A Review of Research Progress on Separation and Purification Methods of Lithium Isotopes Using Cation Exchange Resin and Their Applications
-
摘要:
锂(Li)同位素是良好地球化学示踪工具,被广泛应用于壳幔物质循环、行星起源与演化、大陆风化、古环境与气候变迁、成矿机制及环境污染等领域。然而,分析测试过程中同质异位素的潜在干扰使得自然样品中Li的高效分离纯化成为关键需求。近几十年来,锂同位素阳离子交换树脂分离纯化法得到了广泛应用和发展,形成了多类型不同自然样品中Li分离纯化的一系列方法体系。从早期Li的分离纯化方法仅注重于实现自然样品Li的分离效果,使之满足TIMS分析需求,逐渐发展到注重减少分离纯化过程中引入空白污染、简化操作提高分离效率以及对不同类型自然样品具有广泛适用性等方面。本文阐述了近年来基于阳离子交换树脂法的锂同位素分离纯化方法研究进展,重点总结了单柱法、双柱法、多柱法和套柱法的操作流程与技术特点,从树脂类型选择及用量、淋洗液类型选择及其在不同类型自然样品中的适用性和应用效果等方面,分析了各类方法的应用优势。目前单柱法和双柱法是Li分离纯化研究中应用较为广泛的方法,在不断优化过程中,一些方法的树脂用量低至1mL,淋洗液用量少于10mL,流程空白控制在1‰以下,整个淋洗流程被缩短至数小时之内。但不同分离纯化方法仍在很大程度上依赖于样品Li含量及其他基质离子等因素。因此,在兼顾分离效率、适用范围以及经济性等因素下,进一步优化现有方法体系、扩展不同类型样品适用范围,对于提升锂同位素分析效率和精度以及推动锂同位素应用研究发展具有重要意义。随着测试设备和技术的不断进步,逐步探索自动化淋洗设备在自然样品Li高效分离纯化中的应用,将成为锂同位素分析技术的主要发展方向之一。
要点(1)锂同位素阳离子交换树脂分离纯化方法在实现样品中Li的100%回收前提下,着重注意样品基质中Na元素的分离。
(2)锂同位素阳离子交换树脂分离纯化方法的优化主要涉及树脂柱高径比、树脂类型及用量、淋洗液类型及用量三个方面。
(3)不同自然储库样品Li含量、锂同位素及其基质组成差异显著,优化分离纯化方法流程并扩展自然样品适用性,对于提升锂同位素分析效率、精度以及推动应用研究非常重要。
HIGHLIGHTS(1) The separation and purification method of lithium isotope via cation exchange resin especially focuses on the separation of sodium in the sample matrix under the premise of 100% recovery of lithium in the sample.
(2) The optimization of separation and purification methods of lithium isotope via cation exchange resin mainly involves three aspects: the ratio of height-diameter of the resin column, the type and dosage of resin and the type and dosage of eluent.
(3) There are significant differences in lithium content, Li isotope and its matrix composition in different natural reservoirs, so it is important to continue to optimize and develop the existing separation and purification process and expand the applicability of natural samples to improve the efficiency and accuracy of Li isotope analysis and promote the application research of Li isotopes.
Abstract:Lithium (Li) isotopes serve as effective geochemical tracers in mantle-crust cycling, planetary evolution, climate change, continental weathering, mineralization mechanisms, and environmental pollution studies. Efficient separation of lithium from natural samples is essential due to potential interference from isobaric isotopes during analysis. Over the past decades, cation exchange resin methods have been developed to enhance lithium separation for TIMS and MC-ICP-MS analysis. Since then, these methods have evolved to reduce blank contamination, simplify procedures, improve efficiency, and expand applicability to various natural samples. This review examines recent advances in Li isotope separation using single-column, double-column, multi-column and in-series column methods. Key factors like resin type, eluent volume, and method efficiency for various samples are discussed. Single- and double-column methods dominate current research, of which some methods just use minimal resin and eluent while controlling process blanks to below 0.1‰. However, separation efficiency remains dependent on lithium content and matrix ions in the sample. Further optimization is needed to balance efficiency, cost, and applicability across sample types. As analytical techniques advance, automated elution systems are likely to become central to Li isotope analysis. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202409050181.
BRIEF REPORTLithium (Li) isotopes are effective geochemical tracers and have been widely applied in studies of mantle-crust cycling[1], planetary evolution[2], continent weathering[3], paleoclimate changes[4], mineralization[6], and environmental pollution[7]. As Li isotope research advances, accurate and efficient analysis techniques have become crucial. Since the late 20th century, methods have evolved from NAA[8] and AAS[9] to ICP-MS[10] and TIMS[12-13], achieving precision below 1‰. Recently, in situ techniques like SIMS[17] and LA-MC-ICP-MS[18] have progressed. However, due to the lack of solid standards, MC-ICP-MS[14-16] remains the most widely used technique. Li isotope separation and purification are essential for high-precision analysis, with cation exchange resin methods being mainstream. Various separation methods have been developed based on different resins, eluents, and chromatographic configurations. This review summarizes Li isotope separation techniques over the past thirty years, evaluates their applicability, and provides an outlook on future developments.
There are distinct Li contents and isotopic compositions in different natural reservoirs. Li exists in two forms in nature: solid, primarily as silicates and Li-bearing minerals, and liquid, widely distributed in natural waters, oceans, and brines. Although Li is a trace element, its content varies significantly across different reservoirs. Its two stable isotopes exhibit significant isotope fractionation during geological processes. Li concentration varies greatly across different reservoirs, ranging from about 1.56μg/L in rivers to 180μg/L in seawater[4], while reaching up to 227000μg/L in brines[25]. In solid reservoirs, Li is concentrated in silicate rocks, with content ranging from 1.49μg/g to 46μg/g[20,26]. Li isotope compositions also vary widely, with seawater at approximately +31‰ and lower in solid reservoirs[4,29]. Due to the similar partitioning behaviors of Li and some other elements, the separation and purification of Li present challenges. Optimized elution processes are required for different sample matrices to ensure efficient Li separation and purification.
The cation exchange resin method is a common technique for extracting Li from complex matrices, often used in the pretreatment of Li isotope analysis. The process involves dissolving the sample, passing it through a stationary phase (resin) and a mobile phase (acid solution)[37], and using an eluent to separate pure Li. The separation process is based on plate theory, where solute ions maintain dynamic equilibrium between the resin and solution, and are separated by different partition coefficients[37]. Three key factors influence Li isotope separation: the resin's capacity, the type and concentration of eluent, and the amount of resin and eluent used. Additionally, factors such as the type of chromatography column, resin properties, and elution frequency should be considered to avoid contamination and optimize the purification process[32,39-40].
1. Different separation and purification methods of Li via cation exchange resin and their technical characteristics
In the separation and purification methods of Li via cation exchange resin, researchers select appropriate resins, eluents, and chromatography columns based on the composition of the samples. Focusing on elution column numbers as the key variable, this comprehensive review discusses four commonly used methods, single-column, double-column, multi-column, and in-series column, and also analyzes their technical features and applications.
1.1 Single-column method
The single-column method achieves complete elution of Li using a single column and a one-time elution process. Typically, higher columns are used to increase the plate number and improve separation efficiency. In recent years, this method has become the primary approach for Li isotope separation and purification due to its simplified operation and fewer sample transfer steps[52-54]. However, over time, significant differences in the choice of columns and eluents have emerged. Early methods often employed acid-alcohol mixed eluents[14-15], which enhanced the separation between Li and Na but introduced challenges such as large eluent volumes, longer processing times, and higher procedural blanks. Additionally, alcohol-based solutions could degrade the resin, releasing impurities like sodium and further affecting purification[55]. Recently, Zhu et al[45] improved this method by using AGMP-50 resin and replacing alcohol-based eluents with simpler hydrochloric or nitric acid solutions, greatly reducing elution time and eluent volume while minimizing the procedural blanks. This refined method is not only applicable to various natural samples, including seawater and rocks, but also ensures a high Li recovery rate of up to 99%, ensuring both efficiency and accuracy in separation and purification.
1.2 Double-column method
The dual-column method was originally designed to address the challenge of separating Li from Na due to their similar partition coefficients without using alcohol-based eluents. The process is divided into two steps: the first separates most cations from Li; the second step ensures the complete separation of Li from Na. Since this method uses columns with a small height-to-diameter ratio, the elution time is relatively short, making it a widely used approach alongside the single-column method.
