Data Normalization and Quality Control of Light Element Stable Isotope Analyses by Means of Continuous Flow Isotope Ratio Mass Spectrometry
-
摘要: 同位素比值质谱分析方法是准确测量各种同位素相对丰度的标准方法。连续流同位素质谱的出现不仅提高运行效率,也降低了样品用量并提高灵敏度。但是,要使这种方法获得更好准确度和精度的同位素数据,并做到所获得数据可与其他实验室结果进行类比,从而得到可靠的同位素数据,这就需要好的分析策略和运行方案,还需要对仪器日常性能和数据质量进行严密的监视管控,而且还取决于原始数据如何进一步标准化到国际同位素尺度上。因此,同位素比值质谱结合元素分析仪(或热转换元素分析仪)连续流方法要实现可靠的稳定同位素分析需要:①设备安装和环境控制、测试准备、样品制备和称量、标准物质选择及序列等规范化质量控制措施;②严格校准仪器系统(包括调节灵敏度和线性,背景值监测,稳定性检测,H3+系数校正等);③可靠的数据处理。目前不同的实验室,采用标准物质来标定系统、对测量的同位素数据进行标准化,以及利用控制曲线来监测系统稳定性并对不确定度的计算,这些策略往往都不同。因此,统一的数据处理方案是被高度期待的。目前最好的执行方案是基于线性回归的两点或多点标准化方法。如果每一批样品中测量两个不同的标准物质四次,或者测量四个标准物质两次,那么不确定度会降低50%。当前同位素比值质谱能够测定同位素比值的不确定度一般要好于0.02‰。但是,标准物质的使用既要考虑样品的性质,同时要涵盖它们未知同位素组成的范围,尤其氢同位素在现阶段缺乏标准物质和测量的仪器精度较差(比碳、氮、氧等要低一个数量级)的情况下,这显然是稳定同位素分析者的一个重大挑战。本文概括了同位素比值质谱结合元素分析仪(或热转换元素分析仪)的基本操作原理和分析实践,将数据处理运用到同位素比值分析之中,获得连续流同位素比值质谱分析结果的合理准确度和精度。Abstract: The technique of Isotope Ratio Mass Spectrometry(IRMS)is the gold standard of accurate and precise analyses for all sorts of isotopic relative abundance amongst analytical techniques. In many fields, the extensive application of continuous flow IRMS not only improves effective runs, but also reduces sample size as well as enhancing sensitivity. However, for the purpose of obtaining more accurate results, which can be compared between different laboratories, it is imperative to have good strategies and protocols in the run, monitoring of routine analytical performance and quality. In addition, detailed calibration for the raw data is highly desirable. In order to obtain reliable data by using IRMS coupled with EA (TC/EA), requirements need to be met as follows: (1) instrument set-up and environmental control, measurement preparation, sample preparation and weight, reference materials utilization and selection, sequence etc; (2) strictly calibrated systems including tuning sensitivity and linearity, monitoring the background, stability detection, H3+ correction; (3) reliable data reduction. The strategies of calibrating, normalization and control linear by using reference materials are discriminated in different labs. So it is expected to have a unified data-processing programme. Two-point normalization (or multi-point normalization) is the best executive program at present. If two different reference materials are used four times for normalization, or four different reference materials are used two times for each batch of samples, this may reduce the normalization uncertainty by 50%. The modern IRMS is capable of measuring natural isotope ratio variations with an uncertainty better than 0.02. Nevertheless, it is a challenge to the use of reference materials with the cover range of unknown isotopes, especially for H isotope absence of the standard materials and poor precision (an order of magnitude lower compared with carbon, nitrogen, oxygen isotope). This paper aims to highlight general principles of IRMS coupled to an EA or a TC/EA and the practices of analytical application of stable isotope ratio measurement. The knowledge on the protocols of continuous flow IRMS analyses is necessary for the acquisition of reasonable accuracy and precision for stable isotope composition.
