Simultaneous Determination of Sn, W, Mo, Cu, Pb and Zn in Tin Ores by Inductively Coupled Plasma-Atomic Emission Spectrometry
-
摘要: 锡矿石是难分解的矿物,共生与伴生元素多,其中的锡钨钼在单一盐酸溶液中易沉淀,准确测定锡矿石中的主次量元素一直是分析技术难点。本文以过氧化钠为熔剂,高温熔融样品,在酒石酸-盐酸-双氧水体系中进行酸化,选用该矿种中仅含有少量的钴作为内标,建立了电感耦合等离子体发射光谱同时测定锡矿石中锡钨钼铜铅锌的分析方法。方法线性范围为0.00~40.0 mg/L;方法检出限为锡10 mg/kg,钨30 mg/kg,钼3.3 mg/kg,铜12 mg/kg,铅15 mg/kg,锌40 mg/kg;方法精密度(n=9)小于5.0%,实际样品的测定值与传统化学方法及国家标准方法的测定值吻合较好。本方法采用过氧化钠碱熔锡矿石,溶样彻底,并省去了氢氟酸挥发硅的蒸酸过程,节约了样品处理时间;采用酒石酸-双氧水-盐酸体系溶解熔融物,有利于溶液中的锡钨钼形成稳定的络合物,避免了单纯盐酸体系下产生钨酸、钼酸和锡酸沉淀导致测定结果偏低的问题。
-
关键词:
- 锡矿石 /
- 主次量元素 /
- 过氧化钠碱熔 /
- 电感耦合等离子体发射光谱法
Abstract: The work involved to accurately determine the major and minor elements in tin ore, which contains large quantities of paragenetic and associated elements is extremely challenging. It is difficult to decomposed tin ore and the Sn, W and Mo are easily precipitated in HCl solution. A highly efficient analytic method which is capable of simultaneously determining Sn, W and Mo in tin ores by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) is reported in this paper. The ore samples are melted with Na2O2 and acidized by mixed tartaric acid, hydrochloric acid and hydrogen peroxide. Co is used as the internal standard element. The linear range of this present method is 0.00-40.0 mg/L, and the detection limits are 10 mg/kg for Sn, 30 mg/kg for W, 3.3 mg/kg for Mo, 12 mg/kg for Cu, 15 mg/kg for Pb and 40 mg/kg for Zn, respectively. The relative standard deviation (RSD,n=9) is less than 5.0%. All results of the National Standard Reference Materials determined by this method are consistent with the certified values. The samples can reach complete melting by using Na2O2 and the step to evaporate the HF acid to remove Si can be avoided, which results in reducing the processing time of samples. The application of mixed tartaric acid-hydrochloric acid-hydrogen peroxide system assists Sn, W and Mo to form stable complexations, which solves the problem of lower determining results due to forming precipitations of tungstenic acid, molybdic acid and stannic acid in HCl solution. -
