A Review on Detection Methods of Chemical Oxygen Demand in Water Bodies
-
摘要: 化学需氧量(COD)是反映水体受有机物污染的重要指标,其环境污染问题引起了广泛关注。2012年我国长江、黄河等十大流域的972个国控断面中有10.2%的断面为劣Ⅴ类水质,COD是主要污染指标之一,因此对水体中COD进行准确监测具有重要的意义。目前我国采用的COD标准方法具有操作繁琐、效率低、检测成本高、对环境容易造成二次污染等问题。针对传统检测方法存在的缺点,研究者对所用仪器设备(样品消解及测定)、消解试剂、检测方法等进行优化与改进。在此基础上,检测效率及准确性更高、环境友好的检测技术也相继被开发与应用。本文总结了近年来COD标准检测方法的改进与优化、新检测技术研究的主要进展。传统检测方法可检测COD含量为30~700 mg/L的轻度、中度污染水样;基于标准方法改进的检测方法将检出下限降低至8.6 mg/L,检出上限则扩展到1600 mg/L。这些方法可显著缩短检测时间,降低检测成本,但不能避免试剂对环境的污染,且对难降解有机物的氧化能力不足。在药物及免疫分析、矿物岩石分析等其他领域或指标检测中成熟的技术方法,如化学发光法、流动注射法或多种技术结合的新的检测方法,已经被应用于COD检测,检出下限仅为0.16 mg/L,检测时间进一步缩短,试剂污染也大幅降低。随着科技的发展,臭氧氧化法、电化学法等不拘泥于传统检测方法的新方法,特别是基于以羟基自由基(·OH)为主要氧化剂与有机物发生反应的光催化法及光电催化氧化技术,进一步将COD的检测范围拓宽至0~23200 mg/L,为COD的准确、快速、低成本及在线监测提供了参考。Abstract: COD is regarded as an important index for representing the degree of organic pollution in water bodies, which has attracted wide attention. The water quality of 10.2% of the 972 state-controlled sections exceeded Ⅴ class among ten water areas such as the Yangtze River and the Yellow River in China in 2012. COD is one of the major pollution indicators in those water bodies. Therefore, it is of great importance to accurately monitor COD in water bodies. However, standard determination methods of COD have some disadvantages including complexity, low efficiency, high cost and severe secondary pollution. Aiming at the difficulties of traditional methods, instruments and equipment (sample digestion and determination), digestion reagents, and determination methods have been optimized and improved. In addition, certain environmentally friendly detection techniques with higher detection efficiency and accuracy have also been developed and applied. The most recent research progress of the determination methods of COD, including two main parts: the improved and optimized methods according to the standard ones, and new technologies or methods are reviewed in this paper. The traditional detection method is suitable for determining COD with the content range of 30-700 mg/L in light or moderate polluted water bodies. The improved and optimized methods extend the detection limits from 8.6 mg/L to 1600 mg/L, with the detection time shortened and cost of detection decreased significantly. However, the environmental pollution caused by chemical reagents could not be avoided, and oxidation ability to the refractory organics was insufficient. Flow injection, chemiluminescence or a combination of several techniques, which had already been used as the mature detection methods in drugs and immune analysis, mineral and rock analysis, have also been employed for the determination of COD in water bodies. Lower detection limit (0.16 mg/L) and faster detection time could be achieved, and the environmental pollution caused by the reagents was reduced dramatically. With the development of science and technology, some new methods such as ozone oxidation, electrochemical ones, especially as photocatalytic and photoelectrocatalytic determination technologies, based upon the reaction between hydroxyl radicals and organic compounds, have been developed recently. A wider detection range (0-23200 mg/L) was achieved by these new methods, which are capable of determining COD in water bodies with different pollution levels. The new techniques could provide a reference for the accurate, rapid, low-cost and on-line monitoring determination of COD.
-
Keywords:
- water /
- chemical oxygen demand /
- detection method
-
不知你是否有过这样的经历,终于得到那本向往已久的好书,或是觅得那张曾经深深触动你的CD,你是即刻拆封?还是放进书包带回家,等外界嘈杂喧嚣退去,静候自己那颗久别重逢的心都准备好了,才打开来细细品读或是聆听?
