Automatic Purification of Li Isotopes from Geological Samples by High-Pressure Ion Chromatography
-
摘要:
利用MC-ICP-MS进行Li同位素准确测定的前提是Li与其他元素(特别是Na)的完全分离,以避免同质异位素干扰和基体效应,并且回收率需要接近100%。多位学者对淋洗液种类、树脂种类、树脂粒度、柱管尺寸和树脂体积等进行交叉组合,提出了不少传统手工过柱Li同位素分离纯化方法,回收率达100%,但耗时1天或2天不等,流程繁琐。高压离子色谱仪在同位素分离纯化应用中,具有一次分离到位、分离时间短、在线量化分离组分的含量和纯度等优势,已成为同位素分离纯化的新趋势;但高压离子色谱仪同位素分离纯化应用案例报道中缺乏对高压离子色谱仪淋洗过程的系统研究,导致该分离方法应用有限。本文从同位素分离纯化角度,设计了多组条件实验,系统探索了高压离子色谱仪阳离子色谱柱的酸耐受性、载荷能力以及基体效应,并针对Li同位素,获得最佳淋洗条件,从而建立了利用高压离子色谱仪自动分离纯化Li的方法。实验结果表明,CS16阳离子色谱柱对样品溶液的酸度要求高(<50mmol/L),但载荷能力大(允许上样量为500ng/g的多元素混合标准溶液+2.5μg/g的K-Na-Ca-Mg溶液,1.5mL),且基体效应不明显(50μg/g的K、Na、Ca、Mg,500ng/g的Fe以及500ng/g的Al加入对元素出峰位置没有影响)。本文通过优化样品溶样步骤,使样品溶液酸度降到30mmol/L,同时优化淋洗条件(淋洗液浓度30mmol/L,色谱柱流速1mL/min,温度60℃),25min内完成Li的分离纯化。对4个国家地质标准物质(GBW07333、GBW07103、GBW07159和GBW07180)进行Li分离纯化,Li的回收率达99.3%以上,空白低于传统手工过柱方法,分离纯化的Li量也能满足MC-ICP-MS进行Li同位素分析测试需求。
要点(1)系统探索CS16阳离子色谱柱的酸耐受性、载荷能力和基体效应等,利用高压离子色谱仪自动分离纯化碱金属和碱土金属元素。
(2)通过优化地质样品溶样步骤,极大地降低了地质样品溶液的酸度,将高压离子色谱仪的应用拓展到基体复杂的地质样品中。
(3)高压离子色谱仪将Li的分离纯化时间缩短到25min,显著提高了Li同位素分析测试效率。
HIGHLIGHTS(1) The acid tolerance, sample-loading capacity and matrix effect of a CS16 cationic chromatographic column were systematically investigated, which laid a foundation for automatic separation and purification of alkali metals and alkaline earth metals by high-pressure ion chromatography.
(2) By optimizing the dissolution method, the acidity of the geological sample solution was greatly reduced to satisfy the sampling requirements of high-pressure ion chromatography, which extended the application of HP-IC to geological samples with a complex matrix.
(3) The Li purification time was greatly shortened to 25min by high-pressure ion chromatography, which remarkably improved the efficiency of the Li isotope analysis.
Abstract:High-quality purification of lithium (Li) is crucial in measuring 7Li/6Li ratios of whole rocks precisely by MC-ICP-MS. Many scholars have proposed traditional manual Li purification methods by cross-combining the types of eluents, types of resin, resin particle size, column tube size, and resin volume. However, the process is still cumbersome. In contrast, high-pressure ion chromatography (HP-IC) provides single-step separation, shorter durations, and online quantification; it is underutilized due to insufficient systematic research on its elution processes. Here, an automatic purification method of Li by HP-IC was established by optimizing IC parameters, laying a foundation for the wide application of IC in the field of isotope purification. The testing results of Li collections for four national geological standard samples indicate that the recovery rate exceeds 99.3%, and the blank measurement is lower than that of the traditional manual column method. The amount of separated Li also meets the demand of MC-ICP-MS for Li isotope analysis. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202407310165.