胶东是中国最重要的金矿集区,是一个主要由前寒武纪基底岩石和超高压变质岩块组成、中生代构造-岩浆作用发育的内生热液金矿成矿集中区,其金矿床形成时代和产出背景在全球造山型金矿中独一无二。山东莱州-招远金矿区是胶东金矿集区的主要组成部分,拥有玲珑、焦家等世界级金矿。其中,焦家金矿带是莱州-招远金矿区最重要的金矿带之一。该带内已发现了3个特大型金矿床及一批大中型金矿床,累计探明金储量超过500吨。焦家断裂带在寺庄金矿区内处于与成矿关系十分密切的玲珑黑云母花岗岩内及胶东群黑云斜长角闪片麻岩的接触带上,产状复杂且变化较大[1]。由于断裂带产状的变化和地质背景的复杂化,焦家金矿控矿构造系统也随之出现了明显的多样性[2]。由于该区在采矿方面存在的科学疑难问题多、找矿难度大、隐伏矿为主、物化探异常干扰显著等原因,前期对该区矿石的工艺矿物学研究以常规为主,李德亭等[3-4]对焦家金矿深部矿石矿物种类、载金矿物种类及金赋存状态等进行了初步研究,研究表明矿物主要有黄铁矿、黄铜矿、方铅矿等硫化矿和石英、绢云母、钾长石等脉石矿物;黄铁矿、黄铜矿为主要载金矿物,金常以裂隙方式充填于黄铁矿、黄铜矿等硫化矿中。现有成果对金赋存状态特征、金矿物种类、不同大小金粒的成色等研究涉及很少,且缺乏先进测试手段进行综合表征。
焦家金矿的主矿区是原矿主要供应区,该矿区供应给焦家金矿的矿量占到总供应量的70%。本文在主矿区采集深采矿石,采用偏光反光两用显微镜、扫描电镜[5-10]、X射线衍射仪[11-13]以及能谱分析[14-16]研究工艺矿物学特征,查清载金矿物种类及含量,进而分析金在主要载金矿物中的赋存状态及特征,同时研究金的形状、金粒度大小及分布特点,对不同粒度的金成色、金矿物类型等进行系统分析,研究成果丰富了焦家金矿矿物学研究的内容,为后续选冶工艺提供了调控依据和重要信息。
1. 实验部分
1.1 仪器及工作条件
LEICA-DMLP高级研究型偏光反光两用显微镜(德国LEICA公司):主要附件LEICA MPS30照相系统,荧光附件。
LINKAM热台THMSE600(-196~600℃):配备工艺矿物学研究的高级软件LINKSYS。
LEICA-MZ6高级研究型体视显微镜(德国LEICA公司):该设备自带全套摄像、自动照相、颗粒分析软件。工作条件为自动对焦;固定倍率切换9段;放大倍率15~100倍;视野范围3.3~41.2 mm;工作距离100 mm;灯源LED环形灯;物镜0.63~4 X。
SSX-550型扫描电镜及其附带的DX-4能谱仪(日产岛津公司):工作条件为二次电子图像分辨率3.5 nm,放大倍率20~30000倍。
Empyrean型X射线衍射仪(XRD,荷兰PANALYTICALB.V公司):配合显微镜分析鉴定矿物种类,工作条件为功率3 kW,测角仪重现性0.0001°,测角仪类型T-2T。
1.2 实验方法
对矿区井下300 m、400 m、500 m处合计取样150 kg,选取有代表性的矿样按要求制作成120块抛光片和30块矿石薄片。采用不同仪器进行观察研究。
2. 金矿主矿区主要矿物组成与金赋存形态
2.1 载金矿物的种类
通过光片研究并结合化学分析及化学物相分析等方法,查明焦家金矿主矿区矿物种类主要为硫化矿,以黄铁矿、黄铜矿为主,还有少量方铅矿、闪锌矿、磁黄铁矿、黝铜矿、辉铋矿、辉钼矿。金属氧化物主要为褐铁矿及少量磁铁矿等。脉石有石英、长石、绢云母、方解石和绿泥石类矿物等;还有极小量的菱铁矿、石榴石、金红石、锆石、榍石、磷灰石等矿物。
采用高级研究型偏光反光两用显微镜对120块抛光片研究,发现载金矿物主要为硫化物,如黄铁矿、黄铜矿、闪锌矿和方铅矿;载金脉石矿物主要是石英和长石。对30块薄片进行研究,统计发现硫化物中金粒有152粒,脉石矿物中金粒22颗。硫化物中金粒占87.37%,脉石中金粒占12.63%。金在各矿物中赋存含量如图 1所示,黄铁矿、黄铜矿是重要载金矿物。66.25%的金赋存在黄铁矿中,19.29%的金赋存在黄铜矿中,11.52%的金赋存在石英中,其他矿物及脉石中含金量很少。
