• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

微波消解-电感耦合等离子体质谱法测定生物样品中微量硒的方法研究

Determination of Trace Selenium in Biological Samples by Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion

  • 摘要: 生物样品中微量元素硒的分析检测,经典方法是湿法消解-氢化物发生原子荧光光谱法(HG-AFS)。湿法消解处理生物样品需使用大量试剂,并且消解时间长,样品背景值高;HG-AFS的分辨率较低,已经不能满足微量硒的分析需求。解决生物样品的消解过程缓慢、试剂用量大的问题是提高样品中微量元素硒的检出限和分辨率的前提。本文采用湿法消解和微波消解两种消解体系处理样品,对两种方法制备的溶液分别采用HG-AFS和电感耦合等离子体质谱法(ICP-MS)进行测定,通过对比试验确定了微波消解ICP-MS方法可以实现生物样品中微量硒的准确测定。对比试验表明:采用高压密闭微波消解前处理样品技术可以大大缩短消解时间,减少试剂用量,降低了样品背景值;利用ICP-MS直接进行测定,方法检出限为0.01 μg/g,精密度(RSD,n=12)小于4%,低于HG-AFS的检出限(0.03 μg/g)和精密度(<10%)。微波消解ICP-MS方法操作简单快捷,降低了方法检出限,提高了样品分析的准确度和精密度。

     

    Abstract: Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS) with wet digestion is classical method to determine the trace element selenium in biological samples. The analytical requirements cannot be met by low resolution HG-AFS and wet digestion processing and carries the additional disadvantages of high quantities of reagent consumption, lengthy processing time and production of high background values. Accelerating digestion processing time and reducing the amount of reagent consumption have been considered as prerequisites for increasing detection limit and resolution of selenium. In this article, samples were analyzed by HG-AFS and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) after two different sample pretreatments of wet digestion and microwave digestion. The method of ICP-MS with microwave digestion was established through these contrast tests. The results indicate that microwave digestion can reduce digestion time, decrease reagent consumption and lower background in high-pressure sealed conditions. Detection limits of HG-AFS and ICP-MS are 0.03 μg/g and 0.01 μg/g, respectively. In addition, according to the determination for national standard reference samples, relative standard deviations of HG-AFS and ICP-MS are less than 10% and 4%, respectively. Obviously, low detection limits and improved accuracy and precision can been acquired by direct analysis with ICP-MS. The established method is simple to operate and can been conducted for the rapid determination of trace selenium in various biological samples.

     

/

返回文章
返回