-
Keywords:
- Li isotope /
- high-pressure ion chromatography /
- cation ion chromatographic column /
- acid tolerance /
- sample-loading capacity /
- recovery rate
BRIEF REPORTSignificance: In the global carbon cycle, chemical weathering of silicic rock is considered the main sedimentation mode of atmospheric carbon dioxide, and plays an important role in controlling global climate change and topography evolution[1-3]. In the past decade, lithium isotopes have emerged as one of the most powerful and reliable indicators in weathering studies of silicic rocks[10-11]. This is due to the significant relative mass difference of up to 16.7% between 6Li and 7Li, which makes lithium susceptible to substantial isotopic fractionation in geological processes. However, the relatively large mass increases the difficulty of analyzing Li isotope ratios by MC-ICP-MS because Li is prone to significant fractionation during the separation and purification process. This requires the Li recovery rate to be nearly 100% and to avoid interference from Na, Ca, Mg, and other matrix elements. Several scholars have proposed various traditional manual Li purification methods and have optimized them by cross-combining different types of eluent, resin types, resin particle sizes, column tube sizes, and resin volumes, but the process remains cumbersome and requires 1 to 2 days to complete. Due to single-step separation, shorter separation times, and the online quantification of each element, high-pressure ion chromatography (HP-IC) has become a new trend in isotope purification, applied in the purification of Sr[39], Ca[40], Li[24], K[41], Mg[42], S[43], F[44], Cl[44], Br[43] and Rb[45]. Unfortunately, the reported HP-IC separation studies generally confirm the purity and recovery rate of target isotopes based on the final accurate testing results from MC-ICP-MS. They also lacked systematic research on the elution process of HP-IC, which limits the application of this separation method. Here, several sets of conditional experiments were designed to explore the acid tolerance, sample-loading capacity, and matrix effect of the cationic chromatographic column configured in HP-IC. We systematically explored HP-IC, optimized the drenching conditions for the CS16 cation column, and successfully established an effective HP-IC separation method.
Methods: A high-pressure ion chromatograph (Dionex ICS-6000, Thermo Scientific) features an automatic sampler (AS-AP), an inorganic cation column (IonPac CS16, 5mm×250mm), a guard column (IonPac CG16, 5mm×50mm), a quadrupole pump (SP), an auxiliary pump (AXP), a regenerative suppressor (CERS 500, 4mm), a CD conductivity detector, and a fraction collector (ASX-280). The HP-IC is well-suited for separating and collecting alkali and alkaline earth metals. The temperature of the inorganic cation column can be set to 25℃, 40℃, or 60℃. The eluent was switched from the recommended methanesulfonic acid to high-purity nitric acid, and the sample loop volume was set at 1.7mL.
For sample preparation, 50mg of rock powders were digested by mixing 3mL of HF and 1mL of HNO3 in Teflon vessels on a hotplate at 140℃, replenishing the dried residue with 3mL of aqua regia until the solutions became clear. The preliminary experiment demonstrated that geological samples dissolved by the standard method could not produce ideal peaks using HP-IC, which may be caused by three reasons: first, the acidity of the geological sample solution is too high; second, the sampling amount is too large; third, the matrix of the geological sample solution is too complex. To solve these problems, three sets of experiments were designed to identify the factors affecting the purification process of IC, including the acid tolerance test, sample-loading capacity test, matrix effect test, and so on. The eluting conditions were optimized to purify Li in the geological samples using HP-IC. The standard solutions used include GSB04-1767—2004 national multi-trace element solution and BWT20009-1000-W-50 K-Na-Ca-Mg solution. The natural geological standard samples used include GBW07103 (Granite), GBW07104 (Andesite), GBW07105 (Basalt), GBW07101 (Ultrabasic rock), GBW07107 (Shale), GBW07333 (Marine sediment of the Yellow Sea), GBW07159 (Rare earth ore), and GBW07180 (Bauxite). The recommended values of relevant elements in these standards are shown in Table 1.
Data and results: (1) Exploring acid tolerance. By fixing the eluting conditions (the eluent concentration: 40mmol/L; eluent flow rate: 1mL/min; column temperature: 60℃; injection volume: 500μL) and increasing the acidity of the sample solution (12.5mmol/L, 25mmol/L, 50mmol/L and 100mmol/L HNO3), the maximum acidity of sample solution that can be tolerated by IC was determined by the leaching curves (<50mmol/L, Fig.1).
(2) Exploring sample-loading capacity. By fixing the eluting conditions (the eluent concentration: 40mmol/L; eluent flow rate: 1mL/min; column temperature: 60℃) and increasing injection volume of a certain sample solution (250μL, 500μL, 1000μL), the maximum sample amount that can be tolerated by HP-IC was determined by the leaching curves (>1.5mL 500ng/g multi-trace element standard solution+2.5μg/g K-Na-Ca-Mg standard solution, Fig.2).
(3) Exploring matrix effect. By adding 50μg/g K-Na-Ca-Mg, 500ng/g Fe, 500ng/g Al to 250ng/g multi-trace element standard solution in order and contrasting the peak position and peak height of alkali metal elements in these four solutions on leaching curves, the influence of matrix elements on Li separation was investigated (it had no effect on the peak position and height of Li, Fig.3a). In addition, the leaching curves of national geological standard samples GBW07103 (Granite), GBW07104 (andesite), GBW07105 (basalt) and GBW07101 (ultrabasic rock) with very different compositions were compared to further confirm that matrix effect is not obvious on the separation of Li isotopes (Fig.3b).