黄铁矿是最重要的载金矿物。在矿石中呈自形粒状、半自形粒状和它形粒状,集合体呈致密块状、粒状或结核状、脉状等。浅黄(铜黄)色,条痕绿黑色,强金属光泽,不透明,无解理,参差状断口,在地表条件下易风化为褐铁矿。黄铁矿与黄铜矿密切共生,成矿期多见黄铁矿包裹黄铜矿。黄铁矿的裂隙往往被黄铜矿充填,表明时间上的同期性。黄铁矿的嵌布粒度最小为0.001 mm,最大为3.9 mm,一般分布于0.050~0.10 mm范围内。黄铜矿也是重要的载金矿物。黄铜矿呈现黄铜色,表面常由于氧化产生斑驳的蓝、紫、褐色的锖色,强金属光泽。黄铜矿的嵌布粒度粗细不均匀。黄铜矿呈它形粒状,以细粒、微细粒状嵌布在脉石中,黄铜矿的嵌布粒度最小为0.001 mm,最大为1.21 mm,一般分布于0.030~0.080 mm范围内。
2.2 金赋存状态分析
对主要载金矿物黄铁矿、黄铜矿、石英和长石等中的金赋存状态进行分析。
2.2.1 裂隙金
通过对120块磨制光片进行高级研究型偏光反光两用显微镜及扫描电镜观察,查明焦家金矿中金的赋存状态主要是裂隙金、包裹金和晶隙金。其中裂隙金占金矿物总量64.82%。裂隙金(图 2)成群网状分布于硫化物裂隙或硫化物和石英裂隙中。对图 2(a)中的裂隙金(1)、(2)点进行能谱分析(图 3)。从图 3(a)可知,Au的M线在2.120 keV处出现,Ag的L线在2.992 keV处出现,Fe的K线在6.405 keV处出现,可知裂隙金含有少量的Fe,另外还发现部分裂隙金中含有Cr、Cu等,裂隙金银矿物成分比较复杂;由图 3(b)可知,石英裂隙中的金不含杂质元素,表明在热液脉Au-SiO2封闭体系中不含其他元素,二氧化硅溶胶聚集形成凝胶,金溶胶可在凝胶内呈浸染状固定下来,后来随着凝胶结晶脱水作用,使金以微粒分散或溶解状态作进一步的迁移,在二氧化硅冷却形成石英期间,被圈闭的金溶胶可以发生扩散作用和聚集作用,结果形成颗粒裂隙金。有些裂隙金含有Fe、Cr、Cu等,有些又不含任何微量元素,反映成矿热液是多期次的,金银矿物结晶也是多期次的。
2.2.2 包裹金
通过120块磨制光片进行电子扫描显微镜观察,金赋存状态中包裹金占金矿物总量19.29%。用电子扫描显微镜研究金颗粒的生长和金成色情况。光片显示小颗粒金分布广且多。图 4是三颗包裹金的扫面电镜图片,较大颗粒(图 4中1处)被黄铜矿包裹,金颗粒中含有孔洞,这些孔洞结构有利于溶液渗透,为氰化溶金提供了良好的条件。图 4中2处是被黄铁矿包裹的小粒金,颗粒粒度为14 μm,小部分边界与石英接触;图 4中3处是被黄铁矿包裹的小粒金,颗粒粒度为12 μm,对该晶体进行了Au、Ag和Cu的线扫描(图 5)。测定Au、Ag和Cu相对的含量。从图 5可知,金边部成色低,银略高,也有微量铜。中心金高,且有微量铜。
2.2.3 晶隙金
晶隙金类型比较多,占金矿物总量的15.89%。对磨制光片进行电子扫描显微镜观察,晶隙金经常出现在黄铁矿/黄铜矿晶隙(占52.12%)、黄铁矿/石英晶隙(占28.45%)、黄铜矿/石英晶隙(占13.20%)及黄铜矿/斑铜矿晶隙(占6.23%)。图 6是黄铁矿/石英晶隙间的金矿物,晶隙金成群分布。能谱分析可知:金矿物晶体中心(图 6中1处):含Ag 17.544%,Au 82.456%,属于自然金;金矿物晶体边部(图 6中2处):含Ag 13.453%,Au 86.547%,属于自然金。小颗粒金矿物(8 μm,图 6中3处)赋存于黄铁矿和石英晶隙间。能谱分析表明:小颗粒金矿物含Ag 15.949%,Au 82.547%,Fe 1.504%。能谱测试粒度为3~8 μm的7颗小金颗粒,表明小粒金矿物成色高,为830.62‰~898.95‰,属于自然金。说明焦家金矿成矿期间的溶液十分丰富,在高温时是一个相,随着温度降低,金先沉淀,而银后沉淀,固溶体分离,而随着结晶到后期,形成尾部和尾梢,金的成分发生变化,形成的金颗粒中银含量幅度变化较大。
研究结果表明焦家金矿金赋存状态主要是裂隙金、包裹金和晶隙金。裂隙金最多占金矿物总量64.82%,其次是包裹金和晶隙金。裂隙金矿物成分复杂,有时含Fe、Cr、Cu等,包裹金体内局部有孔洞,金边部成色低,晶隙金类型丰富,形状多变,多属自然金。