James et al[46] firstly developed the application of the dual-column method, using 2.7mL of AG50W-X12 resin and 0.2mol/L HCl as the eluent. Through two repeated elution, they achieved complete purification of Li, providing a foundation for subsequent improvements. Zhang et al[31] optimized this method by switching to HNO3 instead of HCl to avoid the formation of complexes with trivalent iron, which could interfere with Li separation. They also reduced the amount of resin, making the process more efficient, with significant reductions in both elution time and eluent volume. In recent years, Li et al[48], Zhang et al[44], and Zhu et al[45] have further refined the dual-column method, developing procedures suitable for different types of natural samples.
1.3 Multi-column method
The multi-column method was initially developed to meet the high-purity requirements of Li during isotope analysis in TIMS while minimizing the use of resin and eluent to avoid Li blank contamination. This method employs multiple columns or repeated elution steps, using small amounts of resin to gradually remove matrix ions, ultimately achieving 100% purification of Li. In the late 20th century, Moriguti et al[22] developed a four-step separation method using different concentrations of hydrochloric acid and hydrochloric acid-ethanol mixtures for multiple elution to successfully separate Li. Later, Rudnick et al[58] simplified this process by retaining only the first three steps and reducing the acid concentration to improve efficiency. Su et al[39] and Zhao et al[50] further optimized the method by reducing the eluent volume and increasing separation efficiency. Consequently, research on improving this method has been limited in recent decades, and its application is less widespread compared to the single-column and dual-column methods.
1.4 In-series column method
The in-series column method achieves Li separation and purification in a single elution by connecting micro-column and long column in series. The micro-column efficiently adsorbs cations, while the long column further separates Li from Na, ensuring high recovery (>96%). Compared to the single-column and dual-column methods, the in-series method has been applied later, and its technique still requires optimization. Zhu et al[51] found that traditional single-column methods are prone to interference from matrix elements, affecting Li purification efficiency and isotope accuracy. To address this, Zhu et al[51] optimized elution conditions using 0.5mol/L HCl and increased resin capacity, significantly reducing interference and shortening the elution time to around 2h. This method improves elution efficiency, avoids the negative effects of organic solvents, and reduces costs. After validation, the method demonstrated excellent accuracy across various sample types, especially for low-Li and high-matrix samples.
2. The applicability of different separation and purification methods for natural samples
The widespread application of Li isotopes in environmental, geological, and geochemical studies relies on accurate and efficient analysis[59], which requires sample separation and purification based on varying Li content and matrix composition. The Li content and matrix composition differ significantly across reservoirs. For example, Li content is higher in silicate rocks, while carbonate rocks contain higher levels of Ca, Mg and lower content of Li. Among existing Li separation methods, single-column and dual-column methods are the most widely used. Early single-column methods based on nitric acid-methanol[14-15,41] have been replaced by HCl elution[42,56], which is more suitable for high-Li samples. Dual-column methods show advantages in handling samples with high Mg/Fe ratios but low Li content[47]. The in-series column method, as an emerging approach, is applicable to a variety of natural samples and holds promising development prospects.
3. Concluding remarks
The cation exchange resin method has been sufficiently developed to make significant progress in the separation and purification of Li isotopes. The eluent has evolved from mixed inorganic acids and alcohols to purely inorganic acids, reducing the volume from nearly 300mL to less than 10mL. Today, the purification process for natural samples takes only a few hours, with a precision better than 1‰ and process blanks below 1‰. The single-column method is simple and widely used for high-Li, low-matrix samples; the dual-column method excels with complex matrices, especially high-Na samples; and the in-series column method is highly effective for low-Li, high-matrix samples, being both environmentally friendly and economical. Multi-column methods have been phased out due to complexity.