上大学时,笔者第一次听到了德沃夏克的第九交响曲“自新大陆”。乐中蕴含着一股强大而内敛的力量,气势恢弘,充满自信与自豪,是充满生机的号角和热血生命的召唤,让当时年轻的心澎湃不已,至今不能忘怀。那个时候有年轻的心,有远方的梦,在时间和生命的轨迹上自由地延伸。自那时起,找寻和聆听这首交响曲,就成了心中一份默默的寄托。不知等了多少年,终于觅得了这一珍贵CD。当时拿到CD,真恨不得马上回家就听。然而,真正回到家,却总也不敢拆开那精美的包装,担心里面那颗澎湃的心所掳掠的这么多年的找寻和期待稍纵即逝,或流于指缝,或散于世俗。要重温这张CD,必须有一种“仪式”:最悦耳的音响,最静谧的夜,最清澈的星空……,只有这个时候,再奏响这火红的乐章,才能让心在足够的宁静中再一次澎湃,让灵魂再一次感受久违的呼唤与震撼。穿越这数十年的流觞,与那个年轻的自己一起,坐在大学校园的静夜里,沉醉、省思和积淀。这一等,就又是十年。
如果说科学和艺术是一双智慧和反智慧的孪生体,那么这样的“反”中,必然免不去这诸多的“同”。不久前看到一段话,大意是说,只会开卷勤读,不会掩卷悲喜,这一生就算做到中文系教授,也不过是一个文学的绝缘体。对于搞科研的人来说,这掩卷后的触动和省思更为重要。没有这点滴的“省”,你不仅会渐渐绝缘于真正意义上的科研,甚至也绝缘于自己———你永远无法体验多年后与曾经的自己再一次邂逅的快乐。2013年在《岩矿测试》上发表的文字,既有踏雪寻梅,一层一层曲折着向科学深处走去的探索,又有山重水复疑无路的回转,以及攻克了诸多技术难题的实验新作。邈远空茫之处,探寻的精神与攻克难关的乐趣尽显。
“氧同位素在岩石成因研究中的新进展”一文(Vo1.32,No.6,p841-849),初看似如入云山雾海,那些氧同位素组成的变化和分馏效应的差异,如何用来识别不同来源、不同期次岩石的形成、混染和演化?技术手段的改变,又如何否定了前人的假设与假说,导致了多种岩石成因学说的进步?层层叠叠,庐山面目不得识。然而这反倒促使你静下心来,仔细阅读,去理解科学道理与自然规律的天然自成。自然之美在这里一览无余。也不得不使你感受到作者对于该门学科独到的思辨与洞察。
“应用纤维素示踪北京市PM2.5天然植被排放来源的研究”(Vo1.32,No.5,p738-746)实在是一篇需要推荐给大家去读的文章。现在举国上下,直至欧美诸国,都在广泛谈论PM2.5与北京和全国各地的雾霾。当北京重度污染的时候,还会收到国际友人的邮件关注。印象中,我们谈论的雾霾来源都是工业污染、沙尘,甚或汽车尾气。然而,该文作者们通过精巧的设计和实验方法的改进,通过与国外文献的方法及数据对比,表明在北京,天然植被排放量占据了PM2.5质量浓度的1.37%的份额,天然植被排放源对有机碳的最大贡献可达9.2%,天然植被排放成为北京市PM2.5重要来源之一。该研究与我们大家的生活息息相关,其重要性和科学意义不言而喻。
微区定量分析中,标准物质的缺乏是其重要制约因素之一。标准物质与待测样品基体的不一致是分析误差的主要来源。“激光剥蚀电感耦合等离子体质谱分析石笋样品中多元素比值及45种元素含量”(Vo1.32,No.3,p383-391)一文,在实验与方法上,采取了一系列富有创意的、绕口令一般的“桥梁”设计,有效地避免了碳元素无法准确检测的问题,获得了与Ca内标法相匹配的校正结果。“磷灰石Sr-Nd同位素的激光剥蚀-多接收器电感耦合等离子体质谱微区分析”(Vo1.32,No.4,p547-554)研究中,作者们不仅进行了深入的研究,还详尽地进行了国内外方法与数据的比较,佐证了所建方法的先进性和可靠性。这一点十分值得推荐,这样做也需要有渊博的学识、扎实的功底和探求真知的勇气。一年来,这样的研究还有很多……
这些文字,或充满丰富的奇思妙想,或构思着精巧的实验设计,智慧、坚韧与探求,无不浸润在文中的字里行间。
于是,就想,一定要集撰这样一本好书,也一定会有这样一卷好书,在星星聚齐的时候,我们一起开卷细品,掩卷遐思!