(4) Exploring optimal eluting condition. By fixing the type of sample solution (GSR-5, shale) and leaching conditions (the eluent flow rate: 1mL/min; column temperature: 60℃; injection volume: 200μL) and decreasing the eluent concentration (40mmol/L, 35mmol/L, 30mmol/L, 25mmol/L), the degree of separation for Li isotopes was compared to obtain the best eluent concentration (30mmol/L, Fig.4).
(5) Evaluating the purity and recovery rate of Li. Under optimal eluting conditions, the mixed standard solution was purified. Fractions were continuously collected and tested by ICP-MS. Moreover, 4 national geological standard samples were dissolved by the optimized method and eluted by HP-IC. The target Li fraction and the fractions before and behind the Li fraction were all collected and measured by ICP-MS and ICP-OES. By contrasting the amount of Li element injected to the HP-IC with the amount of Li element collected in the Li fractions, the recovery rates of Li element were calculated to be above 99.3% (Table 3), with no detectable matrix elements (e.g., Na, K, Mg, Ca) present, thus meeting the testing requirements of MC-ICP-MS.
In summary, the CS16 cationic chromatographic column can bear a volume of sample solution up to 1.5mL, and its matrix effect is not obvious, but its acidity tolerance for sample solution is low (less than 50mmol/L). By steaming normally dissolved sample solutions to a wet-salt stage and adding a small amount of ultra-pure water repeatedly, the acidity of the sample solution can be reduced from 320mmol/L (2% HNO3) to ~30mmol/L, which meets the sampling-requirements of HP-IC, successfully extending the application of IC to insoluble geological samples with a complex matrix. By optimizing eluting conditions, Li fractions separated by HP-IC are pure and have a high recovery rate, which lays a foundation for the wide application of IC in the field of isotope purification.
-
在全球碳循环中,硅酸岩的化学风化被认为是大气中二氧化碳的主要沉降方式,在控制全球气候变化和地表环境地形演化方面起到重要作用[1-3]。尽管已有多种同位素指标(如Mg、Fe、K同位素等)可以用来揭示风化情况[4-6],但这些指标大多受生物活动的干扰,难以准确追踪硅酸盐风化过程。与这些同位素相比,锂(Li)几乎不受生物活动的影响[7],其在风化产物中保留的特征能够定量地反映风化作用的强度、速率或状态[8-9]。近十年来,锂同位素被认为是硅酸岩风化研究中强有力且可靠的指标之一[10-11]。此外,锂同位素还被广泛应用于壳-幔物质循环[12]、盐湖形成与演化[13-14]、成矿物质来源[15]、重建古环境[16],以及行星起源与演化等领域[17]。