-
盐酸阿考替胺是由日本Zeria公司研制的一种新型Ml、M2受体拮抗剂,临床上用于提高胃的蠕动,以治疗功能性消化不良[1],2013年2月在日本批准上市。与一般促胃肠动力药(伊托必利、莫沙比利)不同,盐酸阿考替胺能够通过促进肠内胆碱神经末梢乙酰胆碱的释放来提高胃肠蠕动[2, 3, 4, 5, 6, 7, 8],为第一个胃肠蠕动改善药物。盐酸阿考替胺三水合物的化学名为N-{2-[1-甲基乙基]乙基}-2-[(2-羟基-4, 5-二甲氧基苯甲酰基)氨基]噻唑-4-甲酰胺盐酸盐三水合物(结构图见图 1)。目前,促胃动力药占消化道用药的市场份额呈现出快速增长的趋势,因此,盐酸阿考替胺三水合物有着巨大的市场前景。本世纪初,国外已有盐酸阿考替胺水合物合成方法的报道[9]。近年来,国内外相继出现多篇关于盐酸阿考替胺以及盐酸阿考替胺三水合物合成方法的专利[10, 11, 12, 13, 14, 15]。对于一个产品,分析测试不仅可以对产品的质量进行检验,还对产品研发和生产起着重要的指导作用[16],然而对盐酸阿考替胺三水合物分析方法的公开报道甚少,目前只有Furuta等[17]报道了固相萃取提取狗血中盐酸阿考替胺三水合物,采用高效液相色谱(HPLC)以甲醇-磷酸二氢钾-辛烷磺酸钠为流动相进行测定的方法。该方法使用的离子对试剂辛烷磺酸钠,在流动相中使用时,系统前平衡和后冲洗均需较长时间,因而整个分析过程比较耗时。此外,离子对试剂对pH值比较敏感,配制流动相时要求精确度较高,直接影响了实验的重复性和重现性。
HPLC因其快速、准确、测试条件温和等优点,在有机化合物分离、分析中发挥着重要作用。本文拟建立一种更为简单的HPLC方法,通过改变流动相组成(包括流动相种类、有机相比例、缓冲盐浓度)和检测波长来优化色谱条件,实现对盐酸阿考替胺三水合物快速、准确的测定,为盐酸阿考替胺三水合物的合成和提纯工艺质量控制提供可靠的依据。
1. 实验部分
1.1 仪器与主要试剂
Agilent 1200高效液相色谱仪(美国Agilent公司),配有四元泵(包含真空脱气机),自动进样器,智能型柱温箱,二极管阵列检测器(DAD)。
甲醇、乙腈均为HPLC级,购自Honeywell公司(Honeywell Burdick & Jackson, Muskegon, MI, USA);乙酸铵为分析纯(购自南京化学试剂有限公司,南京);冰乙酸为分析纯(购自国药集团化学试剂有限公司,上海),氨水为分析纯(购自南京化学试剂有限公司,南京);纯净水(购自杭州娃哈哈集团有限公司,杭州)。
盐酸阿考替胺三水合物对照品(≥99.5%)和粗品均购自南京复兴生物有限公司。
1.2 色谱条件
色谱柱:Ultimate XB-C18柱(4.6 mm × 150 mm, 5 μm)购自月旭材料科技(上海)有限公司;柱温30℃;流动相:甲醇-20 mmol/L乙酸铵水溶液= 45:55(V/V);流速1.0 mL/min;进样量10 μL;检测波长280 nm。
1.3 对照溶液及样品溶液的配制
精确称取盐酸阿考替胺三水合物对照品25 mg于25 mL容量瓶中,以流动相溶解,并定容,配制成1 mg/mL的储备溶液,分别用流动相稀释成0.5、0.4、0.2、0.1、0.05、0.02、0.01、0.005、0.002、0.001、0.0006、0.0005和0.0001 mg/mL的系列标准溶液,待用。
精确称取盐酸阿考替胺三水合物粗品10 mg于25 mL容量瓶中,以流动相溶解并定容。
2. 结果与讨论
2.1 流动相种类的选择
分别用甲醇-水、乙腈-水、甲醇-乙酸铵水溶液、乙腈-乙酸铵水溶液作为流动相。以甲醇-水和乙腈-水分别作为流动相时,盐酸阿考替胺三水合物峰形展宽严重,而以甲醇-乙酸铵水溶液和乙腈-乙酸铵水溶液作为流动相时,样品的保留时间合适且峰形较好,这是由于盐酸阿考替胺三水合物为两性化合物,必须在一定的pH缓冲环境下才能得到好的峰形。考虑甲醇的毒性较乙腈低,且价格较便宜,故选择甲醇-乙酸铵水溶液作为流动相。
2.2 有机调节剂比例的选择
固定其他色谱条件不变,通过改变流动相中甲醇的比例优化盐酸阿考替胺三水合物的分离(见图 2)。从图 2中可以看出,55%甲醇时,杂质1、2重叠在一起并与主峰部分重叠;50%甲醇时,杂质1、2分离虽有改善,杂质2与主峰依然没有完全分离。随着甲醇比例的降低,主峰与杂质峰均得到良好分离,但当甲醇比例下降至40%时,杂质4在50 min时还没有完全出峰;而当甲醇比例降至35%时,50 min内杂质3和4都未出峰。考虑到主峰与杂质峰的分离情况以及合适的分析时间,甲醇比例选择45%为最佳有机调节剂比例。该条件下,盐酸阿考替胺三水合物出峰时间为8 min,总分析时间为23 min,优于文献[17]中报道方法。
2.3 缓冲溶液pH的选择
保持乙酸铵浓度为20 mmol/L不变,用冰乙酸或氨水分别调节其pH值在5.5~7.5之间。考察流动相pH对保留及峰形的影响。结果表明,pH改变对保留时间影响不大,只会影响盐酸阿考替胺三水合物的峰形。当pH在6.5~7.0之间时主峰峰形对称性均良好,本实验选择缓冲溶液的pH为6.8。