主编:罗立强
2013年10月26日
于北京
-
表 1 高盐废水检测中推荐的HgSO4/Cl-比例[12]
Table 1 Recommended HgSO4/Cl- ratios for COD analysis at high salinities [12]
COD浓度
ρ/(mg·L-1)推荐的HgSO4/Cl-比例 Cl-浓度上限:2500 mg/L Cl-浓度上限:5000 mg/L Cl-浓度上限:7500 mg/L Cl-浓度上限:10000 mg/L 0~50 10∶1~20∶1~30∶1 10∶1~20∶1~30∶1 - - 50~100 10∶1~20∶1~30∶1 10∶1~20∶1~30∶1 10∶1~20∶1~30∶1 30∶1 100~150 10∶1~20∶1~30∶1 10∶1~20∶1~30∶1 10∶1~20∶1~30∶1 20∶1~30∶1 150~200 10∶1~20∶1~30∶1 10∶1~20∶1~30∶1 10∶1~20∶1~30∶1 20∶1~30∶1 表 2 各类检测方法比较
Table 2 Comparison of different detection methods
方法
类型检测方法 线性范围/
(mg·L-1)检出限/
(mg·L-1)样品类型 方法优缺点 文献来源 标准方法改进 Mn3+作氧化剂,微波消解 与标准方法
一致- 废水 微波消解时间仅1 min;与标准方法比对误差 < 4%,无需汞盐;不能避免铬盐的污染 Domini等[11] CuSO4-MnSO4复合催化剂替代 45~1600 45 废水 消解时间12 min;扩展了检测范围;不需银盐,不能避免汞盐、铬盐的二次污染 邱婧伟等[36] 普通分光光度计代替专用COD测定仪 与标准方法
一致与标准方法
一致废水 降低检测成本,消解时间为12 min,降低环境污染;所需试剂与快速法一致无改进 付丽君等[9] 双波长光谱法 8.6~100 8.6 低污染
水体提高了低污染水体的灵敏度,不需标准样品校正;消解时间长,消解温度等无改进 蒋然等[14] 高氯废水检测方法优化 ≤200 - 高氯低
有机物废水优化了HgSO4的加入比例,适合Cl- < 10000 mg/L的高氯废水,增加了汞盐等的污染 Kayaalp等[12] 新的检测技术 化学发光法(KMnO4-戊二醛高通量化学发光系统) 0.16~19.24 0.1 清洁水 操作简单快速,检测效率高及污染少,检出限低,适合低含量水体中COD的检测;线性范围较窄 Yao等[15] 流动注射技术(微波
消解,ICP结合)2.6~850 1.2 清洁水
及废水多种技术结合,显著降低了检出限,Cl-含量 < 3000 mg/L不干扰测定;使用大型仪器,成本高 Almeida等[17] 臭氧氧化法
(O3/UV)与标准方法
一致0.03 海水 盐度无影响,检出限显著降低;适合海水在线监测;臭氧本身的局限导致方法氧化能力不足 刘岩等[19] 电化学法(BDD
电极-超声消解)0~23200 0.19 清洁水
及废水线性范围很宽,检出限低。检测时间仅需5 min,电极制作成本高,不适合推广 Wang等[69] 光催化法(纳米
TiO2- K2Cr2O7
体系)0~150 0.4 轻度污染
水体Cl-含量 < 2000.0 mg/L不干扰测定,无需汞盐。线性范围较窄,有待改进,成本较高 李成芳等[80] 光电催化氧化法(TNFs) 0~250 0.95 中轻度
污染水体测定快速(几分钟),试剂污染少,氧化效率高。线性范围有待提升,成本高 Mu等[24] -
United Nations Educational, Scientific and Cultural Organization, The 4th edition of the UN World Water Development Report[EB/OL].http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4-2012/[2012-03-12].