3. 主矿区金矿物形态及种类
3.1 金粒度
用高级研究型偏光反光两用显微镜观察,硫化物黄铁矿、黄铜矿中金颗粒较大,连群分布占多数,孤立分布较少[17-18]。脉石中金颗粒细小,孤立分布占绝大多数,极少见连群分布。金矿物粒度范围较大,大颗粒可达到90~110 μm,小颗粒只有2~3 μm。其中0.104~0.147 mm的金颗粒占1.85%,0.074~0.104 mm金颗粒占4.25%,0.043~0.074 mm金颗粒占16.24%,0.037~0.043 mm金颗粒占30.58%,小于0.037 mm金颗粒占大多数,占47.08%。不同载金矿物中金粒的粒度含量见表 1。从表 1可知细粒级载金矿物中的金含量较多,如小于0.037 mm的石英中金相对含量达56.01%,粗粒中金含量较少,如黄铁矿中0.104~0.147mm的金相对含量只有3.67%。
表 1 载金矿物中金不同粒度的含量Table 1. The gold percentage characteristics in different minerals载金
矿物不同金粒度的相对含量w(Au)/% 0.104~0.147
mm0.074~0.104
mm0.043~0.074
mm0.037~0.043
mm<0.037
mm合计 黄铁矿 3.67 10.38 27.18 40.77 18.00 - 黄铜矿 0 3.34 15.01 30.23 51.42 - 石英 0.91 2.00 10.89 30.19 56.01 - 其他 0 0 7.49 28.50 64.01 - 含量 1.85 4.25 16.24 30.58 47.08 100 3.2 金形状
用高级研究型偏光反光两用显微镜和高级研究型体视显微镜观察,焦家金矿主矿区金矿物形状主要有球形(占40.25%)、三角形(占9.28%)、矩形(占6.91%)、条形(占12.14%)、块形(占8.24%)、钩形(占11.85%)、不规则形(占11.33%)金等。金的典型形状见图 7。
3.3 金矿物种类
用高级研究型偏光反光两用显微镜观察,结合XRD衍射仪测试结果,发现金矿物种类较丰富,有自然金、银金矿、自然银、金铜矿、含铁自然银、螺硫银矿、金银碲化物等。金矿物类型与含量见表 2。其中金银系列矿物占87.55%,金铜矿占6.58%,螺硫银矿占3.31%,碲化金矿占2.56%。金银矿物成色统计见表 3。从表 3可知,金银矿物平均成色较高,其中自然金达950.21‰,银金矿达738.92‰,金银系列矿物加权成色达到728.88‰。银金矿在金银矿系列含量中的比例(分配率)占到79.70%,是最重要的金矿物,其次为自然金,分配率占14.68%。
表 2 金矿物类型与含量Table 2. The gold mineral types and their contents金银矿物系列 矿物名称 w/% 金银系列 自然金 12.85 银金矿 69.78 自然银 3.67 含铁自然银 1.25 小计 87.55 金铜系列 金铜矿 6.58 硫化物系列 螺硫银矿 3.31 碲化物系列 碲化金银 2.56 合计 - 100.00 表 3 金银矿物成色和含量Table 3. The gold percentages and contents of gold-silver minerals矿物名称 平均成色/‰ w/% 分配率/% 加权成色/‰ 自然金 950.21 12.85 14.68 728.88 银金矿 738.92 69.78 79.70 自然银 11.37 3.67 4.19 含铁自然银 0 1.25 1.43 0 合计 - 87.55 100.00 - 用高级研究型偏光反光两用显微镜观察,结合能谱分析测定不同粒度金矿物成色。由表 4的分析结果可知,60 μm和32 μm的大颗粒金成色分别为543.75‰和549.38‰,14 μm和12 μm的小颗粒金成色分别是859.72‰和856.15‰,说明大粒金成色低,为银金矿;小颗粒金与大颗粒金相比成色明显较高,小颗粒金大都为自然金。