Li有2个天然稳定同位素:6Li(丰度7.52%)和7Li(丰度92.48%),二者高达16.7%的相对质量差,使得Li在地质过程中容易产生显著的同位素分馏。自二十世纪五十年代[18]以来,Li同位素的分析测试技术不断提升,尤其是多接收电感耦合等离子体质谱法(MC-ICP-MS),准确测定Li同位素的分析精度可优于0.3‰[19-20],但前提是Li与其他元素(特别是Na)的完全分离[21-22],否则测试的准确度可能受到不同程度基质效应的影响[23]。Macpherson等[23]研究结果表明,当样品溶液中Na/Li>500、Ca/Li>250、Mg/Li>250时可能会导致超过4‰的测试偏差。另外,由于6Li和7Li的相对质量差大,在分离纯化过程中容易引起大分馏。Yoshimura等[24]用高压离子色谱仪阳离子色谱柱分离L-SVEC Li标准溶液时,前0.5%的Li馏分富集7Li(δ7Li=+69.4‰),在回收率为99.1%处时,δ7Li值降至-12.5‰。因此,如果利用MC-ICP-MS能实现Li同位素比值的准确测定,不仅要有效地分离纯化样品中的Li元素,还要保证Li回收率为99.3%以上[24]。
目前最常用的Li同位素纯化方法是层析萃取法,即:使用离子交换树脂柱(树脂型号为AG50W-X8[22]、AG50W-X12[25]或AGMP-50[21])进行Li的分离提纯,淋洗液通常采用单一的盐酸[22,26]或硝酸[27-28],或采用盐酸、硝酸与甲醇或乙醇的混合溶液[29-30],以单柱[27]、双柱[22]、多柱(三柱或四柱)[30]的方式完成Li的分离纯化。由于有机酸加入后,需要更大的淋洗体积,有增大Li空白的风险[26],而硝酸的Li-Na分离系数又比盐酸略小[31],更多学者采用低浓度盐酸作为Li纯化的淋洗液[26,32]。在过柱方式上,一次过柱方法因流程简单而得到广泛应用。但前期的单柱方法分离柱长、树脂量大、淋洗体积大(230~118mL),容易发生淋洗拖尾,难以控制流程空白,耗时1天或2天[33-34]。后期改善的单柱方法虽然大大缩小了淋洗体积(15~26mL),但仅适用于基体简单的样品(海水和碳酸岩)[35],或纯化的Li量有限(0.320ng)[36],耗时1天。为了减小淋洗体积、改善淋洗拖尾现象,并适用于各种不同基体的样品,学者们开始采用多次过柱的方式分离纯化Li。例如,Li等[22]设计双柱(分别填充6.4mL和2.3mL的AG50W-X12树脂),以0.5mol/L盐酸作为淋洗液,淋洗体积小(~40mL),适用于海水、硅酸盐、碳酸盐、土壤、沉积物等多种地质样品,耗时9h。尽管多位学者交叉组合淋洗液种类(纯盐酸、盐酸-乙酸、纯硝酸、硝酸-甲醇),树脂种类(AG50W-X8、AG50W-X12),树脂粒度(100~200目、200~400目),柱管尺寸和树脂体积等,都提供了一种合理的Li分离手段[22,25-30,33-37],但是手工过柱法普遍存在多次平衡柱环境、上样、接样和蒸干样品等繁琐过程,耗时耗力(至少1天),且污染风险大,亟需提升效率。
采用高压离子色谱仪进行同位素分离纯化的方法,为实现Li的分离提供了一种新途径。2001年,Latkoczy等[38]首次将高压离子色谱仪与扇形磁质谱联机,尝试通过在线分离Rb和Sr后直接测定Sr同位素比值。研究发现,每20s连续进样14次,每次进样0.5mL,并将淋洗液流速从3mL/min降低到0.5mL/min后,产生稳定的瞬态Sr信号,持续时间超过16min,测得的87Sr/86Sr比值与传统连续溶液进样方式一致,精度达到0.07%。这次成功的尝试激发了各位学者的兴趣。鉴于高压离子色谱仪具有一次分离到位、分离时间短、在线量化分离组分的含量和纯度等优势,学者们陆续将其应用于Sr[39]、Ca[40]、Li[24]、K[41]、Mg[42],以及S[43]、F[44]、Cl[44]、Br[43]、Rb[45]等同位素的分离纯化中。例如,Karasinski等[39,42]将高压离子色谱仪与MC-ICP-MS联机,在线分离、测定水、碳酸岩和硅质岩中Sr和Mg同位素比值,省去同位素溶液前处理过程。Morgan等[41]则通过IC-MC-ICP-MS联机,在线分离并测定地质样品和生物样品中的K同位素。Yoshimura等[24]利用高压离子色谱仪分离海水中的Li、Mg、S同位素,并用馏分收集系统接取Li、Mg、S同位素溶液,利用MC-ICP-MS进一步分析Li、Mg、S同位素比值,测试结果均与推荐值一致。已报道的高压离子色谱仪分离纯化方法一般通过最终MC-ICP-MS分析测试结果的准确性,来确定分离后同位素的高纯净度和高回收率,缺乏对高压离子色谱仪淋洗过程的系统研究,导致该分离方法的普适性和应用范围有限。在探索高压离子色谱仪分离方法时,与传统手工过柱类似,需要针对色谱柱明确上样量(载荷能力)和淋洗介质(最佳淋洗条件),并确认方法对不同类型样品的普适性(基体效应)。不同的是,高压离子色谱仪的色谱柱对样品溶液的酸度较为敏感,故探索其酸耐受性,并通过优化溶样方法使地质样品溶液适用于高压离子色谱仪也成为关键。