2.4 缓冲盐浓度的选择
保持其他条件不变,分别配制10、15、20、30、40、50 mmol/L的乙酸铵缓冲溶液(pH 6.8) 进行样品测定,分析结果显示,当缓冲盐浓度小于20 mmol/L时,盐酸阿考替胺三水合物保留不稳定,当缓冲盐浓度在20~50 mmol/L之间时,峰形良好,保留稳定且差异不大,考虑高浓度缓冲盐对色谱柱可能的损伤,故选择缓冲盐浓度为20 mmol/L。
2.5 检测波长的选择
用二极管阵列检测器在210~400 nm波长下进行扫描,盐酸阿考替胺三水合物的紫外特征吸收波长为220 nm、280 nm和355 nm(图 3),其中,220 nm为末端吸收,甲醇和乙酸铵在此波长下会有较强的背景吸收,而280 nm比355 nm吸收要强,因此选择280 nm为检测波长。
2.6 标准曲线与方法检出限
以峰面积(A, mμV·s)对标准溶液的质量浓度(ρ, mg/mL)进行线性回归,在0.0006~1.0 mg/mL浓度范围内,盐酸阿考替胺三水合物线性良好,线性回归方程为Y=34.57+17083.72X,相关系数r2=0.9998。其中对浓度为0.002 mg/mL的标准溶液重复进样5次,盐酸阿考替胺三水合物峰面积相对标准偏差(RSD)为0.14%。在3倍信噪比(S/N=3) 时,测得方法的最低检出限(LOD)为0.0002 mg/mL,10倍信噪比(S/N=10) 时,测得方法的定量限(LOQ)为0.0006 mg/mL。
3. 样品分析
精确称取盐酸阿考替胺三水合物粗品10 mg于25 mL容量瓶中,以流动相溶解并定容,连续配制五份,每份样品重复进样两次并用外标法进行日内含量测定。以同样方法每天配制一份盐酸阿考替胺三水合物粗品溶液,连续配制5天,进行日间含量测定,测定结果见表 1。日间、日内含量在91.31%~92.68%之间,RSD均小于1%,表明方法具有良好的精密度,适用于盐酸阿考替胺三水合物工业品分析。
表 1 盐酸阿考替胺三水合物样品测定Table 1. Determination of acotiamide hydrochloride trihydrate in crude samples平行样品 日内测定含量(%) 日间测定含量(%) 1 92.04 92.19 2 91.31 92.47 3 92.17 92.21 4 92.07 91.46 5 92.47 92.68 平均值 92.01 92.20 RSD(%) 0.46 0.50 4. 结语
针对盐酸阿考替胺三水合物的结构,采用HPLC法对其进行分析测定,主要难点是选择合适的缓冲盐和合适的pH值,提高分析的重复性和可操作性。本研究建立的HPLC方法采用C18(4.6 mm×150 mm,5 μm)色谱柱为主流通用柱,以甲醇-乙酸铵水溶液(20 mmol/L,pH 6.8) 作流动相有利于色谱系统的快速平衡。方法稳定、准确度高,易于操作,为盐酸阿考替胺三水合物药物的快速分析提供了基础,可用于盐酸阿考替胺三水合物工业品的检测,并用于原料药的质量控制。
-
表 1 连续流系统条件下的样品和标准物质序列的典型构成(以碳酸盐13C同位素为例)
Table 1 The classical sample and reference materials batch sequence compositions in continuous flow experimental conditions (13C isotope analysis of carbonate as an example)
样品编号 δ值 δT值(‰) 测量值 平均值 σ 空白(锡杯或银杯) ** ** ** ** 标准物质1 (L-SVEC) -46.56 -46.56 0.13 -46.48 标准物质1 (L-SVEC) -46.73 标准物质1 (L-SVEC) -46.40 标准物质1 (L-SVEC) -46.55 样品1 ** ** ** ** 样品1 ** 样品1 ** … ** ** ** ** 空白(锡杯或银杯) ** ** ** ** 监测标准(USGS24) -16.023 -16.049
(IAEA推荐值)监测标准(USGS24) -16.078 -16.052 0.03 监测标准(USGS24) -16.056 样品n ** ** ** ** 样品n ** 样品n ** 标准物质2 (NBS19) 1.89 1.92 0.05 1.95 标准物质2 (NBS19) 1.98 标准物质2 (NBS19) 1.90 标准物质2 (NBS19) 1.88 空白(锡杯或银杯) ** ** ** ** 注:“**”表示具体的测量值和计算值。 表 2 使用合成标准不确定度来计算样品的不确定度