4. Future perspectives
Future research should focus on two areas: first, optimizing and innovating separation and purification methods to improve resin selectivity, streamline operations, reduce procedural blanks, and enhance Li recovery and analytical accuracy, particularly for extreme environmental samples and trace Li analysis. Second, as testing technologies advance, automated elution systems are expected to enable more efficient Li separation and purification, becoming a major direction for isotope analysis.
-
锂(Li)同位素作为一种新兴的强有力地球化学示踪工具,已被广泛应用于包括壳幔物质循环[1]、行星起源与演化[2]、大陆风化[3]、古气候与环境变化[4]、卤水形成与演化[5]、锂矿成矿机制[6]以及环境污染[7]等多个地球科学前沿研究领域。随着锂同位素研究的快速发展,准确、高效的自然样品锂同位素分析技术成为推动该领域进展的关键因素。自二十世纪以来,锂同位素分析方法经历了从中子活化分析(NAA)[8]、原子吸收光谱(AAS)[9]到电感耦合等离子体质谱(ICP-MS)[10]和离子探针(Ion-probe)[11]等技术的演变,并逐渐发展为热电离质谱(TIMS)[12-13]以及多接收电感耦合等离子体质谱(MC-ICP-MS)[14-16]等,其精度已由5‰以上提高到1.0‰以下。近年来,虽然以二次离子质谱(SIMS)[17]和激光剥蚀系统联用多接收器电感耦合等离子体质谱法(LA-MC-ICP-MS)[18]为代表的技术实现了矿物微区原位锂同位素分析,但由于缺乏基质匹配的固体标准,MC-ICP-MS仍是目前锂同位素分析中最常用的技术手段。
二十世纪末,Chan等[19-20]开展了海洋玄武岩、热液等自然储库锂同位素研究,推动了其在地质、地球化学领域中的实际应用研究,也带动了锂同位素分离纯化技术的迅速发展。尽管MC-ICP-MS对样品中Li纯度的要求相对于TIMS低[14],但“基质效应”特别是Na等元素的干扰仍对高精度分析形成挑战[21]。因此,实现自然样品中Li的高效分离纯化是对其进行MC-ICP-MS准确分析的前提。离子交换技术,尤其是阳离子交换树脂法[12],已成为最常用的锂同位素分离纯化方法,并被广泛应用于各种自然样品。然而,理论上增加树脂用量可以建立适用于所有类型自然样品的分离纯化方法,但在实际操作中,由于树脂用量增加,淋洗液用量也相应增加,由此产生的高Li空白值会影响分析效率和精确性[22]。因此,开发适用于不同类型自然样品Li的分离纯化方法显得尤为重要。
近年来,诸多学者建立了超过20种基于不同阳离子交换树脂、树脂用量、淋洗介质和色谱柱配置的分离纯化流程,其中树脂包括AG50W-X8、AG50W-X12和AGMP-50三种,树脂用量从不足1mL至近100mL不等,淋洗液从无机酸-醇类混合物到不同浓度的无机酸,淋洗液用量从不足10mL至230mL以上不等。尽管早期的分离纯化方法尚不成熟,但此后经过不断优化建立的一些方法各具优势,如何根据研究需求选择适合的分离纯化方法仍需进一步探讨。本文系统总结了近三十年来锂同位素分离纯化方法的研究进展,依据淋洗次数将常用分离纯化方法分为单柱法、双柱法、多柱法和套柱法四类,重点分析了各类方法的技术特点及创新,评估其在不同自然样品中的适用性,在此基础上对锂同位素分析前处理技术的发展趋势作了展望。
1. 不同自然储库中锂含量及同位素组成特征
自然界中,Li主要以固态和液态两种形式存在,固态形式主要为硅酸盐和含锂矿物,而液态形式则主要分布于自然水体、海洋和卤水中。尽管Li通常以微量元素的形式存在,但其在不同储库中的含量存在显著差异。Li具有两个稳定同位素,分别为6Li(天然丰度7.52%)和7Li(天然丰度92.48%)。由于这两个同位素的相对质量差较大(约17%),Li在地质过程中表现出明显的同位素分馏效应,成为地质与地球化学研究中的重要示踪工具。
已有研究数据显示,自然界中不同储库的Li含量变化范围超过几个数量级,其中,多数类型自然水体中Li含量相对较低。例如,全球河流中Li含量平均约为1.56μg/L[4];海底热液中Li含量略高,分布在4~9μg/L之间[23-24];现代海水中Li含量较为稳定,约为180μg/L[4];然而部分盐湖卤水中Li含量却远高于其他水体,高达117000μg/L至227000μg/L[25]。固体储库中Li则主要赋存于硅酸盐岩中,陨石、洋中脊玄武岩和洋岛玄武岩中Li含量变化范围在1.49~7μg/g之间[20,26];月岩及花岗岩中Li含量在3.1~46μg/g之间[26];而碳酸盐岩Li含量却相对较低,例如,海相生物成因的碳酸盐岩中Li含量约为0.2~4μg/g,比硅酸盐类岩石低1~2个数量级[27]。自然储库中锂同位素组成变化也同样较大,总体范围超过60‰[28]。其中,海水的锂同位素组成较高,约31‰[4];陨石、陆壳岩石、河系沉积物、土壤、洋中脊玄武岩和洋岛玄武岩等固体储库的锂同位素则相对较低,变化范围在−11‰至+15‰之间[29];大陆河流水体的锂同位素组成变化超过40‰,平均约为+23‰[4],处于海水和固体储库之间。此外,碳酸盐岩的锂同位素组成变化较大,大多处于+1‰至+36‰之间[30](图1)。
自然样品锂同位素的准确分析测定是基于样品中Li的100%分离纯化,然而自然储库中Li含量的大范围变化及基质组成的差异造成了基质元素与Li元素丰度比值超过了104,同时,Li与部分元素离子的交换分配行为相近,如何准确分离该部分元素离子而不损失样品中的Li,这些因素都对Li的分离纯化方法提出了巨大挑战。此外,已有研究发现阳离子交换树脂法中Li淋洗曲线中洗脱峰的位置会受样品基质类型和树脂柱离子负载的影响而发生移动,因此针对不同类型自然样品需要构建不同的洗脱流程[29]。
2. 锂同位素的阳离子交换树脂分离纯化方法
2.1 样品预处理方法
目前,锂的分离纯化方法主要适用于处于离子态的溶液样品,而自然样品包括液态和固态样品(如岩石、土壤、沉积物等),因此通常需要通过预处理步骤将固态样品转化为离子态。对于自然水体等液态样品,Li元素以离子形式存在,无需复杂的化学处理。然而,若水样中含有少量有机质会产生干扰,则需将水样蒸干后加入适量高纯双氧水或二次蒸馏的浓酸,并加热分解有机质。对于固体样品(如岩石、土壤等),在分离纯化之前,需通过浓酸消解或稀酸溶解处理以将Li元素转化为离子态。岩石或沉积物样品在离子化处理前,通常需要机械破碎,并使用玛瑙研钵或球磨仪将样品研磨至74μm(200目)以下。根据样品类型(如硅酸盐岩或碳酸盐岩),可选择强酸消解或弱酸/稀酸溶解方法。
硅酸盐岩样品通常采用强酸进行消解[14,32]。将50~100mg粉末样品置于聚四氟乙烯杯中, 依次加入体积比为3∶1的浓氢氟酸和浓硝酸,在120℃电热板上密闭消解24~48h,或将钢罐聚四氟乙烯杯置于200℃烘箱中进行高温消解。有些研究选择使用高氯酸替代氢氟酸,以防止锂氟化物的生成[33],这种氟化物一旦产生很难溶解,会造成溶样不彻底进而使得测定数据失真。虽然使用高氯酸溶解样品中有机质的效果更佳,但溶样后高氯酸残留物较难去除,通常需要在200℃下多次加入浓硝酸进行蒸干处理,耗时耗力。消解过程中所用酸皆需经过二次蒸馏,实验用水则为超纯水(电阻率18.2MΩ·cm)。
碳酸盐岩样品通常使用弱酸或稀酸进行溶解[34-35]。根据Li含量,称取适量碳酸盐岩粉末。常用处理方法主要有两种:第一种是加入足量的乙酸缓冲溶液(如0.25mol/L乙酸-氨水缓冲溶液),在超声波反应器中反应4h,以2500r/min离心30min后收集上清液,倒入聚四氟乙烯杯中,低温(60~80℃)蒸干;第二种方法是先用1mol/L乙酸铵溶液去除可交换态离子,随后用超纯水清洗三次,再用0.05mol/L盐酸反应1h,并蒸干上清液。碳酸盐岩样品采用以上两种前处理方法主要区别在于:第一种方法使用弱酸,第二种方法则采用稀释的强酸,两者在处理相对纯净的碳酸盐岩粉末时差别较小,但在处理混合岩性粉末样品时,使用强酸可能会导致少量硅酸盐组分溶解。通常,硅酸盐岩中Li含量远高于碳酸盐岩,且硅酸盐同位素组成显著不同于碳酸盐岩,从而会影响碳酸盐岩组分锂同位素组成的准确分析[36]。这两种方法在不同实验条件下对分析结果的影响有待进一步评估。实验中所使用的乙酸、氨水等试剂均为高纯级别,以确保实验结果的准确性。
2.2 锂同位素阳离子交换树脂分离纯化主要原理
阳离子交换树脂法,是一种旨在从复杂无机基质中提取特定元素离子的常用分离纯化技术。在锂同位素地球化学研究中,阳离子交换树脂法常被用作分离和纯化复杂基质中的Li离子,以进行高精度锂同位素组成分析的必要前处理步骤[13]。Li离子的色谱分离纯化过程包括两相:固定相(通常为离子交换树脂)和流动相(通常为酸溶液)[37]。含Li样品首先溶解在流动相中,并加载至固定相,溶质离子在两相之间的亲和力差异决定了其在固定相与流动相之间的分配。通过逐步加入淋洗液(Eluent),并收集特定阶段洗出液(Eluate),即将获取纯净的Li用于后续锂同位素分析。
阳离子交换树脂分离纯化的理论基础是塔板理论(Plate Theory)。该理论将色谱柱类比为分馏塔,溶质离子在色谱柱中移动时,如同在塔板之间迁移,并保持与固定相和流动相的动态平衡。分离纯化效果主要取决于色谱柱的塔板数[38]。在实际操作中,离子交换树脂作为固定相,装填入树脂柱后被视为由若干微小的等截面塔板组成(即塔板数,N)。样品溶液通过树脂柱时,溶质在树脂和溶液之间形成动态平衡,溶质在树脂和溶液之间的分配系数(Kd或Dv)定义为:
$$ {K}_{\mathrm{d}}=\frac{{C}_{\mathrm{固}\mathrm{相}}}{{C}_{\mathrm{液}\mathrm{相}}} $$ 式中:C固相和C液相分别表示单位干燥树脂中溶质的浓度和溶液中溶质的浓度。
在一定浓度范围内,溶质中特定离子的分配系数通常是恒定的,同时该参数也是决定整个分离纯化流程的关键因子之一[37]。随着溶质沿着树脂柱的迁移,溶质中不同离子因分配系数差异形成不同谱带,淋洗过程使得吸附的溶质离子逐渐解吸向下迁移并流出树脂柱,这一过程被称为洗脱或淋洗。溶质流出色谱柱的浓度随时间变化的曲线即“淋洗曲线”,反映了整个离子交换过程的动态变化。
构建锂同位素的分离纯化流程需考虑三个关键因素。首先,树脂的承载力必须确保样品中所有Li离子完全被吸附(图2a);其次,淋洗液的类型及浓度应确保Li离子与基质离子的分配系数差异足够大,以实现有效地分离,特别是需关注Li和Na的分离(图2b);最后,树脂和淋洗液的用量需合理控制,以避免给样品Li洗脱液中带入较大空白污染(图2c)。其他影响分离纯化效果的因素还包括色谱柱的类型、树脂的特性及淋洗次数等[32,39-40]。深入研究这些因素间的相互作用,是优化锂同位素分离纯化方法的关键。
图 2 色谱柱法锂的洗脱流程示意图(修改自Schonbachler等[37])Figure 2. Schematic diagram of lithium elution process by column chromatography (Modified from Schonbachler, et al[37]): (a) Lithium is completely adsorbed by the resin; (b) Lithium migrates downward in the resin column with the eluent; (c) Lithium is completely eluted and separated.2.3 不同阳离子交换树脂分离纯化方法及技术特点
在Li的阳离子交换树脂分离纯化方法建立过程中,研究者通常依据所研究样品的组成特征,选择适当的树脂、淋洗介质和色谱柱。近年来,常用方法中这些“变量”的组合列于表1。树脂类型包括AG 50W-X8、AG 50W-X12及AGMP-50等,淋洗介质主要包括不同浓度的盐酸和硝酸,或盐酸和硝酸与甲醇/乙醇配制的混合溶液。色谱柱则采用不同尺寸的聚四氟乙烯、聚丙烯及石英柱。不同方法适用于不同类型的自然样品。
表 1 不同类型锂分离纯化方法中色谱柱、树脂、淋洗介质及淋洗方式Table 1. Chromatographic column, resin, eluent and elution type in the different lithium separation and purification methods序号 色谱柱(尺寸) 树脂(用量) 淋洗介质 淋洗方式 参考文献 1 派热克斯玻璃柱(柱高>20cm) AG 50W-X8 0.5mol/L盐酸 单柱 [12] 2 石英柱 (柱高30cm) AG 50W-X8 1mol/L硝酸的80%甲醇混合溶液 单柱 [14] 3 石英柱 (柱高12.5cm) AG 50W-X8 0.5mol/L硝酸的80%甲醇混合溶液 单柱 [41] 4 聚四氟乙烯柱(柱高>10cm) AG 50W-X8 1mol/L硝酸的75%甲醇混合溶液 单柱 [15] 5 石英柱 (柱高30cm) AG 50W-X8 0.15mol/L盐酸的30%乙醇混合溶液 单柱 [32] 6 聚四氟乙烯柱
(柱高5cm)AG 50W-X8
(2mL)0.5mol/L盐酸 单柱 [42] 7 硼硅玻璃柱
(柱高21.5cm)AG 50W-X8
(2mL)顺序加入:0.67mol/L硝酸的30%甲醇混合溶液、
1 mol/L硝酸的80%甲醇混合溶液单柱 [43] 8 Savillex-聚四氟乙烯
(柱高20cm)AG 50W-X12
(1.5mL)顺序加入:0.4mol/L盐酸、1.0mol/L盐酸 单柱/双柱 [44] 9 聚丙烯柱
(柱高8.5cm)AGMP-50
(约1.4g)顺序加入:0.2mol/L盐酸、0.73mol/L盐酸和
0.3mol/L 氢氟酸单柱/双柱 [45] 10 聚四氟乙烯柱(柱高>8.5cm) AG 50W-X12 0.2mol/L盐酸 双柱 [46] 11 石英柱
(柱高>20cm)AG 50W-X8 (15mL)、
AG 50W-X12 (5mL)0.2mol/L盐酸 双柱 [47] 12 Bio-rad聚丙烯柱
(柱高约7cm)AG 50W-X12
(1.0mL)两柱分别使用1mol/L硝酸、0.2mol/L硝酸 双柱 [31] 13 Bio-rad聚丙烯柱
(柱高分别为4cm、9cm)AG 50W-X8
(2.5mL、2.0mL)两柱分别使用0.2mol/L盐酸、0.5mol/L盐酸 双柱 [48] 14 聚丙烯柱+ Saville聚四氟乙烯柱
(柱高分别为20cm、18cm)AG 50W-X8
(6.4mL、2.3mL)0.5mol/L盐酸 双柱 [49] 15 聚丙烯柱+石英柱 AG 50W-X8
(1.2mL、1.5mL、1.0mL)三柱分别使用2.8mol/L盐酸、0.15mol/L盐酸和
0.15mol/L盐酸的30%乙醇混合溶液三柱 [39] 16 聚丙烯柱+石英柱 AG 50W-X8
(1.2mL、1.5mL、1.0mL)三柱分别使用4mol/L盐酸+2.8mol/L盐酸、0.15mol/L
盐酸和0.15mol/L盐酸的30%乙醇混合溶液三柱 [50] 17 聚丙烯柱和聚乙烯柱
(柱高分别为5.5cm、0.88cm)AG 50W-X12
(1mL、0.1mL)四柱分别使用2.8mol/L盐酸、0.15mol/L盐酸、0.5mol/L
盐酸的30%乙醇混合溶液和0.15mol/L盐酸四柱 [22] 18 双柱
(柱高分别为2cm和12.5cm)AG 50W-X12
(0.57mL、6.8mL)0.5mol/L盐酸 套柱 [51] 本文以淋洗次数作为主要变量,重点讨论近年来最常用的四类方法,包括单柱法、双柱法、多柱法(三柱或四柱)以及套柱法,详细阐述这四类方法的应用情况及技术特点。
2.3.1 单柱法
单柱法是指通过单个色谱柱,在一次淋洗过程中实现样品中Li的100%洗脱。由于该方法要求在一次淋洗中完全分离Li与其他阳离子,通常选择较大高径比的色谱柱,其高度大多超过10cm,以增加理论塔板数,使得淋洗过程中Li与其他离子谱带显著分离,或者加大树脂用量以及选择具有更高承载能力的阳离子交换树脂,进而提升分离纯化能力。
近年来,单柱法因其样品转移流程较少,成为锂同位素研究中广泛应用的前处理方法[52-54]。然而,不同时期发展出的单柱法在色谱柱与淋洗介质的选择上存在显著差异。Chan[12]使用派热克斯玻璃柱并以0.5mol/L盐酸作为淋洗液,通过一次淋洗实现了样品中Li完全洗脱。该方法所用树脂量高达12~98cm3,淋洗液用量超过230mL。Tomascak等[14]采用30cm长的石英玻璃柱和130mL的1mol/L硝酸-80%甲醇淋洗液,通过一次淋洗完成Li分离纯化。然而,由于该方法使用大量的醇类混合淋洗液可能引入较多流程空白,此后Magna等[15]对淋洗流程进行了改进,采用2.1mL的小体积色谱柱,并仅使用16mL的1mol/L硝酸-75%甲醇淋洗液即完成了Li完全洗脱。Alistair等[55]在研究中发现甲醇溶液会导致树脂降解,释放出Na进入溶液。为避免有机试剂的使用,Misra等[42]开发了一种使用0.5mol/L盐酸作为淋洗液的单柱法,仅通过15mL淋洗即可对样品量少且低含量Li的样品实现Li高效分离纯化。之后,Bohlin等[56]使用AGMP-50树脂和0.7mol/L盐酸,通过一次淋洗实现了Li完全洗脱,但该方法通常仅满足分离纯化较少Li量。张俊文等[44]采用交联度更高的AG50W-X12树脂和8.5mL的0.4mol/L盐酸,实现了水样中Li完全洗脱,但对岩石和土壤样品中需要二次淋洗。最近,Zhu等[45]进一步改进了该方法,使用AGMP-50树脂和0.73mol/L盐酸作为淋洗液,一次淋洗中即可实现自然样品中Li完全洗脱。该方法在不同类型样品中的淋洗液用量有所差异,岩石样品相较于海水样品需要消耗更多的淋洗液。从单柱法的发展历程来看,早期方法中淋洗介质多为盐酸或硝酸与甲醇或乙醇的混合溶液。醇类的加入可以增加样品中Na与Li在树脂中的分配系数差异,从而提高分离纯化效果,但同时也带来了一些不利因素:①显著增加了淋洗液用量和淋洗时间;②累积较多流程Li空白;③导致树脂降解释放Na;④淋洗过程中醇类的挥发可能影响淋洗曲线位置[48,56]。随着分配系数研究深入,后期单柱法逐渐摒弃了醇类溶液,转而使用单一的盐酸或硝酸,淋洗液的用量也大幅减少(表2)。
表 2 不同单柱法分离纯化锂过程中淋洗液类型、淋洗液用量及淋洗时间的对比Table 2. Comparison of eluent type, eluent dosage and elution time during lithium separation and purification by different single column methods为详细阐明单柱法Li分离纯化流程,本文以Zhu等[45]的研究为例,通过示意图简要描绘淋洗过程中不同离子的洗出顺序(图3),概括性地还原该方法的洗脱流程。Zhu等[45]对以往方法进行综合分析时发现,许多单柱法存在淋洗液用量大、淋洗耗时长、流程空白风险高以及仅适用于分离纯化相对较少的Li量等问题。为解决这些问题,Zhu等[45]对AG50W-X8、AG50W-X12和AGMP-50在玄武岩标样JG-2及海水标样BCR-2中分离纯化效果进行了比较,最终选择了AGMP-50树脂;基于此,进一步优化了淋洗液种类、体积及样品上样量,构建了一套简便高效的锂同位素前处理体系。该方法仅需少量0.2mol/L盐酸+0.3mol/L氢氟酸及0.73mol/L盐酸,在较短时间内即可去除Al,高场强元素Ti、Zr、Hf及Na、Ca等基体杂质,可用于分离纯化高达60~270ng的Li,其回收率接近100%(>99%),整个流程空白控制在样品量的千分之一以下。该方法均能实现海水和岩石等不同类型样品中Li的高效分离纯化。