表 4 金矿物不同晶体颗粒的成色Table 4. The gold percentages of different size crystal particles金颗粒粒度/μm w(Ag)/‰ w(Au)/‰ 金含量水平 定名 60 456.25 543.75 金低 银金矿 32 450.62 549.38 金低 银金矿 14 140.28 859.72 金高 自然金 12 143.85 856.15 金高 自然金 4. 结语
以往研究成果对焦家金矿深部矿石的矿物种类、载金矿物种类及金赋存状态等进行工艺矿物学常规研究,查明主要载金矿石是黄铁矿、黄铜矿等硫化矿及石英、长石等脉石矿物;金多数以裂隙金方式存在,少数以包裹金、晶隙金存在。随着井下纵深采矿的进一步开拓,现有工艺矿物学结论明显难以满足后续选冶技术的调控要求。本文采用偏光反光两用显微镜、扫描电镜、X射线衍射仪及能谱分析等先进手段,综合分析了焦家金矿主矿区的金矿石样品中金的不同赋存状态、嵌布粒度特征,金的形状、种类、分布状态,不同粒度金的成色特征等。研究结果显示主要载金矿物是黄铁矿、黄铜矿、闪锌矿、方铅矿、石英和长石;金赋存状态有裂隙金、包裹金和晶隙金;金矿物形状有球形、三角形等,其中球形颗粒最多;金矿物粒度范围较大,大金颗粒可达到90~110 μm,小金颗粒只有2~3 μm;金矿物种类丰富,有自然金、银金矿、自然银、金铜矿等;金银矿物的成色普遍较高,赋存于硫化物中的大颗粒金,成色较低,小粒金成色较高。
本文利用不同先进手段表征互相印证,提高了研究结论的可靠性与准确性,丰富了焦家金矿内生热液金矿成矿区含金黄铁矿石英脉型金矿工艺矿物学的研究内容,为后续选冶作业提供了调控依据和重要矿物信息。由于缺乏对主要含金脉石矿物(石英、长石等)构造特征,金在其中赋存状态、嵌布关系等方面的研究,应进一步对其进行系统分析,以为提高后续选矿作业脉石中金的回收效果提供重要的分析依据。
-
表 1 碱熔与混合酸溶样测定结果的比较
Table 1 Comparison of analytical results of elements using Na2O2 fusion and mixed acid dissolution
标准物质
编号元素 w/% 标准值 碱熔测定值(本法) 酸溶测定值 GBW 07281
(锡矿石)Sn 4.47 4.46 0.047 W 0.068 0.067 0.065 Mo 0.027 0.028 0.028 Cu 0.26 0.27 0.26 Pb 2.72 2.75 2.74 Zn 0.74 0.71 0.74 GBW 07282
(锡矿石)Sn 1.27 1.26 0.055 W 0.015 0.013 0.016 Mo 0.033 0.034 0.034 Cu 0.32 0.31 0.32 Pb 2.82 2.79 2.85 Zn 0.91 0.93 0.92 GBW 07241
(钨矿石)Sn 0.17 0.17 0.089 W 0.22 0.21 0.21 Mo 0.098 0.095 0.094 Cu 0.096 0.095 0.098 Pb 0.0081 0.0079 0.0085 Zn 0.103 0.10 0.112 表 2 过氧化钠的用量
Table 2 Proportion of Na2O2 flux
样品名称 m熔剂/m样品 w(Sn)/% 测定值 参考值 YSDZ 92-05
(锡矿石)1: 1 1.18 1.76 2:1 1.32 4:1 1.69 6:1 1.78 8:1 1.80 10:1 1.78 表 3 放置时间与加入酒石酸对Sn和W的影响
Table 3 Effect of laying time and adding tartaric acid on Sn and W determination
标准物质
名称放置
时间w(Sn)/% w(W)/% 未加
酒石酸加入
酒石酸标准值 未加
酒石酸加入
酒石酸标准值 GBW 07281
(锡矿石)第1天 4.40 4.46 4.47 0.061 0.067 0.068 第2天 4.38 4.46 4.47 0.059 0.067 0.068 第3天 4.34 4.45 4.47 0.057 0.067 0.068 第4天 4.31 4.44 4.47 0.056 0.065 0.068 第5天 4.28 4.44 4.47 0.057 0.065 0.068 第6天 4.17 4.43 4.47 0.055 0.066 0.068 表 4 酒石酸浓度的影响