Noguerol-Arias J, Rodriguez-Abalde A, Romero-Merino E, Flotats X. Determination of chemical oxygen demand in heterogeneous solid or semisolid samples using a novel method combining solid dilutions as a preparation step followed by optimized closed reflux and colorimetric measurement[J].Analytical Chemistry, 2012, 84(13): 5548-5555. doi: 10.1021/ac3003566
环境保护部.中国环境公报[EB/OL].http://www.mep.gov.cn/gkml/hbb/qt/201306/t20130604_253201.htm[2013-06-04]. Wang H, Zhong S H, He Y, Song G W. Molecular sieve 4A-TiO2-K2Cr2O7 coexisted system as sensor for chemical oxygen demand[J].Sensors and Actuators B: Chemical, 2011, 160(1): 189-195. doi: 10.1016/j.snb.2011.07.032
Tian J J, Hu Y G, Zhang J. Chemiluminescence detection of permanganate index (CODMn) by a luminol-KMnO4 based reaction[J].Journal of Environmental Sciences, 2008, 20(2): 252-256. doi: 10.1016/S1001-0742(08)60039-X
Zhao H J, Jiang D L, Zhang S Q, Catterall K, John R. Development of a direct photoelectrochemical method for determination of chemical oxygen demand[J].Analytical Chemistry, 2004, 76(1): 155-160. doi: 10.1021/ac0302298
罗国兵.自配消解液分光光度法测定污水中COD[J].中国给水排水, 2008, 24(4): 83-85. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200911006.htm Dharmadhikari D M, Vanerkar A P, Barhate N M. Chemical oxygen demand using closed microwave digestion system[J].Environmental Science & Technology, 2005, 39(16): 6198-6201.
付丽君,李冰璟,蒋文新,林志敬,应维琪.低耗环保COD测定方法的研究[J].环境污染与防治,2008,30(3): 57-61. http://www.cnki.com.cn/Article/CJFDTOTAL-HJWR200803023.htm Li J, Tao T, Li X B, Zuo J L, Li T, Lu J, Li S H, Chen L Z, Xia C Y, Liu Y, Wang Y L. A spectrophotometric method for determination of chemical oxygen demand using home-made reagents[J].Desalination, 2009, 239(1-3): 139-145. doi: 10.1016/j.desal.2008.03.014
Domini C E, Vidal L, Canals A. Trivalent manganese as an environmentally friendly oxidizing reagent for microwave- and ultrasound-assisted chemical oxygen demand determination[J].Ultrasonics Sonochemistry, 2009, 16(5): 686-691. doi: 10.1016/j.ultsonch.2009.01.008
Kayaalp N, Ersahin M E, Ozgun H, Koyuncu I, Kinaci C. A new approach for chemical oxygen demand (COD) measurement at high salinity and low organic matter samples[J].Environmental Science and Pollution Research, 2010, 17(9): 1547-1552. doi: 10.1007/s11356-010-0341-z
薛文平,刘文伟,黄德智,元世勇.利用微波消解-无银催化法检测水中化学需氧量[J].黄金,2011,32(4): 48-50. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201104015.htm 蒋然, 柴欣生,张翠,唐红亮.一种检测低浓度化学需氧量的双波长光谱方法[J].光谱学与光谱分析,2011,31(7): 2007-2010. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201107068.htm Yao H, Wu B, Qu H B, Cheng Y Y.A high throughput chemiluminescence method for determination of chemical oxygen demand in waters[J].Analytica Chimica Acta, 2009, 633(1): 76-80. doi: 10.1016/j.aca.2008.11.046
乐琳,张晓鸣.超声消解FIA-FAAS快速测定环境水样中COD[J].分析试验室,2008,27(11): 119-122. doi: 10.3969/j.issn.1000-0720.2008.11.032 Almeida C A, González P, Mallea M, Martinez L D, Gil R A.Determination of chemical oxygen demand by a flow injection method based on microwave digestion and chromium speciation coupled to inductively coupled plasma optical emission spectrometry[J].Talanta,2012, 97: 273-278. doi: 10.1016/j.talanta.2012.04.030