2.3.2 双柱法
双柱法的初衷是解决在不使用醇类淋洗液时,由于Li和Na分配系数相近而难以完全分离的问题,主要通过两个不同色谱柱或对同一色谱柱进行两次淋洗,实现Li的100%洗脱。该方法将样品中Li与基质离子的分离纯化分为两步:第一步分离Ca、Mg、Fe等大多数阳离子与Li,仅剩含有Li和少量Na的溶质;第二步则是实现Li与Na的完全分离。由于该方法通常选用较小高径比的色谱柱,其高度多数在10cm以下,单次淋洗时间相对较短,是除单柱法之外另一类被广泛应用于Li分离纯化的方法体系,近些年来形成了多种Li的双柱法流程[31,45,49]。
为避免因大量使用树脂带来Li空白污染,以及四步淋洗流程中使用有机淋洗液的耗时耗力和较大样品量的要求,James等[46]较早提出了双柱法在自然样品中Li分离纯化的应用。该方法使用2.7mL的AGW-X12树脂和100ng的Li,以0.2mol/L盐酸作为淋洗液,通过单一色谱柱的两次重复淋洗,实现了Li完全洗脱。该方法成为后续改进双柱法的基础案例。之后,Gao等[47]为提高色谱柱的承载能力,针对低Li高Mg含量样品,采用了较大的石英柱,使用不同类型及用量的树脂,实现了130mg大样品量中Li的完全分离纯化,但该方法的淋洗液体积高达246mL,对于多数类型样品Li的分离纯化,不仅耗时耗力,而且可能会引入较多空白Li污染。Zhang[31]在James等[46]双柱法的基础上进行了优化,考虑到盐酸作为淋洗液可能与三价铁形成络合物,并与Li一起被洗脱的问题,Zhang[31]通过采用两种不同浓度的硝酸作为淋洗液,同时减少了树脂用量(AG50W-X12,1mL),使用单一色谱柱进行两次淋洗,实现了Li完全洗脱。该方法大幅减少了淋洗液使用量,从而显著节省了淋洗时间。近年来,Li等[48]、张俊文等[44]、Zhu等[45]以及Li等[49]在此流程基础上开发了多种双柱法,应用于不同类型自然样品中的锂同位素研究(表3)。
表 3 不同双柱法分离纯化锂过程中淋洗液类型、淋洗液用量及淋洗时间的对比Table 3. Comparison of eluent type, eluent dosage and eluent time during Li separation and purification by different dual-column methods本文将以Zhang[31]的方法为例,详细介绍双柱法Li分离纯化流程。双柱法的建立主要针对低Li、高Fe-Mg样品。在首次分离纯化后,样品中可能存在显著的Na残留。为解决该问题并减少树脂用量,通常通过两步淋洗完成。Zhang[31]参考了前人方法对多种标准物质进行Li分离纯化,发现锂同位素组成偏低约1‰,这一现象并非仪器误差引起,而可能源于色谱柱及阳离子交换树脂的化学特性。为此,Zhang[31]优化了James等[46]提出的双柱分离纯化法,使用较少的树脂并采用低浓度硝酸作为淋洗液,能够在较短时间内实现Li完全洗脱。该方法通过国际标准样品(如L-SVEC、NASS-7、JB-2、BHVO-2)验证,淋洗曲线以国际玄武岩标样JB-2为例(图4),结果显示该方法应用于不同类型自然样品中Li分离纯化具有高回收率(~100%)和高效性(整个流程<8h)。
2.3.3 多柱法
多柱法的建立是为满足TIMS分析测定锂同位素时对高Li纯度的要求,同时也为减少树脂及淋洗试剂用量以免产生较高Li空白污染等问题。该类方法主要通过使用多个不同的色谱柱或多次淋洗,逐步实现Li完全洗脱。通常在使用较少树脂的情况下(多柱树脂用量大多小于1.5mL),通过增加色谱柱数量或淋洗次数(通常为三柱或者四柱),逐步分离样品基质中的干扰离子,最终实现Li的100%提纯。
早在二十世纪末,多柱法便已建立。Moriguti等[22]为解决早期分离纯化方法中所用试剂准备时间较长(用时超过20d)以及淋洗液用量大(超过600mL)等问题,开发了一种四步分离纯化法。该方法使用不同浓度的盐酸、盐酸与乙醇的混合溶液作为淋洗液,通过四个步骤实现Li完全分离与纯化。这四个步骤分别是:①分离溶液基质中大多数主量离子;②分离除Na以外的主量离子;③分离Na离子;④进一步纯化溶液中的Li。该方法涉及两种不同的色谱柱、四种不同的淋洗液及多次介质转换,流程较为复杂。随后,Rudnick等[58]对四步分离纯化法进行了简化,仅保留前三步,并适当降低了第一步中淋洗酸的浓度,从而实现了不同类型样品中Li的100%分离纯化。苏媛娜等[39]和赵悦等[50]在此基础上进一步优化,适当增加了第一柱和第二柱中树脂的用量,略微提高了第一步中淋洗酸的浓度,通过三步淋洗实现Li完全分离纯化,同时淋洗液用量减少了39%(由59mL减少至~36mL),提升了样品分离纯化效率(表4)。虽然经过几次优化改进,但由于该类方法淋洗次数较多,色谱柱清洗溶液及淋洗液用量较高,洗脱时间大多在一天以上,叠加不同柱洗脱液蒸干及介质转换等步骤,整个分离纯化时间远大于其他方法体系,样品处理效率相对较低。
表 4 不同多柱法分离纯化锂过程中淋洗液类型、淋洗液用量及淋洗时间的对比Table 4. Comparison of eluent type, eluent dosage and elution time during Li separation and purification by different multi-column methods由于多柱法分离纯化Li的流程相对复杂且繁琐,近几十年来关于该方法的改进研究相对较少,因此在锂同位素分析中的应用远不及单柱法和双柱法广泛。
2.3.4 套柱法
套柱法通过将两个大小不同的色谱柱串联使用,实现一次淋洗完成样品中Li分离纯化。此方法通过微柱和长柱的双树脂柱串联,有效地分离Li与基质元素。微柱具有高效吸附阳离子(如稀土元素和Ca)的功能,便于后续清洗,而长柱则进一步分离Li与Na,确保即使在过载或高基质样品中,也能实现Li高效回收(>96%)。从分离纯化流程的角度来看,套柱法是双柱法的优化组合,但相比于单柱法和双柱法,该类方法在Li分离纯化中的应用实践相对较晚,方法体系仍需不断优化,因此应用该方法体系所开展的相关研究相对较少。
为详细阐明套柱法Li分离纯化流程,本文以Zhu等[51]的研究为例,通过示意图简要描述了微柱和长柱淋洗过程中Li和Na离子的洗脱分离(图5),概括性地还原了该方法的洗脱流程。Zhu等[51]在研究中发现,传统的单柱法容易受到基质元素(如Ca、Mg)的干扰,导致Li的洗脱峰发生漂移,影响提纯效率和同位素比值的准确性。此外,该类方法多依赖于有机溶剂,这会导致树脂降解而降低效能,同时包含耗时耗力的复杂步骤,难以实现低Li含量样品的高精度分析。针对这些问题,Zhu等[51]优化了洗脱条件,使用0.5mol/L盐酸作为淋洗液,增加了树脂容量,有效地控制了洗脱峰的漂移,显著减少了高基质样品中的干扰。与以往方法相比,该方法不仅将淋洗时间缩短至2h左右,还避免了有机溶剂及其蒸发对分离纯化效果的影响,显著提高了洗脱效率。此外,阳离子交换树脂可以通过快速清洗重复使用,从而降低实验成本并减少废弃物的产生。经过约1.5年的标准样品验证,该方法在锂同位素比值(δ7Li)测定中的长期外部精度优于±0.47‰,并适用于多种样品类型,包括火成岩、碳酸盐岩和海水,特别是对低Li含量和高基质杂质样品的应用效果尤为显著。
套柱法在操作上类似于双柱法的半自动流程,虽然目前应用相对较少,但由于其兼顾多类型自然样品的适用性,同时考虑了实验流程的经济、效率及环保等因素,因此在未来具有广阔的应用前景。
3. 不同分离纯化方法的自然样品适用性分析
锂同位素在环境、地质和地球化学中的广泛应用依赖于准确高效的分析测定[59],这需要针对不同Li含量和基质/锂比值的自然样品进行Li分离纯化。不同储库中Li含量和同位素组成存在显著差异,同时,不同储库样品中的基质离子组成及含量差异也较大。例如,某些硅酸盐岩石或矿物中Fe、Mg含量较高,但Li含量低于4μg/g;碳酸盐岩中Ca和Mg含量较高,而Li含量非常低,通常低于硅酸盐岩1~2个数量级;在某些蒸发岩中,Na含量较高而Li含量较低;而在海水、盐湖或卤水样品中,Na含量远高于Li。因此,针对不同基质特征,选择合适的分离纯化方法至关重要。
在现有各类Li分离纯化方法中,样品承载力和适用基质类型差异显著。单柱法是锂同位素分析中最常用的方法之一,以Tomscak等[14]、Nishio等[41]和Magna等[15]为代表的基于硝酸-甲醇混合淋洗液的单柱分离纯化法在早期应用较广泛。然而,随着研究发现有机醇类带来的负面影响,这类方法逐渐被替代。Misra等[42]和Bohlin等[56]建立了使用盐酸作为淋洗液的单柱分离纯化方法,特别适用于样品量少、Li含量低的样品(如有孔虫等)。张俊文等[44]及Zhu等[45]则开发了使用少量淋洗液的单柱分离纯化方法,但这些方法主要适用于水样或岩石样品。基于James等[46]方法发展的一系列双柱分离纯化法,在实际应用中表现出独特优势。这类方法对不同自然样品具有较高的“容忍度”。例如,Gao等[47]建立的双柱法,特别适用于高Mg/Fe比值但低Li含量的样品(如铁镁质岩石),而Zhang[31]开发的双柱法则更适用于Li含量较高的样品。通过重复第一柱的操作,Zhang[31]建立的双柱方法可扩展至更多类型样品。Zhu等[45]进一步开发了适用高Ca低Li(如碳酸盐岩)和高Na低Li样品(如海水、卤水)的双柱分离纯化法。尽管多柱法在理论上能提供更复杂的分离纯化机制,但由于操作繁琐和时间消耗较大,其应用范围相对较小。套柱法作为一种新颖的方法,兼顾了多类型自然样品的适用性,包括低Li含量的碳酸盐岩和常规Li含量的火成岩。
综合分析发现,单柱法和双柱法目前在Li分离纯化研究中应用最广泛。然而,这两类方法的适用性依然受到样品Li含量及基质成分的影响。未来的研究仍可进一步优化这两类方法,通过细化不同浓度淋洗酸下Li和其他基质离子的分配系数,结合不同类型的树脂及其用量,开发更广泛自然样品适用、更稳定且效率更高的淋洗方法。此外,套柱法作为一种操作简便、经济且环保的方法,具有良好的发展前景,其类似“半自动”双柱法的流程能够避免中间步骤中的蒸干及介质转换,为未来发展自然样品Li自动化分离纯化提供了思路。目前,法国巴黎地球物理学院与瑞士相关研究机构已开始试制试用自动淋洗设备,尽管当前分离纯化效率及使用稳定性等方面仍亟待提高,但将可能成为未来离子色谱分离纯化技术在地球科学研究中的重要发展方向。
4. 结语与展望