Table 2 Calculation of uncertainty of sample utilizing combined standard uncertainty
序号 A B C D E F G H 1 参数 δ13(‰) 不确定度 - - - - - 2 δT(VSMOW) 0.0 0.3 0.3(B2+C2) 0(B2) 0(B2) 0(B2) 0(B2) 3 δT(SLAP) -427.5 0.3 -427.5(B3) -427.2(B3+C3) -427.5(B3) -427.5(B3) -427.5(B3) 4 δR(VSMOW) 0.2 1.0 0.2(B4) 0.2(B4) 1.2(B4+C4) 0.2(B4) 0.2(B4) 5 δR(SLAP) -422.5 1.0 -422.5(B5) -422.5(B5) -422.5(B5) -421.5(B5+C5) -422.5(B5) 6 δR(SLAP) -120.0 1.2 -120.0(B6) -120.0(B6) -120.0(B6) -120.0(B6) -118.8(B5+C5) 7 - -121.4(根据方程(5)a 1.0(U(δT(Spl)=偏差和的平方根计算得出)偏差 -121.45(根据方程(5)a式计算) -121.28(根据方程(5)a式计算) -121.08(根据方程(5)a式计算) -121.65(根据方程(5)a式计算) -120.5(根据方程(5)a式计算) 8 - - - -0.05(D7-B7) 0.12(E7-B7) 0.32 (F7-B7) -0.25 (G7-B7) 0.9(H7-B7) 注:B2是指第B列和第2行交叉单元格。 -
Midwood A J, McGaw B A.Recent developments in the analysis of light isotopes by continuous flow isotope ratio mass spectrometry[J].Analalytical Communication,1999,36:291-294. doi: 10.1039/a904908h
Carter J F, Barwick V J.Good Practice Guide for Isotope Ratio Mass Spectrometry, FIRMS[M].ISBN 978-0-948926-31-0.2011.
Brenna J T, Corso T N, Tobias H J, Caimi R J.High-precision continuous-flow isotope ratio mass spectrometry[J].Mass Spectrometry Review,1997,16:227-258. doi: 10.1002/(ISSN)1098-2787
Midwood A J, McGaw B A.Recent developments in the analysis of light isotopes by continuous flow isotope ratio mass spectrometry[J].Analytical Communication,1999,36:291-294. doi: 10.1039/a904908h
Révész K M, Landwehr J M.δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: Statistical evaluation and verification by application to Devils Hole core DH-11 Calcite[J].Rapid communications in Mass Spectrometry,2002,16:2102-2114. doi: 10.1002/rcm.v16:22
Spötl C, Vennemann T W.Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals[J].Rapid Communications in Mass Spectrometry,2003,17:1004-1006. doi: 10.1002/rcm.v17:9
Fritzsche F, Tichomirowa M.Signal improvement in elemental analyzer/continuous flow isotope ratio mass spectrometry for samples with low sulfur content using a pre-concentration technique for on-line concentration adjustment[J].Rapid Communications in Mass Spectrometry,2006,20:1682-1697.