Almeida C A, Savio M, González P, Martinez L D, Gil R A.Determination of chemical oxygen demand employed manganese as an environmentally friendly oxidizing reagent by a flow injection method based on microwave digestion and speciation coupled to ICP-OES[J].Microchemical Journal, 2013, 106: 351-356. doi: 10.1016/j.microc.2012.09.007
刘岩,白强,侯广利,杜立彬,陈江麟.臭氧法海水化学需氧量(COD)现场快速分析技术研究[J].海洋环境科学,2008,27(2): 182-185. http://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ200802020.htm Han Y H, Qiu J X, Miao Y Q, Han J S, Zhang S Q, Zhang H M, Zhao H J.Robust TiO2/BDD heterojunction photoanodes for determination of chemical oxygen demand in wastewaters[J].Analytical Methods, 2011, 3(9): 2003-2009. doi: 10.1039/c1ay05193h
Zhou Y S, Jing T, Hao Q L, Zhou Y K, Mei S R.A sensitive and environmentally friendly method for determination of chemical oxygen demand using NiCu alloy electrode[J].Electrochimica Acta, 2012, 74: 165-170. doi: 10.1016/j.electacta.2012.04.048
吴灿,吴康兵.基于纳米Pt形貌调控的化学需氧量电化学传感研究[J].分析化学,2013,41(5): 704-708. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201305016.htm Silvestre C I C, Frigerio C, Santos J L M, Lima J L F C.Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system[J].Analytica Chimica Acta, 2011, 699(2): 193-197. doi: 10.1016/j.aca.2011.05.018
Mu Q H, Li Y G, Zhang Q H, Wang H Z.TiO2 nanofibers fixed in a microfluidic device for rapid determination of chemical oxygen demand via photoelectrocatalysis[J].Sensors and Actuators B: Chemical, 2011, 155(2): 804-809. doi: 10.1016/j.snb.2011.01.051
Wang C, Wu J C, Wang P F, Ao Y H, Hou J, Qian J.Investigation on the application of titania nanorod arrays to the determination of chemical oxygen demand[J].Analytica Chimica Acta, 2013, 767: 141-147. doi: 10.1016/j.aca.2013.01.028
Wang C, Wu J C, Wang P F, Ao Y H, Hou J, Qian J.Photoelectrocatalytic determination of chemical oxygen demand under visible light using Cu2O-loaded TiO2 nanotube arrays electrode[J].Sensors and Actuators B: Chemical, 2013, 181: 1-8. doi: 10.1016/j.snb.2013.02.011
沈加正,侯沙沙,刘鹰,罗荣强.海水化学需氧量烘箱加热测定方法的研究[J].海洋科学,2011,35(8): 1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201108002.htm 崔建平,李黎.一种快速测定废水化学需氧量的方法[J].工业水处理,2008,28(8): 66-67. doi: 10.11894/1005-829x.2008.28(8).66 张安龙,曹萌.微波消解法测定造纸废水中COD的研究[J].环境科学与技术,2010,33(6E): 287-288. http://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2010S1077.htm Miller D G, Brayton S V, Boyles W T.Chemical oxygen demand analysis of wastewater using trivalent manganese oxidant with chloride removal by sodium bismuthate pretreatment[J].Water Environment Research, 2001, 73(1): 63-71. doi: 10.2175/106143001X138705
Kim Y C, Sasaki S, Yano K, Ikebukuro K, Hashimoto K, Karube I.Relationship between theoretical oxygen demand and photocatalytic chemical oxygen demand for specific classes of organic chemicals[J].Analyst, 2000, 125(11): 1915-1918. doi: 10.1039/b007005j