阳离子交换树脂法在锂同位素分离纯化的应用中取得了显著进展。根据淋洗次数的不同,该方法可以分为单柱法、双柱法、多柱法和套柱法四类。不同方法中所用树脂以AG50W-X8、AG50W-X12和AGMP-50三种为主,树脂用量从1mL至20mL以上不等,淋洗液从最初的无机酸和醇类混合溶液逐渐过渡到仅用无机酸,淋洗用量也从近300mL减少至不足10mL。发展至今,自然样品Li分离纯化流程时间缩短至数小时,整个流程空白低至样品量的1‰以下,且多数方法体系下锂同位素的分析精度皆优于1‰以内。但不同类型方法对自然样品的适用性存在显著差异,分离纯化效果高度依赖于样品的基质类型及样品的Li含量。其中,单柱法因其操作简便、成本较低,更适用于Li含量较高、基质成分较简单的样品,成为目前应用最广泛的方法。双柱法通过增加额外的分离步骤,更适合处理基质复杂样品,尤其是在高Na含量样品中表现出较高的分离纯化效率。套柱法对低Li含量和高基质杂质样品展现出独特优势,不仅提高了分析精度,缩短了分析时间,还减少了有机溶剂的使用,具有更高的环保性和经济性。相较之下,由于多柱法因步骤复杂、耗时耗力,已逐渐被淘汰。
尽管现有的分离纯化方法能够满足大多数自然样品中锂同位素的分析需求,但随着科学研究的深入,特别是在极端环境样品或极微量Li分析应用领域,仍需进一步优化和创新,包括提高树脂的选择性、简化操作流程、减少实验中引入的空白值,并提升Li回收率和分析精度。未来,随着测试技术和设备的不断进步,自动化淋洗设备的应用有望实现Li的高效分离纯化,这将成为同位素分析的主要发展方向之一,进一步扩展自然样品的适用范围,推动锂同位素在环境、资源、能源、地质及地球化学等领域的广泛应用和快速发展。
-
图 2 色谱柱法锂的洗脱流程示意图(修改自Schonbachler等[37])
Figure 2. Schematic diagram of lithium elution process by column chromatography (Modified from Schonbachler, et al[37]): (a) Lithium is completely adsorbed by the resin; (b) Lithium migrates downward in the resin column with the eluent; (c) Lithium is completely eluted and separated.
表 1 不同类型锂分离纯化方法中色谱柱、树脂、淋洗介质及淋洗方式
Table 1 Chromatographic column, resin, eluent and elution type in the different lithium separation and purification methods
序号 色谱柱(尺寸) 树脂(用量) 淋洗介质 淋洗方式 参考文献 1 派热克斯玻璃柱(柱高>20cm) AG 50W-X8 0.5mol/L盐酸 单柱 [12] 2 石英柱 (柱高30cm) AG 50W-X8 1mol/L硝酸的80%甲醇混合溶液 单柱 [14] 3 石英柱 (柱高12.5cm) AG 50W-X8 0.5mol/L硝酸的80%甲醇混合溶液 单柱 [41] 4 聚四氟乙烯柱(柱高>10cm) AG 50W-X8 1mol/L硝酸的75%甲醇混合溶液 单柱 [15] 5 石英柱 (柱高30cm) AG 50W-X8 0.15mol/L盐酸的30%乙醇混合溶液 单柱 [32] 6 聚四氟乙烯柱
(柱高5cm)AG 50W-X8
(2mL)0.5mol/L盐酸 单柱 [42] 7 硼硅玻璃柱
(柱高21.5cm)AG 50W-X8
(2mL)顺序加入:0.67mol/L硝酸的30%甲醇混合溶液、
1 mol/L硝酸的80%甲醇混合溶液单柱 [43] 8 Savillex-聚四氟乙烯
(柱高20cm)AG 50W-X12
(1.5mL)顺序加入:0.4mol/L盐酸、1.0mol/L盐酸 单柱/双柱 [44] 9 聚丙烯柱
(柱高8.5cm)AGMP-50
(约1.4g)顺序加入:0.2mol/L盐酸、0.73mol/L盐酸和
0.3mol/L 氢氟酸单柱/双柱 [45] 10 聚四氟乙烯柱(柱高>8.5cm) AG 50W-X12 0.2mol/L盐酸 双柱 [46] 11 石英柱
(柱高>20cm)AG 50W-X8 (15mL)、
AG 50W-X12 (5mL)0.2mol/L盐酸 双柱 [47] 12 Bio-rad聚丙烯柱
(柱高约7cm)AG 50W-X12
(1.0mL)两柱分别使用1mol/L硝酸、0.2mol/L硝酸 双柱 [31] 13 Bio-rad聚丙烯柱
(柱高分别为4cm、9cm)AG 50W-X8
(2.5mL、2.0mL)两柱分别使用0.2mol/L盐酸、0.5mol/L盐酸 双柱 [48] 14 聚丙烯柱+ Saville聚四氟乙烯柱
(柱高分别为20cm、18cm)AG 50W-X8
(6.4mL、2.3mL)0.5mol/L盐酸 双柱 [49] 15 聚丙烯柱+石英柱 AG 50W-X8
(1.2mL、1.5mL、1.0mL)三柱分别使用2.8mol/L盐酸、0.15mol/L盐酸和
0.15mol/L盐酸的30%乙醇混合溶液三柱 [39] 16 聚丙烯柱+石英柱 AG 50W-X8
(1.2mL、1.5mL、1.0mL)三柱分别使用4mol/L盐酸+2.8mol/L盐酸、0.15mol/L
盐酸和0.15mol/L盐酸的30%乙醇混合溶液三柱 [50] 17 聚丙烯柱和聚乙烯柱
(柱高分别为5.5cm、0.88cm)AG 50W-X12
(1mL、0.1mL)四柱分别使用2.8mol/L盐酸、0.15mol/L盐酸、0.5mol/L
盐酸的30%乙醇混合溶液和0.15mol/L盐酸四柱 [22] 18 双柱
(柱高分别为2cm和12.5cm)AG 50W-X12
(0.57mL、6.8mL)0.5mol/L盐酸 套柱 [51] 表 2 不同单柱法分离纯化锂过程中淋洗液类型、淋洗液用量及淋洗时间的对比
Table 2 Comparison of eluent type, eluent dosage and elution time during lithium separation and purification by different single column methods
表 3 不同双柱法分离纯化锂过程中淋洗液类型、淋洗液用量及淋洗时间的对比
Table 3 Comparison of eluent type, eluent dosage and eluent time during Li separation and purification by different dual-column methods
表 4 不同多柱法分离纯化锂过程中淋洗液类型、淋洗液用量及淋洗时间的对比
Table 4 Comparison of eluent type, eluent dosage and elution time during Li separation and purification by different multi-column methods
-
[1] Elliott T, Thomas A, Jeffcoate A, et al. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts[J]. Nature, 2006, 443(7111): 565−568. doi: 10.1038/nature05144
[2] Liu M C, McKeegan K D, Goswami J N, et al. Isotopic records in CM hibonites: Implications for timescales of mixing of isotope reservoirs in the Solar nebula[J]. Geochimica et Cosmochimica Acta, 2009, 73(17): 5051−5079. doi: 10.1016/j.gca.2009.02.039
[3] Huh Y, Chan L H, Edmond J M. Lithium isotopes as a probe of weathering processes: Orinoco River[J]. Earth and Planetary Science Letters, 2001, 194(1-2): 189−199. doi: 10.1016/S0012-821X(01)00523-4
[4] Misra S, Froelich P N. Lithium isotope history of cenozoic seawater: Changes in silicate weathering and reverse weathering[J]. Science, 2012, 335(6070): 818. doi: 10.1126/science.1214697
[5] Miao W L, Zhang X Y, Li Y L, et al. Lithium and strontium isotopic systematics in the Nalenggele River catchment of Qaidam Basin, China: Quantifying contributions to lithium brines and deciphering lithium behavior in hydrological processes[J]. Journal of Hydrology (Part B), 2022, 614: 128630. doi: 10.1016/j.jhydrol.2022.128630
[6] 刘丽君, 王登红, 侯可军, 等. 锂同位素在四川甲基卡新三号矿脉研究中的应用[J]. 地学前缘, 2017, 24(5): 167−171. doi: 10.13745/j.esf.yx.2017-1-16 Liu L J, Wang D H, Hou K J, et al. Application of lithium isotope to Jiajika new No. 3 pegmate lithium poly-metallic vein in Sichuan[J]. Earth Science Frontiers, 2017, 24(5): 167−171. doi: 10.13745/j.esf.yx.2017-1-16