Table 4 Effect of tartaric acid concentration
酒石酸浓度
ρ/(g·L-1)ρ(Cu)/(mg·L-1) ρ(Pb)/(mg·L-1) ρ(Zn)/(mg·L-1) ρ(W)/(mg·L-1) ρ(Mo)/(mg·L-1) ρ(Sn)/(mg·L-1) 第1天 第4天 第1天 第4天 第1天 第4天 第1天 第4天 第1天 第4天 第1天 第4天 0 20.25 20.19 20.25 20.00 20.63 20.37 17.38 16.80 20.35 19.18 19.71 18.35 0.25 20.23 20.24 20.29 19.97 20.75 20.24 19.22 17.28 20.74 19.38 20.10 19.20 0.50 20.18 20.20 20.44 20.39 20.58 20.36 19.65 18.07 20.57 19.40 20.42 19.34 0.75 20.16 20.09 20.18 19.95 20.31 20.11 20.19 18.20 20.40 20.04 20.21 20.04 1.00 20.32 20.03 20.02 20.11 20.56 20.16 20.18 20.54 20.68 20.17 20.62 20.36 2.00 19.98 20.25 19.85 20.17 20.32 20.09 20.31 20.44 20.52 20.07 20.47 20.28 3.00 20.03 20.23 19.91 20.18 20.21 20.03 20.21 20.53 20.52 19.93 20.61 20.01 4.00 20.39 20.21 20.19 20.27 20.53 20.11 20.24 19.65 20.68 20.22 20.53 20.49 表 5 方法准确度与精密度
Table 5 Accuracy and precision tests of the method
标准物质
编号元素 w/% 相对误差
RE/%RSD/% 标准值 本法测定值 GBW 07238
(钼矿石)Sn 0.0087 0.0090 3.45 4.5 W 0.36 0.367 1.94 2.9 Mo 1.51 1.59 5.30 1.1 GBW 07239
(钼矿石)Sn 0.0033 0.0035 6.06 4.9 W 0.10 0.105 5.00 2.3 Mo 0.11 0.111 0.91 3.0 GBW 07240
(钨矿石)Sn 0.14 0.146 4.29 3.1 W 0.015 0.012 -20.0 4.4 GBW 07241
(钨矿石)Sn 0.17 0.173 1.76 0.7 W 0.22 0.205 -6.82 2.6 Mo 0.098 0.095 -3.06 2.9 GBW 07281
(锡矿石)Sn 4.47 4.46 -0.22 0.3 W 0.068 0.067 -1.47 1.4 Mo 0.027 0.028 3.70 3.7 Cu 0.26 0.268 3.07 3.6 Pb 2.72 2.75 1.10 0.8 Zn 0.74 0.710 -4.05 3.8 GBW 07282
(锡矿石)Sn 1.27 1.26 -0.79 1.1 W 0.015 0.013 -13.3 4.7 Mo 0.033 0.032 -3.03 3.7 Cu 0.32 0.312 -2.50 3.2 Pb 2.82 2.79 -1.06 0.9 Zn 0.91 0.925 1.65 2.3 GBW(E)070078
(铅锌矿石)Cu 0.10 0.11 10.0 3.2 Pb 2.93 2.87 -2.05 1.5 Zn 0.51 0.53 3.92 1.1 YSDZ 92-04
(锡矿石)Sn 0.63 0.642 1.90 4.9 YSDZ 92-05
(锡矿石)Sn 1.76 1.76 0 2.6 中南79-7A
(钨矿石)Sn 0.0072 0.0070 -2.78 4.9 WO3 0.48 0.468 -2.50 1.0 Mo 0.008 0.0075 -6.25 4.3 表 6 方法比对