刘咏,赵仕林,李瑞桢,张爱平.难降解垃圾渗滤液COD的硫酸高铈法测定[J].环境工程学报,2010,33(3): 348-351. http://www.cnki.com.cn/Article/CJFDTOTAL-SCSD201003019.htm 王俊荣,韩永红,刘宗斌.银盐沉淀-铬酸盐法测定高氯离子水样中化学需氧量[J].冶金分析,2008,28(3): 43-45. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200803008.htm 褚有群,冯建松,李丹丹,李照华,马淳安.电位滴定法同时标定硫酸高铈和硫酸亚铁铵溶液[J].理化检验(化学分册),2012,48(7): 841-844. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201207029.htm 林穗云.无汞、无银国标COD测定法的改进[J].精细化工,2008,25(1): 83-86. http://www.cnki.com.cn/Article/CJFDTOTAL-JXHG200801020.htm 邱婧伟,于国峰,赵静,王潇,程海岩,潘理黎.低污染低成本COD快速测定方法的研究[J].环境科学与技术,2012,35(8): 129-132. http://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201208030.htm 周俊,杨新萍,周立祥.自配消解液分光光度法测定污水中的COD[J].环境工程学报,2009,3(11): 1956-1961. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200911006.htm 孙海波,薛建军,金丹萍,倪守高,雷斌.HE 99721型COD测定仪专用试剂包的配制[J].理化检验(化学分册),2009,45(6): 732-734. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH200906042.htm 税永红,李巧巧.快速消解721分光光度法测定废水COD值[J].印染,2011,37(8): 44-46. http://www.cnki.com.cn/Article/CJFDTOTAL-YIRA201108013.htm Ogura N.Studies of ultaviolet absorbing materials in natural water. Ⅱ.Relation between ultraviolet absorbing materials in natural water[J].Nippon Kagaku Zasshi, 1965, 86(12): 1286-1288. doi: 10.1246/nikkashi1948.86.1286
吴同华,郭虹,郭敬慈.连续紫外扫描光谱法快速测定废水的化学需氧量[J].中国环境监测,2009,25(4): 57-59. http://www.cnki.com.cn/Article/CJFDTOTAL-IAOB200904016.htm 谭淞文,程刚,王志成,公天齐,朱恋.应用改进分光光度法测定多组分水样的COD[J].环境工程学报,2012,6(5): 1755-1760. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201205066.htm 张浩,孙力平.双波长紫外分光光度法测定渗滤液COD的研究[J].环境工程学报,2009,3(10): 1755-1758. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200910006.htm 陈洪雷,陈元彩,詹怀宇,付时雨.导数光谱-化学计量学方法测定制浆废水COD[J].华南理工大学学报(自然科学版),2009,37(10): 150-154. doi: 10.3321/j.issn:1000-565X.2009.10.029 赵亚乾.Cl-,NH3,和H2O2对COD测定的影响[J].上海环境科学,1995,14(8): 32-34. 林诗敏,王茀跃,白书明.差减法测定高氯废水的COD值[J].中国给水排水,2009,25(24): 79-81. doi: 10.3321/j.issn:1000-4602.2009.24.022 Vyrides I, Stuckey D C.A modified method for the determination of chemical oxygen demand (COD) for samples with high salinity and low organics[J].Bioresource Technology, 2009, 100(2): 979-982. doi: 10.1016/j.biortech.2008.06.038
运如艳.叠加法测定污水处理厂高氯出水水样的COD[J].中国给水排水,2009,25(4): 79-81. http://www.cnki.com.cn/Article/CJFDTOTAL-GSPS200904030.htm 刘娟,吴浩宇.高氯废水COD测定方法的探究[J].工业水处理,2011,31(4): 66-69. doi: 10.11894/1005-829x.2011.31.(4).66 呼晋江,兰生富,曹佳红.二苯碳酰二肼光度法测定低含量CODCr[J].四川环境,2008,27(4): 20-23. 王亚林,徐乾前,章琴琴.H2O2对COD测定的干扰及消除研究[J].环境污染与防治,2012,34(12): 52-56. doi: 10.3969/j.issn.1001-3865.2012.12.012 曹国民,盛梅,钟晨,周凤珍.工业废水中溴离子对COD测定的影响[J].中国给水排水,2007,23(20): 85-88. doi: 10.3321/j.issn:1000-4602.2007.20.022 Hu Y G, Yang Z Y.A simple chemiluminescence method for determination of chemical oxygen demand values in water[J].Talanta, 2004, 63(3): 521-526. doi: 10.1016/j.talanta.2003.11.037
杨泽玉,胡涌刚.化学发光-化学需氧量测定新方法[J].分析化学,2003,31(12): 1430-1432. doi: 10.3321/j.issn:0253-3820.2003.12.006 Liu W, Zhang Z J, Zhang Y Y.Chemiluminescence micro-flow system for rapid determination of chemical oxygen demand in water[J].Microchim Acta, 2008, 160(1-2): 141-146. doi: 10.1007/s00604-007-0824-x