本文将优化地质样品溶解方法,降低酸度以适用于高压离子色谱仪进样,并从同位素分离纯化角度出发,系统探索色谱分离柱的酸耐受性、载荷能力、基体效应和最佳淋洗条件等,确认Li馏分的纯净度及Li元素的回收率,并衡量分离纯化的Li量能否满足MC-ICP-MS进行Li同位素分析的需求,为高压离子色谱仪在同位素分离纯化领域的应用提供示范。
1. 实验部分
所有实验均在自然资源部岩浆作用成矿与找矿重点实验室(中国地质调查局西安地质调查中心同位素地球化学实验室)完成。超净室的洁净度为千级,超净工作台洁净度为百级。实验流程中所用器皿均为聚丙烯或聚四氟乙烯材料,采用严格的清洗流程,以降低器皿的本底。
1.1 天然地质样品
本实验使用的天然地质样品标准物质包括:GBW07103(花岗岩)、GBW07104(安山岩)、GBW07105(玄武岩)、GBW07101(超基性岩)、GBW07107(页岩)、GBW07333(黄海海洋沉积物)、GBW07159(稀土矿石)、GBW07180(铝土矿)。这些标准物质中相关元素含量的推荐值见表1。
表 1 天然地质标准物质中相关元素含量的推荐值Table 1. The recommended values of relevant element contents in natural geological reference materials标准物质编号 元素含量推荐值 Li(μg/g) Na2O(%) K2O(%) MgO(%) CaO(%) GBW07103 (花岗岩) 131±7 3.13±0.09 5.01±0.10 0.42±0.05 1.55±0.07 GBW07104 (安山岩) 18.3±0.9 3.86±0.11 1.89±0.07 1.72±0.08 5.20±0.11 GBW07105 (玄武岩) 9.5±1.3 3.38±0.07 2.32±0.08 7.77±0.26 8.81±0.14 GBW07101 (超基性岩) 1.3±0.5 0.008±0.003 0.010±0.001 41.03±0.13 0.10±0.01 GBW07107 (页岩) 44±2 (0.35) 4.16±0.15 2.01±0.07 0.60±0.06 GBW07333 (黄海海洋沉积物) (88.5) 2.93±0.11 3.53±0.09 3.08±0.12 1.47±0.06 GBW07159 (稀土矿石) (69.68) 0.158±0.014 4.98±0.12 0.077±0.010 (0.026) GBW07180 (铝土矿) 567±40 (0.04) 0.19±0.02 0.31±0.03 (0.12) 注:括号内的数据为参考值。 1.2 样品前处理
目前,溶解Li同位素地质样品主要采用烘箱高压密闭溶样、微波消解和电热板加热溶样等三种方式[46],考虑到Li为碱金属元素,较易溶出,本实验选择电热板加热的方式进行样品溶解。主要过程如下:①先用少量水润湿待用溶样杯,以防止由于静电造成粉末损失,再称取50mg岩石样品,置于溶样杯中,随后在通风橱中依次加入1mL硝酸、3mL氢氟酸,以防止氟化物如CaF2沉淀的生成,拧紧瓶盖,以保证瓶内的压力,有助于样品溶解;②将溶样杯置于140℃加热板上加热24h,然后开盖,将样品溶液在120℃下蒸干,以蒸发去除SiF4;③加入3mL王水(浓盐酸-浓硝酸,体积比3∶1),拧紧盖子,在120℃加热板上加热24h,以驱逐氟化物等沉淀;④若肉眼看不到沉淀物且液体澄清,则将样品蒸干,并用6mL 2%的硝酸溶解,若还有沉淀物,超声5min后继续在电热板上加热,直到沉淀物完全溶解且液体澄清透明,将样品蒸干,并用6mL 2%硝酸溶解[29-30]。
由于利用高压离子色谱仪进行Li的分离纯化时,淋洗液浓度仅30mmol/L,要求样品溶液的酸度至少低于50mmol/L,且酸度越低越好。而2%硝酸介质换算成摩尔含量约320mmol/L,不满足离子色谱仪进样要求。鉴于硝酸与水共沸,在加热蒸发时,硝酸会随水一起蒸出,本实验先将6mL 2%硝酸介质的样品溶液蒸至小水滴状(135℃,200μL),加入0.5mL超纯水,蒸至湿盐状(135℃,100μL),再加入0.5mL超纯水,蒸至湿盐状(135℃,100μL),最后缓慢加入2mL超纯水,并用超纯水定容至5mL。经pH计检测,该样品溶液的pH值为1.5左右,换算为硝酸摩尔含量为30mmol/L左右,满足离子色谱仪进样要求。
1.3 主要试剂
