Abstract:
The powder pellet compression method for X-ray Fluorescence analysis is an ideal environmentally friendly sample preparation technique with the added advantages of being simple and having high efficiency. However, due to the impact of particle effects and mineral effects, its measurement error is within about 5%, which hinders the application of this technology in the detection of major elements. Powder pellet technology is mainly used in the determination of trace elements as well as the analysis field with less precision. In this study, the stream sediment and soil reference material were crushed to an average particle size about 4-5 μm within a few minutes by ultra-high-speed planetary pressure prototype. The method of ultra-fine pressed powder pellet sample to determine SiO
2, Al
2O
3, Fe
2O
3, CaO, MgO and other major elements was established by using X-ray Fluorescence Spectrometry. Measurement precision (RSD) of the method for most of the major elements is less than 2%, and detection limits are 0.003%-0.021%, which is an improvement on the melting method detection limit (0.006%-0.081%), especially for small atomic sodium with four times improvement on the detection limit. The development of this ultra-fine powder compression method for stream sediment and soil, minimizes the impact of the particle size effect by crushing the sample into several microns. X-ray Diffraction analysis demonstrates that the mineral composition of river sediments and soil preparation is dominated by quartz. Therefore, the mineral composition is simple with negligible mineral effect. Measured data with added LOI normalized processing shows that normalized measurements for each element is consistent with the standard value. The accuracy of the method is a significant over the conventional pellet sampling method.