[7] Choi H B, Ryu J S, Shin W J, et al. The impact of anthropogenic inputs on lithium content in river and tap water[J]. Nature Communications, 2019, 10(1): 5371. doi: 10.1038/s41467-019-13376-y
[8] Kaplan L, Wilzbach K E. Lithium isotope determination by neutron activation[J]. Analytical Chemistry, 1954, 26(11): 1797−1798. doi: 10.1021/AC60095A031
[9] Meier A L. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry[J]. Analytical Chemistry, 1982, 54(13): 2158−2161. doi: 10.1021/ac00250a007
[10] Grégoire D C, Acheson B M, Taylor R P. Measurement of lithium isotope ratios by inductively coupled plasma mass spectrometry: Application to geological materials[J]. Journal of Analytical Atomic Spectrometry, 1996, 11(9): 765−772. doi: 10.1039/JA9961100765
[11] Chaussidon M, Robert F. 7Li/6Li and 11B/10B variations in chondrules from the Semarkona unequilibrated chondrite[J]. Earth and Planetary Science Letters, 1998, 164(3): 577−589. doi: 10.1016/S0012-821X(98)00250-7
[12] Chan L H. Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate[J]. Analytical Chemistry, 1987, 59(22): 2662−2665. doi: 10.1021/AC00149A007
[13] Moriguti T, Nakamura E. Precise lithium isotopic analysis by thermal ionization mass spectrometry using lithium phosphate as an ion source material[J]. Proceedings of the Japan Academy, 1993, 69(6): 123−128. doi: 10.2183/PJAB.69.123
[14] Tomascak P B, Carlson R W, Shirey S B. Accurate and precise determination of Li isotopic compositions by multi-collector sector ICP-MS[J]. Chemical Geology, 1999, 158(1): 145−154. doi: 10.1016/S0009-2541(99)00022-4
[15] Magna T, Wiechert U H, Halliday A N. Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICP-MS[J]. International Journal of Mass Spectrometry, 2004, 239(1): 67−76. doi: 10.1016/j.ijms.2004.09.008
[16] 唐清雨, 陈露, 田世洪, 等. 锂硼同位素MC-ICP-MS分析中的记忆效应研究[J]. 岩矿测试, 2024, 43(2): 201−212. doi: 10.15898/j.ykcs.202310260167 Tang Q Y, Chen L, Tian S H, et al. A study on memory effects in lithium and boron isotope analysis using MC-ICPMS[J]. Rock and Mineral Analysis, 2024, 43(2): 201−212. doi: 10.15898/j.ykcs.202310260167
[17] Bell D R, Hervig R L, Buseck P R, et al. Lithium isotope analysis of olivine by SIMS: Calibration of a matrix effect and application to magmatic phenocrysts[J]. Chemical Geology, 2009, 258(1): 5−16. doi: 10.1016/j.chemgeo.2008.10.008
[18] Martin C, Ponzevera E, Harlow G. In situ lithium and boron isotope determinations in mica, pyroxene, and serpentine by LA-MC-ICP-MS[J]. Chemical Geology, 2015, 412: 107−116. doi: 10.1016/j.chemgeo.2015.07.022
[19] Chan L H, Edmond J M. Variation of lithium isotope composition in the marine environment: A preliminary report[J]. Geochimica et Cosmochimica Acta, 1988, 52(6): 1711−1717. doi: 10.1016/0016-7037(88)90239-6
[20] Chan L H, Edmond J M, Thompson G, et al. Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in the oceans[J]. Earth and Planetary Science Letters, 1992, 108(1): 151−160. doi: 10.1016/0012-821X(92)90067-6
[21] 孙爱德, 肖应凯. 锂同位素质谱法测定及其样品制备研究进展[J]. 盐湖研究, 2001, 9(4): 64−71. doi: 10.3969/j.issn.1008-858X.2001.04.011 Sun A D, Xiao Y K. The progress in the isotopic determination of lithium by TIMS and its sample preparation[J]. Journal of Salt Lake Research, 2001, 9(4): 64−71. doi: 10.3969/j.issn.1008-858X.2001.04.011
[22] Moriguti T, Nakamura E. High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples[J]. Chemical Geology, 1998, 145(1): 91−104. doi: 10.1016/S0009-2541(97)00163-0
[23] Chan L H, Edmond J M, Thompson G. A lithium isotope study of hot springs and metabasalts from mid-ocean ridge hydrothermal systems[J]. Journal of Geophysical Research, 1993, 98(B6): 9653. doi: 10.1029/92JB00840
[24] Chan L H C, Gieskes J M, You C F, et al. Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California[J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4443−4454. doi: 10.1016/0016-7037(94)90346-8
[25] 肖应凯, 祁海平, 王蕴慧, 等. 青海大柴达木湖卤水、沉积物和水源水中的锂同位素组成[J]. 地球化学, 1994, 23(4): 329−338. doi: 10.19700/j.0379-1726.1994.04.003 Xiao Y K, Qi H P, Wang Y H, et al. Lithium isotopic composition of brine, sediments and source water in Da Qaidam Lake, Qinghai, China[J]. Geochimica, 1994, 23(4): 329−338. doi: 10.19700/j.0379-1726.1994.04.003
[26] 汪齐连. 运用MC-ICP-MS测定天然样品的锂同位素组成[D]. 北京: 中国科学院研究生院(地球化学研究所), 2006. Wang Q L. Measurement of lithium isotope in natural samples using MC-ICP-MS[D]. Beijing: Graduate School of Geochemistry, Chinese Academy of Sciences (Institute of Geochemistry), 2006.