溶样过程中使用的试剂包括:二次高纯硝酸、三次高纯盐酸、电子级氢氟酸、超纯水。
高压离子色谱仪中使用的试剂包括:超纯水、二次高纯硝酸。
实验所用的超纯水由ThermoScientific公司Dionex IC Pure水纯化系统制得,电阻率为18.2MΩ·cm。三次高纯盐酸和二次高纯硝酸分别由Savillex DST-1000和Labtech SD-2000蒸酸仪经亚沸蒸馏制得。高纯氢氟酸为购买的电子级酸。
1.4 标准溶液
本实验中使用的标准溶液有以下两类。
(1)GSB04-1767-2004国家混合标准溶液:元素包括Al、As、B、Ba、Be、Bi、Cd、Co、Cr、Cu、Fe、Ga、Li、Mg、Mn、Ni、Pb、Sb、Sn、Sr、Ti、Tl、V、Zn,规格为100μg/mL,介质为2.5mol/L硝酸和微量盐酸。
(2)BWT20009-1000-W-50离子色谱用4种阳离子混合标准溶液:元素包括K、Na、Ca、Mg,规格为1000μg/mL,介质为水。
1.5 仪器设备及工作条件
用于Li分离纯化的高压离子色谱仪(Dionex ICS-6000,ThermoScientific公司),配备:自动进样器(AS-AP);无机阳离子色谱柱(IonPacCS16,5mm×250mm)和保护柱(IonPacCG16,5mm×50mm);高压四元泵(SP);辅助泵(AXP);再生抑制器(CERS500,4mm);CD电导检测器以及馏分收集器(ASX-280):适用于碱金属、碱土金属元素的分离和收集。色谱柱的柱温可调节(25℃、40℃、60℃),淋洗液由推荐的甲基磺酸调整为高纯硝酸,进样环为1.7mL。
仪器配件功能如下:自动进样器,读取序列方法自动进样;高压四元泵,控制淋洗液浓度和流速;辅助泵,控制进入抑制器的再生液的流速;CS16色谱柱,进行目标元素的分离;抑制器,将再生液H2O电解为H+和OH−离子,抑制样品溶液中阳离子信号;电导检测器,监测目标元素的分离效果;馏分收集器,按照序列方法在特定时间段收集目标元素溶液。
本实验设置的最佳高压离子色谱仪参数如下:通过高压四元泵调节淋洗液浓度为30mmol/L二次纯化硝酸溶液,流速为1mL/min,压力6.89MPa;CS16色谱柱的柱温为60℃,柱箱温度为25℃;抑制器电流106mA;再生液为18.2MΩ·cm高纯水,流速1.2mL/min,压力11.03MPa;检测器为电导检测器,池温35℃。上样体积为250μL至1.5mL不等,淋洗体积25mL。其中,柱温选择60℃,能有效地缩短单个样品的分离时间至25min。
1.6 实验设计
高压离子色谱仪的CS16色谱柱用于碱金属和碱土金属的分析,包括Li、Na、K、Mg、Ca、Sr、Ba等,即:它有能力进行这些元素的分离。初步实验发现,该色谱柱对普通酸溶地质样品溶液的出峰并不理想,可能是三个原因造成的:一是地质样品溶液的酸度过大;二是上样量过大;三是地质样品溶液的基体过于复杂。针对这些问题,本文设计了三组实验进行验证,包括CS16色谱柱的酸耐受性实验、载荷能力实验、基体效应实验等,查明影响高压离子色谱仪进行酸溶地质样品溶液分离的因素,进而通过优化淋洗条件,来有效地完成地质样品溶液中Li的分离纯化。
2. 结果与讨论
本实验从标准溶液出发,结合国家地质标准物质,在探索CS16色谱柱的酸耐受性、载荷能力和基体效应基础上,获得高压离子色谱仪的最佳淋洗条件,并通过淋洗曲线的确认,进一步分离天然国家地质标准物质,计算回收率。
由于本文所用高压离子色谱仪中的色谱柱型号为CS16,匹配电导检测器,淋洗曲线图只能显示碱金属和碱土金属元素(Li、K、Na、Ca、Mg、Sr、Ba)以及NH4+的峰,并不能显示Al、Fe等元素的淋洗情况,不能出现峰的元素的淋洗效果,需根据ICP-MS测试结果来确认。
2.1 溶样方法的确定
按照本文样品前处理方法溶解国家地质标准物质(GBW07103、GBW07104、GBW07105),用ICP-MS测定结果表明,对于花岗岩和安山岩,除了含量特别低的元素(如Ge、Cd)和特殊元素(花岗岩中Zr和Hf)的分析误差较大外,大部分元素的测定值与推荐值一致(表2),而玄武岩中的元素溶出效果略差,表现在部分元素(包括V、Rb、Nb、Mo、Ta、W、Pb、Th等)测定值偏低,主要是溶样过程造成的,与后期降低样品溶液酸度过程关系不大,其中Li的测定值与推荐值的相对误差为11%,符合质量规范要求,表明该方法用于待测Li同位素的地质样品的溶解是有效可行的。