乐琳,张晓鸣.流动注射合并带停留光度法快速测定环境水样中化学需氧量[J].岩矿测试,2008,27(2): 87-90. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200802004.htm 刘光虹,庞志涛,胡涌刚.流动注射式化学发光法测定化学需氧量[J].实验技术与管理,2008,25(7): 58-61. http://www.cnki.com.cn/Article/CJFDTOTAL-SYJL200807015.htm 乐琳,张晓鸣.流动注射-火焰原子吸收法快速测定水样化学需氧量[J].环境污染与防治,2008,30(10): 67-70. doi: 10.3969/j.issn.1001-3865.2008.10.019 郑青,韩海波,周保学,李金花,白晶,蔡伟民.化学需氧量(COD)快速测定新方法研究进展[J].科学通报,2009,54(21): 3241-3250. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200921002.htm 靳保辉,何鹰,庄峙厦,王小如,Lee F S C.液相臭氧化流动注射化学发光法测定水体化学耗氧量(COD)的研究: 苯酚溶液COD测定[J].厦门大学学报(自然科学版),2005,44(2): 224-229. http://www.cnki.com.cn/Article/CJFDTOTAL-XDZK20050200I.htm 徐珊珊.臭氧法COD测量仪测量海水COD的研究[D].青岛: 中国海洋大学,2008. Wang J Q, Wu C, Wu K B, Cheng Q, Zhou Y K.Electrochemical sensing chemical oxygen demand based on the catalytic activity of cobalt oxide film[J].Analytica Chimica Acta, 2012, 736: 55-61. doi: 10.1016/j.aca.2012.05.046
Silva C, Conceicao C D C, Bonifácio V, Fatibello O, Teixeira M.Determination of the chemical oxygen demand (COD) using a copper electrode: A clean alternative method[J].Journal of Solid State Electrochemistry, 2009, 13(5): 665-669. doi: 10.1007/s10008-008-0580-9
Jing T, Zhou Y S, Hao Q L, Zhou Y K, Mei S R.A nano-nickel electrochemical sensor for sensitive determination of chemical oxygen demand[J].Analytical Methods, 2012, 4(4): 1155-1159. doi: 10.1039/c2ay05631c
Li J Q, Li L P, Zheng L, Xian Y Z, Jin L T.Rh2O3/Ti electrode preparation using laser anneal and its application to the determination of chemical oxygen demand[J].Measurement Science & Technology, 2006, 17(7): 1995-2000.
倪翠芳,高晨,王芬.电化学催化氧化法快速测定化学需氧量[J].科技通报,2013,29(4): 180-182. http://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201304063.htm Yu H B, Ma C J, Quan X, Chen S, Zhao H M.Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode[J].Environmental Science & Technology, 2009, 43(6): 1935-1939.
Wang J, Li K, Zhang H B, Wang Q, Wang Y L, Yang C, Guo Q B, Jia J P.Condition optimization of amperometric determination of chemical oxygen demand using boron-doped diamond sensor[J].Research on Chemical Intermediates, 2012, 38(9): 2285-2294. doi: 10.1007/s11164-012-0545-6
Wang J, Li K, Yang C, Wang Y L, Jia J P.Ultrasound electrochemical determination of chemical oxygen demand using boron-doped diamond electrode[J].Electrochemistry Communications, 2012, 18: 51-54. doi: 10.1016/j.elecom.2012.02.002
Jeong B G, Yoon S M, Choi C H, Kwon K K, Hyun M S, Yi D H, Park H S, Kim M, Kim H J.Performance of an electrochemical COD (chemical oxygen demand) sensor with an electrode-surface grinding unit[J].Journal of Environmental Monitoring, 2007, 9(12): 1352-1357. doi: 10.1039/b713393f
杜宝中,路蕾蕾,唐建红,孙莎,屈敏佳.安培法直接测定水体中COD的方法研究[J].西安理工大学学报,2011,27(1): 69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-XALD201101014.htm Ma C J, Tan F, Zhao H M, Chen S, Quan X.Sensitive amperometric determination of chemical oxygen demand using Ti/Sb-SnO2/PbO2 composite electrode[J].Sensors and Actuators B: Chemical, 2011, 155(1): 114-119. doi: 10.1016/j.snb.2010.11.033