Grassineau N V,Mattey D P, Lowry D.Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotope ratio mass spectrometry[J].Analytical Chemistry,2001,73(2):220-225. doi: 10.1021/ac000550f
Grassineau N V.High-precision EA-IRMS analysis of S and C isotopes in geological materials[J].Applied Geochemistry,2006,21:756-765. doi: 10.1016/j.apgeochem.2006.02.015
Fry B, Silva S R, Kendall C, Anderson R K.Oxygen isotope corrections for online δ34S analysis[J].Rapid Communications in Mass Spectrometry,2002,16:854-858. doi: 10.1002/(ISSN)1097-0231
Yun M, Mayer B, Taylor S W.δ34S measurement on organic materials by continuous flow isotope ratio mass spectrometry[J].Rapid Communications in Mass Spectrometry,2005,19:1429-1436. doi: 10.1002/(ISSN)1097-0231
Fry B.Coupled N, C and S stable isotope measurements using a dual-column gas chromatography system[J].Rapid Communications in Mass Spectrometry,2007,21:750-756. doi: 10.1002/(ISSN)1097-0231
Paul D, Skrzypek G, Forizs I.Normalization of meas-ured stable isotope composition to isotope reference scale—A review[J].Rapid Communications in Mass Spectrometry,2007,21:3006-3014. doi: 10.1002/(ISSN)1097-0231
Skrzypek G, Paul D.δ13C analyses of calcium carbo-nate: Comparison between the Gasbench and elemental analyzer techniques[J].Rapid Communications in Mass Spectrometry,2006,20:2915-2920. doi: 10.1002/(ISSN)1097-0231
Skrzypek G, Sadler R, Paul D.Error propagation in normalization of stable isotope data: A Monte Carlo analysis[J].Rapid Communications in Mass Spectrometry,2010,24(18):2697-2705. doi: 10.1002/rcm.4684
Skrzypek G, Sadler R.A strategy for selection of ref-erence materials in stable oxygen isotope analyses of solid materials[J].Rapid Communications in Mass Spectrometry,2011,25:1625-1630. doi: 10.1002/rcm.5032
Spötl C, Vennemann T W.Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals[J].Rapid Communications in Mass Spectrometry,2003,17:1004-1006. doi: 10.1002/rcm.v17:9
Skrzypek G.Normalization procedures and reference mat-erial selection in stable HCNOS isotope analyses: A review[J].Analytical and Bioanalytical Chemistry,2013,405:2815-2823. doi: 10.1007/s00216-012-6517-2
王政,刘卫国,文启彬.土壤样品中的氮同位素组成的元素分析仪-同位素质谱分析方法[J].质谱学报,2005,26(2):71-75. http://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB200502001.htm 曹建平,黄奕普,刘广山,陈敏,李鸿宾.海洋悬浮颗粒中氮同位素的EA-IRMS法测定[J].台湾海峡,2003,22(1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-TWHX200301000.htm 崔杰华,祁彪,王颜红.植物样品中稳定碳同位素的EA-IRMS系统分析方法[J].质谱学报,2008,29(1):24-29. http://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB200801007.htm 王旭,张福松,丁仲礼.EA-Conflo-IRMS联机系统的燃烧转化率漂移及其对氮碳同位素比值测定的影响[J].质谱学报,2006,27(2):104-109. http://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB200602008.htm 储雪蕾.一种新的、快速的碳、氮、硫同位素测定手段——EA-IRMS连线分析技术[J].矿物岩石地球化学通报,1996,15(4):259-262. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH604.013.htm 郑永飞,龚冰,王峥荣.岩石中的碳同位素比值的EA-MS测定及其地球化学应用[J].地质论评,1999,45(5):529-538. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199905014.htm 张媛媛,贺行良,孙书文,朱志刚.元素分析仪-同位素比值质谱仪测定海洋沉积物有机碳稳定同位素方法初探[J].岩矿测试,2012,31(4):627-631. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201204015.htm 刘运德,甘义群,余婷婷,刘存富,周爱国.微量水氢氧同位素在线同时测试技术——热转换元素分析同位素比质谱法[J].岩矿测试,2010,29(6):643-647. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201006004.htm 龚冰,陈仁旭,郑永飞.大别—苏鲁造山带超高压变质岩矿物水含量和氢同位素组成[J].科学通报,2013,58(22):2169-2174. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201322009.htm Werner R A, Brand W A.Referencing strategies and techniques in stable isotope ratio analysis[J].Rapid Communications in Mass Spectrometry,2001,15:501-519. doi: 10.1002/(ISSN)1097-0231