表 2 国家地质标准物质的元素测定值与推荐值对比Table 2. Comparison of measured values and recommended values of elements in national geological reference materials元素 GBW07103 GBW07104 GBW07105 测定值 推荐值 测定值 推荐值 测定值 推荐值 Li 134 131±7 17.3 18.3±0.9 8.5 9.50±1.30 Be 13 12.4±2.1 1.28 1.10±0.20 2.83 2.50±0.60 Sc 5.96 6.10±0.60 8.53 9.50±1.10 14.7 15.2±1.8 V 18.6 24.0±3.0 108 94±6 86.3 167.0±17.0 Cr 4.19 3.60±1.10 28.1 32.0±5.0 146 134±16 Co 2.75 3.40±1.00 11.3 13.2±1.5 53.3 32.0±5.2 Ni 2.3 2.30±1.20 16 17.0±2.0 140 140±11 Cu 3.55 3.20±1.30 54.6 55.0±4.0 50 49.0±4.0 Zn 31.4 28.0±4.0 76.3 71.0±7.0 166 150±15 Ga 18.2 19.0±2.0 17.3 18.1±2.1 23.8 24.8±1.3 Ge 0.09 2.00±0.80 0.05 0.93±0.40 0.11 0.98±0.23 Rb 450 466±26 37.7 38.0±5.0 22.2 37±6 Sr 107 106±9 782 790±54 1125 1100±64 Y 68 62.0±7.0 8.6 9.30±1.80 24.9 22.0±5.0 Zr 92.3 167±14 103 99±16 271 277±30 Nb 43 40.0±4.0 5.64 6.80±2.20 5.45 68±12 Mo 2.51 3.50±0.30 0.55 0.54±0.14 0.43 2.60±0.30 Cd 0.02 0.029±0.014 0.05 0.061±0.021 0.07 0.067±0.024 Cs 39.1 38.4±1.5 2.14 2.30±0.70 0.28 (0.7) Ba 354 343±45 1078 1020±70 572 527±40 La 57.4 54.0±5.0 25.2 22.0±3.0 59.2 56±7 Ce 104 108±11 38.6 40.0±3.0 98.9 105±12 Pr 14.1 12.7±0.8 4.54 4.90±0.40 14.2 13.2±1.6 Nd 47.5 47.0±5.0 20 19.0±2.0 54.1 54±5 Sm 10.3 9.7±1.2 3.68 3.40±0.30 11 10.2±0.7 Eu 0.91 0.85±0.10 1.16 1.02±0.07 3.51 3.20±0.30 Tb 1.64 1.65±0.13 0.39 0.41±0.07 1.27 1.20±0.20 Gd 9.41 9.30±0.80 2.97 2.70±0.40 9.48 8.50±0.70 Dy 10.1 10.2±0.4 1.9 1.85±0.20 5.73 5.60±0.30 Ho 2.08 2.05±0.22 0.35 0.34±0.03 0.92 0.88±0.05 Er 6.59 6.50±0.40 0.97 0.85±0.16 2.18 2.00±0.30 Tm 1.15 1.06±0.09 0.14 0.15±0.05 0.26 0.28±0.04 Yb 7.93 7.40±0.70 0.9 0.89±0.20 1.38 1.50±0.50 Lu 1.18 1.15±0.12 0.13 0.12±0.04 0.19 0.19±0.07 Hf 3.39 6.30±0.80 2.81 2.90±0.50 6.2 6.50±0.80 Ta 6.54 7.20±0.70 0.43 0.40±0.09 0.25 4.30±0.60 W 7.99 8.40±0.70 0.54 (0.45) 0.06 0.40±0.02 Tl 2.28 1.93±0.55 0.19 0.16±0.06 0.09 (0.12) Pb 33.6 31.0±4.0 9.8 11.30±2.80 2.5 7.00±4.00 Th 59.5 54.0±4.0 2.53 2.60±0.40 3.64 6.00±1.20 U 20.2 18.8±2.2 0.96 0.90±0.28 1.19 1.40±0.40 注:括号内的数据为参考值,单位均为μg/g。 2.2 酸耐受性——样品溶液允许的最大酸度
由于高压离子色谱仪主要适用于偏中性的样品溶液,而实际地质样品大多溶解于无机酸。如果酸度过高,会发生共淋洗作用(即:进样时,样品溶液中的元素被样品溶液本身的酸淋洗掉),无法完成Li的有效分离,探索高压离子色谱仪分离柱的酸耐受性(能够承受的样品的最大酸度)是非常必要的。本实验以GBS04-1767-2004国家混合标准溶液(介质为2.5mol/L硝酸)为原液,按不同比例稀释该标准溶液,获得不同酸浓度梯度溶液,介质分别为12.5、25、50和100mmol/L硝酸,固定淋洗条件(淋洗液浓度40mmol/L,流速1mL/min,色谱柱温60℃,进样量500μL),通过淋洗曲线来判断有效淋洗过程能容忍的最大酸浓度。
