 8.65±0.15 4.06±0.10 1.04±0.08 CaO 4.60±0.10 4.02±0.08 4.70±0.10 2.55±0.04 1.16±0.04 Fe2O3 8.58±0.10 10.71±0.10 14.69±0.12 34.71±0.32 48.37±0.38 H2O+ 3.37 0.27 3.85 0.45 3.21 0.46 2.40 0.23 1.65 0.13 K2O 1.51 0.03 1.00 0.02 0.90 0.02 0.34 0.02 0.06 0.01 MgO 9.67 0.16 14.56 0.34 14.45 0.31 9.88 0.22 6.30 0.10 Na2O 2.16 0.08 1.59 0.06 1.55 0.05 0.69 0.03 0.22 0.01 SiO2 54.89 0.29 52.29 0.26 46.85 0.17 27.40 0.12 14.13 0.22 注:表中带括号的数据为参考值。 6. 标准值的溯源性与可比性
各实验室在每次测定过程中,统一采用湖北省地质实验研究所研制的国家一级镍矿石标准物质GBW 07283进行质量控制与量值样品一同进行测试,以监控定值测试全过程的质量,及时发现未能预见的误差源,检验测试结果的可靠性。标准物质GBW 07283的实测值与标准值列于表 6。从实测值与标准值对比结果来看,主要成矿元素Ni、Cu、Co等元素均在GBW 07283标准值的不确定度范围之内,说明定值测试的过程可靠,测试值具有可溯源性。但元素硫的测定平均值超出了标准值的不确定度范围,经与定值实验室核实,这些实验室在日常分析过程中也发现硫含量偏低,有可能是样品在长期保存过程中硫发生变化,该样品硫的标准值有必要重新定值。
表 6 已知标准物质GBW 07283实测结果与标准值对比Table 6. Comparison of determination results and certified results of elements in GBW 07283元素 w/(μg·g-1) 元素 w/% 标准值 实测值 标准值 实测值 Ag 0.73±0.09 0.81±0.02 Co 0.069±0.005 0.068±0.002 As 5.4±1.1 5.2±0.7 Cr 0.033±0.004 0.034±0.001 Bi 6.4±1.0 6.1±0.5 Cu 0.70±0.02 0.69±0.02 Cd 0.20±0.03 0.21±0.01 Ni 4.33±0.18 4.22±0.13 Pb 30.2±4.1 31.4±1.0 P (0.052) 0.055±0.003 Sb 0.43±0.03 0.42±0.06 S 10.44±0.19 10.14±0.27 Sc 7.6 0.9 7.7 0.1 SiO2 50.17 0.16 50.08 0.10 Zn 55.5 4.8 58.4 2.7 Fe2O3 16.06 0.16 16.12 0.14 Al2O3 8.85 0.17 8.74 0.10 MnO 0.04 0.003 0.04 0.001 CaO 0.71 0.03 0.74 0.04 TiO2 0.37 0.02 0.36 0.01 MgO 2.02 0.07 2.00 0.04 K2O 2.76 0.07 2.72 0.12 Na2O 1.00 0.03 0.98 0.01 7. 结语
镍矿石与镍精矿标准物质的制备过程中,采用多实验室、多方法进行联合定值测试,3个镍矿石标准物质(GNi-1、GNi-2、GNi-3)定值的23个组分(Ag、As、Cd、Co、Cr、Cu、Mn、Ni、P、Pb、S、Sc、Ti、V、Zn、Al2O3、CaO、Fe2O3、H2O+、K2O、MgO、Na2O、SiO2)均给出了标准值;镍精矿标准物质GNi-4的21个组分给出标准值,Cr、S给出参考值;GNi-5给出20个组分的标准值,Cr、P、V给出参考值。此批研制的5个镍标准物质的Ni含量范围较广(Ni的含量分别为0.11%、0.33%、1.02%、5.93%、9.01%),从边界品位、工业品位至镍精矿,涵盖了矿产勘查中各个主要技术指标,形成一个完整的系列,便于实验室分析测试使用。
本研究为了保证定值测试的准确性,选择了国内各行业权威的19家实验室参与定值测试,参与定值测试的实验室数量远远超过国家一级标准物质研制规范的要求(6家)。在方法选择上,应用准确度高的方法,不确定度估算依据ISO导则和国家一级标准物质的要求进行,给出的不确定度合理;采用XRF和ICP-AES(0.1 g取样量)基本对所有定值成分进行均匀性检验,所有元素均匀性达到国家一级标准物质的要求。