[27] Millot R, Vigier N, Gaillardet J. Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 3897−3912. doi: 10.1016/j.gca.2010.04.025
[28] Penniston-Dorland S, Liu X M, Rudnick R L. Lithium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 165−217. doi: 10.2138/rmg.2017.82.6
[29] Tomascak P, Magna T, Dohmen R. Advances in lithium isotope geochemistry[M]. Springer International Publishing, 2016.
[30] Hoefs J. Lithium isotope composition of Quaternary and Tertiary biogene carbonates and a global lithium isotope balance[J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2679−2690. doi: 10.1016/S0016-7037(97)00101-4
[31] Zhang X. Sedimentary recycling and chemical weathering: A silicon and lithium isotopes perspective[D]. Paris: Institut du Physique de Globe de Paris, 2018.
[32] 汪齐连, 赵志琦, 刘丛强, 等. 天然样品中锂的分离及其同位素比值的测定[J]. 分析化学, 2006, 34(6): 764−768. doi: 10.3321/j.issn:0253-3820.2006.06.005 Wang Q L, Zhao Z Q, Liu C Q, et al. Separation and determination of lithium in natural samples[J]. Chinese Journal of Analytical Chemistry, 2006, 34(6): 764−768. doi: 10.3321/j.issn:0253-3820.2006.06.005
[33] Bouman C, Elliott T, Vroon P Z. Lithium inputs to subduction zones[J]. Chemical Geology, 2004, 212(1): 59−79. doi: 10.1016/j.chemgeo.2004.08.004
[34] Dellinger M, Joshua West A, Paris G, et al. The Li isotope composition of marine biogenic carbonates: Patterns and mechanisms[J]. Geochimica et Cosmochimica Acta, 2018, 236: 315−335. doi: 10.1016/j.gca.2018.03.014
[35] Murphy J G, Ahm A S C, Swart P K, et al. Reconstructing the lithium isotopic composition (δ7Li) of seawater from shallow marine carbonate sediments[J]. Geochimica et Cosmochimica Acta, 2022, 337: 140−154. doi: 10.1016/j.gca.2022.09.019
[36] Yang C, Vigier N, Yang S, et al. Clay Li and Nd isotopes response to hydroclimate changes in the Changjiang (Yangtze) Basin over the past 14,000 years[J]. Earth and Planetary Science Letters, 2021, 561: 116793. doi: 10.1016/j.jpgl.2021.116793
[37] Schonbachler M, Fehr M A. Basic of ion exchange chromatography for selected geological applications[M].Treatise on Geochemistry (2nd Edition). 2014.
[38] 石雅静. 地质样品中钼同位素的自动化分离富集方法研究[D]. 成都: 成都理工大学, 2020. Shi Y J. Automatic separation and enrichment of molybdenum isotopes in geological samples[D]. Chengdu: Chengdu University of Technology, 2020.
[39] 苏嫒娜, 李真真, 田世洪, 等. MC-ICP-MS高精度测定Li同位素分析方法[J]. 矿床地质, 2010, 29(S1): 835−836. doi: 10.16111/j.0258-7106.2010.s1.393 Su Y N, Li Z Z, Tian S H, et al. High-precision measurement of lithium isotopes using MC-ICP-MS[J]. Mineral Deposits, 2010, 29(S1): 835−836. doi: 10.16111/j.0258-7106.2010.s1.393
[40] 蔺洁, 刘勇胜, 胡兆初, 等. MC-ICP-MS准确测定地质样品中锂同位素组成[J]. 矿物岩石地球化学通报, 2016, 35(3): 458−463. doi: 10.3969/j.issn.1007-2802.2016.03.008 Lin J, Liu Y S, Hu Z C, et al. Accurate analysis of lithium isotopic composition of geological samples by MC-ICP-MS[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 458−463. doi: 10.3969/j.issn.1007-2802.2016.03.008
[41] Nishio Y, Nakai S I. Accurate and precise lithium isotopic determinations of igneous rock samples using multi-collector inductively coupled plasma mass spectrometry[J]. Analytica Chimica Acta, 2002, 456(2): 271−281. doi: 10.1016/S0003-2670(02)00042-9
[42] Misra S, Froelich P N. Measurement of lithium isotope ratios by quadrupole-ICP-MS: Application to seawater and natural carbonates[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(11): 1524−1533. doi: 10.1039/B907122A
[43] Lin J, Liu Y, Hu Z, et al. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2): 390−397. doi: 10.1039/C5JA00231A
[44] 张俊文, 孟俊伦, 赵志琦, 等. 多接收电感耦合等离子质谱法准确测定天然地质样品中的锂同位素组成[J]. 分析化学, 2019, 47(3): 415−422. doi: 10.19756/j.issn.0253-3820.181444 Zhang J W, Meng J L, Zhao Z Q, et al. Accurate determination of lithium isotopic compositions in geological samples by multi-collector inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 415−422. doi: 10.19756/j.issn.0253-3820.181444
[45] Zhu G, Ma J, Wei G, et al. A rapid and simple method for lithium purification and isotopic analysis of geological reference materials by MC-ICP-MS[J]. Frontiers in Chemistry, 2020, 8: 557489. doi: 10.3389/fchem.2020.557489
[46] James R H, Palmer M R. The lithium isotope composition of international rock standards[J]. Chemical Geology, 2000, 166(3): 319−326. doi: 10.1016/S0009-2541(99)00217-X
[47] Gao Y, Casey J F. Lithium isotope composition of ultramafic geological reference materials JP-1 and DTS-2[J]. Geostandards and Geoanalytical Research, 2012, 36(1): 75−81. doi: 10.1111/j.1751-908X.2011.00117.x
[48] Li W, Liu X M, Godfrey L V. Optimisation of lithium chromatography for isotopic analysis in geological reference materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2019, 43(2): 261−276. doi: 10.1111/ggr.12254
[49] Li X, Han G, Zhang Q, et al. Accurate lithium isotopic analysis of twenty geological reference materials by multi-collector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 188: 106348. doi: 10.1016/j.sab.2021.106348
[50] 赵悦, 侯可军, 田世洪, 等. 常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究[J]. 岩矿测试, 2015, 34(1): 28−39. doi: 10.15898/j.cnki.11-2131/td.2015.01.006 Zhao Y, Hou K J, Tian S H, et al. Study on measurements of lithium isotopic compositions for common standard reference materials using multi-collector inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 28−39. doi: 10.15898/j.cnki.11-2131/td.2015.01.006
[51] Zhu Z, Yang T, Zhu X. Achieving rapid analysis of Li isotopes in high-matrix and low-Li samples with MC-ICP-MS: New developments in sample preparation and mass bias behavior of Li in the ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(7): 1503−1513. doi: 10.1039/C9JA00076C
[52] Gou L F, Jin Z D, Pogge von Strandmann P A E, et al. Li isotopes in the middle Yellow River: Seasonal variability, sources and fractionation[J]. Geochimica et Cosmochimica Acta, 2019, 248: 88−108. doi: 10.1016/j.gca.2019.01.007
[53] Ma T, Weynell M, Li S L, et al. Lithium isotope compositions of the Yangtze River headwaters: Weathering in high-relief catchments[J]. Geochimica et Cosmochimica Acta, 2020, 280: 46−65. doi: 10.1016/j.gca.2020.03.029
[54] Zhu G, Ma J, Wei G, et al. Lithium isotope fractionation during the weathering of granite: Responses to pH[J]. Geochimica et Cosmochimica Acta, 2023, 345: 117−129. doi: 10.1016/j.gca.2022.12.028
[55] Alistair B, Jeffcoate T E, Thomas A, et al. Precise, small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2004, 28(1): 161−172. doi: 10.1111/j.1751-908X.2004.tb01053.x
[56] Bohlin M S, Misra S, Lloyd N, et al. High-precision determination of lithium and magnesium isotopes utilising single column separation and multi-collector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2018, 32(2): 93−104. doi: 10.1002/rcm.8020
[57] 宋以龙. 我国大型河流流域硅酸盐岩风化过程的锂同位素制约[D]. 天津: 天津大学, 2021. Song Y L. Continental silicate weathering processes traced by Li isotopes in Chinese large rivers[D]. Tianjin: Tianjin University, 2021.
[58] Rudnick R L, Tomascak P B, Njo H B, et al. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina[J]. Chemical Geology, 2004, 212(1): 45−57. doi: 10.1016/j.chemgeo.2004.08.008
[59] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669. doi: 10.15898/j.cnki.11-2131/td.201907310115 Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669. doi: 10.15898/j.cnki.11-2131/td.201907310115