Table 6 Comparison of analytical results with this method and traditional method
标准物质
编号元素 w/% 标准值 本法测定值 传统分析方法 GBW 07238
(钼矿石)Sn 0.0087 0.0090 < 0.02 W 0.36 0.367 0.351 Mo 1.51 1.59 1.45 GBW 07241
(钨矿石)Sn 0.17 0.173 0.173 W 0.22 0.205 0.213 Mo 0.098 0.095 0.089 GBW 07281
(锡矿石)Sn 4.47 4.46 4.35 W 0.068 0.067 0.066 Mo 0.027 0.028 0.026 GBW 07282
(锡矿石)Sn 1.27 1.26 1.20 W 0.015 0.013 0.014 Mo 0.033 0.034 0.030 GBW(E) 070078
(铅锌矿石)Cu 0.10 0.11 0.11 Pb 2.93 2.87 2.88 Zn 0.51 0.53 0.52 YSDZ 92-04
(锡矿石)Sn 0.63 0.642 0.646 YSDZ 92-05
(锡矿石)Sn 1.76 1.76 1.42 -
崔荣国,刘树臣,王淑玲,吴初国.我国重要优势矿产资源国际竞争力研究[J].中国矿业,2009,18(10): 8-11. doi: 10.3969/j.issn.1004-4051.2009.10.003 黄仲权.云南锡矿业现状及发展对策[J].矿产保护与利用,1992(6): 16-20. http://www.cnki.com.cn/Article/CJFDTOTAL-KCBH199206006.htm 刘光亮,秦德先,张学书,范柱国.云南省锡矿资源与可持续发展[J].安全与环境工程,2004,11(4): 36-39. http://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ200404009.htm 邵厥年,陶维屏.矿产资源工业要求手册[M].北京:地质出版社,2010:169-174. GB/T 1819-2004,锡精矿化学分析方法[S]. GB/T 15924-1995,锡矿石化学分析方法[S]. 岩石矿物分析编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社,2011: 185-208. 岩石矿物分析编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社,2011: 321-325. 岩石矿物分析编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社,2011: 338-342. 赵建为,李树昌.辉钼矿中微量锡的分离与测定[J].岩矿测试,2000,19(3): 173-176. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200003002.htm 盛献臻,张汉萍,李展强,李海萍,何光涛.电感耦合等离子体发射光谱法同时测定地质样品中次量钨锡钼[J].岩矿测试,2010,29(4): 383-386. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201004015.htm 曾慧芳,戢朝玉,陈善科.ICP-AES法分析锡石单矿物的研究[J].岩矿测试,1988,7(3): 175-179. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS198803003.htm 岩石矿物分析编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社,2011: 297-299. 张志龙.有色地质分析规程(下册)[M].北京:中国有色金属工业总公司地质局,1992:275-277. GB/T 14352.1-2010,钨矿石、钼矿石化学分析方法;钨量测定[S]. GB/T 14352.2-2010,钨矿石、钼矿石化学分析方法;钼量测定[S].
计量
- 文章访问数: 1790
- HTML全文浏览量: 306
- PDF下载量: 39