由于镍矿石和镍精矿的硫化物含量较高,在加工与储存过程中,采取了一些具有针对性的措施。在加工过程中加入氩气,通过隔绝氧气的方法充分防止硫化物的氧化;在样品保存过程中,采用低温(8℃)、密封、充氩气等方法,防止硫化物在长期保存过程中发生氧化。镍精矿中硫的含量达到18.14%和27.83%,测试过程中基体干扰较大,各定值实验室给出的测量结果离散性较大,因此本次研究仅给出参考值,将在今后继续跟踪硫的稳定性等指标,在适当的时候,对硫元素重新赋值。
-
表 1 标本外观描述
Table 1 The exterior appearance of each sample
标本编号 标本种类 外观描述 N1 青白瓷 表面刻花,釉色白中泛青灰;瓷胎较厚,胎灰白 N2 青白瓷 表面刻花,釉色白中泛青灰;瓷胎较厚,胎灰白 N3 青白瓷 表面印花,芒口,釉白中泛青,薄胎,胎洁白细腻 N4 青白瓷 釉色白中泛青,有弦文,胎较薄,洁白细腻 N7 青白瓷 花口,薄胎,釉色白中泛青,胎色洁白细腻 N22 青白瓷 口沿部分,釉色白中泛青,薄胎,胎质洁白 N12 青瓷 口沿及器壁部分,釉色青中发黄,器表划花,灰胎 N13 青瓷 口沿及器壁部分,釉色青中泛白,灰胎 N20 青瓷 器底部分,玉环圈足,釉色深青,器表划花,青灰胎 N5 绿釉陶 绿釉小罐,上面有土黄色,以及黑色斑点状的腐蚀 N8 绿釉陶 器底部分,灰胎,绿釉,表面附着灰色、黑色腐蚀物 N9 绿釉陶 口沿部分,印花,绿釉,表面附着灰色腐蚀物 N10 绿釉陶 口沿部分,印花,腐蚀物较少,但釉表面开始酥粉
N11绿釉陶 器底部分,绿釉,底部内标印花,
灰色腐蚀物,绿釉开始酥粉N16 绿釉陶 小瓶,口颈部分缺失,绿釉,表面锈蚀物很多 表 2 样品胎釉的XRF元素分析结果
Table 2 Elemental compositions of each sample by XRF
样品编号 含量(%) Al2O3 SiO2 TFe2O3 TiO2 MgO CaO Na2O K2O Cr Cu Mn P Rb Sr Zr Zn N1(胎) 21.00 72.30 0.85 0.16 0.25 0.22 1.67 2.55 19 72 277 277 193 62 254 131 N2(胎) 20.37 73.63 1.02 0.16 0.04 0.23 0.93 2.63 17 83 270 242 216 69 284 112 N3(胎) 17.85 73.57 0.55 0.12 0.69 0.91 2.39 2.92 - 0 309 271 381 67 85 68 N4(胎) 18.91 73.84 0.43 0.15 0.60 0.31 1.61 3.14 32 38 232 197 208 61 254 59 N7(胎) 19.00 73.29 0.92 0.15 0.66 0.45 1.86 2.68 11 21 582 272 411 62 130 28 N22(胎) 22.32 70.02 0.78 0.16 0.34 0.31 1.08 4.00 60 71 257 251 310 73 360 158 N1(釉) 14.89 66.50 0.79 0.13 0.63 12.78 0.91 2.37 - 14 1096 993 164 242 228 67 N2(釉) 17.50 67.72 0.72 0.15 0.28 9.28 0.75 2.58 - 28 692 639 164 170 240 78 N3(釉) 14.19 66.37 0.83 0.13 0.43 14.02 0.97 2.05 - 2 455 708 263 209 111 119 N4(釉) 17.61 65.67 0.30 0.13 0.43 10.58 0.84 3.44 - - 748 611 161 186 223 65 N7(釉) 13.85 70.18 0.61 0.13 0.01 8.56 1.74 3.92 15 8 738 723 396 194 88 21 N22(釉) 17.87 64.64 0.72 0.13 1.03 9.36 0.86 4.41 - - 703 1020 224 167 252 96 N12(胎) 15.45 75.59 2.08 0.53 0.04 0.21 1.75 3.35 97 7 292 210 308 53 247 91 N13(胎) 19.12 72.89 1.65 0.26 0.55 0.19 1.75 2.60 34 8 304 253 160 68 173 27 N20(胎) 13.32 78.30 1.73 0.45 0.70 0.24 1.36 2.90 130 37 460 