Zheng Q, Zhou B X, Bai J, Li L H, Jin Z J, Zhang J L, Li J H, Liu Y B, Cai W M, Zhu X Y.Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand[J].Advanced Materials, 2008, 20(5): 1044-1049. doi: 10.1002/(ISSN)1521-4095
丁颜丽.流动注射技术结合掺硼金刚石薄膜电极用于COD的快速测定[D].大连: 大连理工大学,2012. Yu H B, Wang H, Quan X, Chen S, Zhang Y B.Amperometric determination of chemical oxygen demand using boron-doped diamond (BDD) sensor[J].Electrochemistry Communications, 2007, 9(9): 2280-2285. doi: 10.1016/j.elecom.2007.06.037
Bogdanowicz R, Czupryniak J, Gnyba M, Ryl J, Ossowski T, Sobaszek M, Darowicki K.Determination of chemical oxygen demand (COD) at boron-doped diamond (BDD) sensor by means of amperometric technique[J].Procedia Engineering, 2012, 47: 1117-1120. doi: 10.1016/j.proeng.2012.09.347
Bogdanowicz R, Czupryniak J, Gnyba M, Ryl J, Ossowski T, Sobaszek M, Darowicki K.Amperometric sensing of chemical oxygen demand at glassy carbon and silicon electrodes modified with boron-doped diamond[J].Sensors and Actuators B: Chemical, 2013, Doi: 10.1016/j.snb.2012.12.007.
Zhang S Q, Li L H, Zhao H J.A portable photo-electrochemical probe for rapid determination of chemical oxygen demand in wastewaters[J].Environmental Science & Technology, 2009, 43(20): 7810-7815.
Kim Y C, Lee K H, Sasaki S, Hashimoto K, Ikebukuro K, Karube I.Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode[J].Analytical Chemistry, 2000, 72(14): 3379-3382. doi: 10.1021/ac9911342
李成芳,余红敏,彭毛,吴辉,宋功武.纳米二氧化钛重铬酸钾协同光催化氧化体系快速测定化学需氧量[J].湖北大学学报(自然科学版),2009,31(1): 55-58. http://www.cnki.com.cn/Article/CJFDTOTAL-HDZK200901013.htm Li C F, Song G W.Photocatalytic degradation of organic pollutants and detection of chemical oxygen demand by fluorescence methods[J].Sensors and Actuators B: Chemical, 2009, 137(2): 432-436. doi: 10.1016/j.snb.2009.01.055
Zhang A Y, Zhou M H, Zhou Q X.A combined photocatalytic determination system for chemical oxygen demand with a highly oxidative reagent[J].Analytica Chimica Acta, 2011, 686: 133-143. doi: 10.1016/j.aca.2010.11.049
Carrillo-Carrion C, Cardenas S, Simonet B M, Valcarcel M.Quantum dots luminescence enhancement due to illumination with UV/Vis light[J].Chemical Communications, 2009, 35: 5214-5226.
Li F B, Li X Z, Kang Y H, Li X J.An innovative Ti/TiO2 mesh photoelectrode for methyl orange photoelectrocatalytic degradation[J].Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2002, 37(4): 623-640. doi: 10.1081/ESE-120003242
田玉华,李新军,郑少健,张玉媛,冯满枝.锰离子非均匀掺杂TiO2薄膜电极光电催化测定COD[J].生态环境, 2008,17(2): 489-494. Yuan S J, Mao R Y, Li Y G, Zhang Q H, Wang H Z.Layer-by-layer assembling TiO2 film from anatase TiO2 sols as the photoelectrochemical sensor for the determin-ation of chemical oxygen demand[J].Electrochimica Acta, 2012, 60: 347-353. doi: 10.1016/j.electacta.2011.11.069
董超平,张嘉凌,李金花,陈红冲,周保学.二氧化钛纳米管阵列光电催化测定地表水化学需氧量[J].分析化学,2010,38(8): 1227-1230. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201008039.htm Zhang S Q, Li L H, Zhao H J, Li G Y.A portable miniature UV-LED-based photoelectrochemical system for determination of chemical oxygen demand in wastewater[J].Sensors and Actuators B: Chemical, 2009, 141(2): 634-640. doi: 10.1016/j.snb.2009.07.019