Preston T, Owens N J P.Interfacing and automatic elemental analyser with an isotope ratio mass spectrometer: The potential for fully automated total nitrogen and nitrogen-15 analysis[J].Analyst,1983,108:971-977. doi: 10.1039/an9830800971
Glesemann A, Jäger H J, Norman A L, Krouse H R, Brand W A.On-line sulfur isotope determination using an element analyser coupled to a mass spectrometer[J].Analytical Chemistry,1994,66:2816-2819. doi: 10.1021/ac00090a005
Fourel F, Martineau F, Lécuyer C, Kupka H J, Lange L, Ojeimi C, Seed M.18O/16O ratio measurement of inorganic and organic materials by elemental analysis-pyrolysis-isotope ratio mass spectrometry continuous flow techniques[J].Rapid Communications in Mass Spectrometry,2011,25:2691-2696. doi: 10.1002/rcm.5056
Gentile N, Besson L, Pazos D, Delémont O, Esseiva P.On the use of IRMS in forensic science: Proposal for a methodological approach[J].Forensic Science International,2011,212:260-271. doi: 10.1016/j.forsciint.2011.07.003
Finnigan Gasbench Ⅱ Operating Manual[Z].
Nelson S T.Sample vial influence on the accuracy and precision of carbon and oxygen isotope ratio analysis in continuous flow mass spectrometric applications[J].Rapid Communications in Mass Spectrometry,2000,14:293-297. doi: 10.1002/(ISSN)1097-0231
Zha X P, Zhao Y Y, Zheng Y F.An online method combining a Gasbench Ⅱ with continuous flow isotope ratio mass spectrometry to determine the content and isotopic compositions of minor amounts of carbonate in silicate rocks[J].Rapid Communications in Mass Spectrometry,2010,24:2217-2216. doi: 10.1002/rcm.v24:15
Brand W A.Mass Spectrometry Handware for Analyzing Stable Isotope Ratios[M]//de Groot P A, eds.Handbook of Stable Isotope Analytical Techniques (Vo1.1).Oxford: Elsevier B V,2004:805-819.
Kornfeld A, Horton T W, Yakir D, Turnbull M H.Correcting for nonlinearity effect of continuous flow isotope ratio mass spectrometry across a wide dynamic range[J].Rapid Communications in Mass Spectrometry,2012,26:460-468. doi: 10.1002/rcm.6120
Muccio Z, Jackson G P.Isotope ratio mass spectrometry[J].Analyst,2009,134:213-222. doi: 10.1039/B808232D
Gröning M.International Stable Isotope Reference Materials[M]//de Groot P A, eds.Handbook of Stable Isotope Analytical Techniques (Vo1.1).Oxford: Elsevier B V,2004:874-906.
Bièvre P D, Laeter D, Peiser H S, Reed W P.Reference materials by isotope ratio mass spectrometry[J].Mass Spectrometry Review,1993,12:143-172. doi: 10.1002/(ISSN)1098-2787
Coplen T B, Brand W A, Gehre M, Gröning M, Meijer H A J, Toman B, Verkouteren R M.New guidelines for δ13C measurement[J].Analytical Chemistry,2006,78:2439-2441. doi: 10.1021/ac052027c
Coplen T B.Guidelines and recommended terms for expression of stable-isotope-ratio and gas ratio measurement results[J].Rapid Communications in Mass Spectrometry,2011,25:2538-2560. doi: 10.1002/rcm.5129
中国合格评定国家认可委员会.化学分析中的不确定度的评估指南[S].2006:6.