232 245 65 302 95 N12(釉) 12.01 67.88 1.29 0.31 1.67 12.34 0.95 2.54 - - 2716 1498 202 376 273 154 N13(釉) 15.85 71.58 0.74 0.24 1.13 4.38 0.71 4.38 - 43 2395 1265 201 222 172 173 N20(釉) 12.35 61.89 1.24 0.28 2.38 16.28 1.57 3.01 - 26 2437 2875 187 719 269 162 N5(胎) 23.20 65.76 2.32 0.66 1.08 0.32 2.65 3.00 19 162 386 215 206 129 286 149 N8(胎灰色) 26.81 63.28 2.06 0.88 0.73 0.29 1.58 3.39 42 36 557 388 207 104 238 65 N8(胎) 23.91 65.71 1.84 0.70 0.91 0.32 2.35 3.27 56 47 449 288 212 94 297 116 N9(胎) 23.46 65.44 2.30 0.66 1.28 0.48 2.53 2.85 34 284 489 347 176 141 266 100 N10(胎) 21.82 67.29 2.49 0.63 1.46 0.31 2.53 2.47 41 97 458 279 184 99 212 102 N11(胎) 24.57 65.37 2.50 0.70 0.85 0.38 1.57 3.04 25 16 476 274 223 151 237 132 N16(胎) 24.23 65.27 2.45 0.67 1.03 0.36 2.00 2.99 37 135 589 378 192 110 321 92 注:分析结果中,主量成分含量单位为%,微量成分含量单位为μg/g,“-”表示此元素未检出。 表 3 釉陶腐蚀物以及釉陶的半定量分析结果
Table 3 The surface corrosion of green glazed pottery and results of semi-quantitative analysis
样品编号 含量(%) MgO Al 2O 3 SiO 2 P 2O 5 K 2O CaO TiO 2 Fe 2O 3 CoO CuO PbO N5 (白色腐蚀物) - 0.47 2.97 0.24 0.15 0.35 0.08 1.41 0.05 1.07 93.2 N8 (黑色腐蚀物) - 0.43 3.16 0.66 0 0.77 0.11 2.54 0.1 2 90.23 N8 (釉) 1.46 3.15 23.78 0.63 0.61 0.22 0.21 0.52 0.12 5.02 64.28 N8 (灰色腐蚀物) 0.47 19.16 48.21 0.09 6.03 0.2 0.31 2.18 0 0.94 22.42 N8 (黄色腐蚀物) - 8.24 29.87 0.54 3.62 0.77 0.88 5.15 0.13 1.36 47.44 N9 (腐蚀物) - 2.33 19.68 0.52 0.51 0.27 0.18 1.62 0.06 0.85 73.98 N9 (绿釉) 0.6 3.43 21.58 0.48 1.01 0.39 0.11 0.67 0.09 2.66 68.98 N10 (绿釉) 0.42 4.02 40.53 0.25 0.8 0.65 0.22 0.56 0 2.53 50.01 N10(酥粉部分) 0.53 2.62 54.75 0.23 0.82 0.67 0.17 0.49 0.03 1.49 38.2 N10 (黄色腐蚀物) 1.88 8 25.52 4.98 2.45 3.14 0.43 3.48 0.04 1.6 48.48 N11绿釉 1.16 5.22 31.99 0.52 1.43 0.78 0.32 1.16 0.08 3.25 54.09 N11 (灰色腐蚀物) 0.68 3.63 43.74 - 0.63 0.85 0.13 1.22 0.08 1.71 47.34 N16黑色腐蚀物 0.71 1 3.07 0.81 1.13 1.22 0.11 1.26 0.05 2.12 88.3 N16绿釉 0 3.49 26.38 0.27 0.8 0.59 0.13 1.05 0.12 2.38 64.79 N16灰色腐蚀物 0.68 0.74 2.83 0.64 0.5 0.42 0.09 0.91 0 1.17 91.45 注:“-”表示此元素未检出。 -