酸耐受性实验表明,固定进样量500μL,当样品溶液的酸度低于或等于50mmol/L,离子色谱仪能够正常出峰(图1a #10线);当样品溶液的酸度达到100mmol/L时,出现异常峰或拖尾峰(图1a #11线);当样品溶液的酸度为25mmol/L时,即使进样量达1000μL,仍然出峰高且尖(图1a #9线)。以上显示,CS16色谱柱对样品溶液的酸度要求高,不能超过50mmol/L,酸度越低,出峰效果越好。同时,图1b中#11、#15、#16线表示样品溶液的酸度从50mmol/L递减至12.5mmol/L,进样量从500μL递增至1500μL,前两种溶液实际进入高压离子色谱仪的酸总量和物质总量是一样的(本实验中用到的溶液均为1767标液稀释而来,酸度按比例下降的同时,标液中各元素含量也按比例下降),明显#15线优于#11线,最后一种溶液实际进样的酸总量和物质总量略低,但#16线的峰型明显优于其他线,进一步说明了酸度越低,出峰效果越好。
2.3 载荷能力——样品溶液允许的进样量
由于色谱柱内填充物质有限,故其吸附、络合元素的能力有限。而在利用MC-ICP-MS进行Li同位素分析测试时,希望Li的分离量越大越好。故,探索色谱柱的载荷能力也很重要,尽量达到Li分离量的最大化。本实验以GBS04-1767-2004国家混合标准溶液(100μg/mL,介质为2.5mol/L硝酸)为原液,稀释50倍,配制2μg/g的1767标准溶液(介质为50mmol/L 硝酸),固定淋洗条件(淋洗液浓度40mmol/L,流速1mL/min,色谱柱温60℃),变换进样量(250、500、1000μL),通过淋洗曲线来判断淋洗过程的有效性。考虑到实际地质样品中含有K、Na、Ca、Mg等主量元素,以1767标准溶液和离子色谱用4种阳离子混标为原液,配制500ng/g 1767溶液+2.5μg/g K-Na-Ca-Mg溶液(介质为14.5mmol/L硝酸),固定淋洗条件(淋洗液浓度30mmol/L,流速1mL/min,色谱柱温60℃),变换进样量1000μL和1500μL,通过淋洗曲线来判断淋洗过程的有效性,得到该色谱柱的最大载荷能力。
载荷能力实验表明,淋洗条件一致时,2μg/g的1767标准溶液(酸度为50mmol/L)的进样量从250μL递增至1000μL(图2a中#9、#10、#12),曲线的峰型发生明显变化(峰尖变宽,有拖尾),而500ng/g 1767溶液+2.5μg/g K-Na-Ca-Mg溶液(酸度为14.5mmol/L),进样量从1000μL递增至1500μL(图2b#23,#22),峰型基本不发生变化。1500μL的500ng/g 1767溶液+2.5μg/g K-Na-Ca-Mg溶液实际进入高压离子色谱仪的碱金属和碱土金属(Li、K、Na、Ca、Mg、Sr、Ba)绝对含量明显比1000μL的2μg/g 1767标准溶液多。但是,前者的峰型比后者好很多,不存在任何拖尾,说明CS16阳离子色谱柱的载荷较大,峰型的变化主要由样品溶液酸度引起。即:酸度过高,会影响最大进样量。
2.4 基体效应——样品溶液中主量元素对Li分离的干扰
由于高压离子色谱仪在地质中的应用主要为基体简单的水溶液,复杂基体可能会影响相关元素的分离。本实验在250ng/g的1767标准溶液基础上,依次加入50μg/g的K、Na、Ca、Mg,500ng/g的Fe,以及500ng/g的Al,对比这4种溶液中碱金属和碱土金属的出峰位置及峰高,探讨基体元素对Li分离的影响。除此之外,对比基体差别很大的国家标准物质GBW07103(花岗岩)、GBW07104(安山岩)、GBW07105(玄武岩)和GBW07101(超基性岩)的淋洗曲线,讨论不同基体下Li同位素的分离效果。
基体效应实验显示,在250ng/g 1767溶液(图3a中#72)中依次混入50μg/g K-Na-Ca-Mg溶液(图3a中#73)、500ng/g Fe溶液(图3a中#74)和500ng/g Al溶液(图3a中#76)时,淋洗曲线的出峰位置和高度基本不变,表明该CS16阳离子色谱柱的基体效应不明显。国家标准物质GBW07103、GBW07104、GBW07105和GBW07101分别属于酸性岩、中性岩、基性岩和超基性岩,基体差别很大,但是其淋洗曲线的出峰位置和峰型差别不大(图3b),进一步说明了该阳离子色谱柱的分离效果受基体影响不大。另外,因为Li为微量元素,K、Na、Ca、Mg为主量元素,与主量元素的峰相比,Li峰不明显,仅Li含量较高的GBW07103能看到较为明显的Li峰,而Li含量仅1.3μg/g的超基性岩基本看不到Li峰。
图 3 基体效应实验中标准溶液和国家地质物质样品溶液的淋洗曲线(a) 250ng/g 1767溶液中依次加入50μg/g K-Na-Ca-Mg溶液、500ng/g Fe溶液、500ng/g Al溶液的淋洗曲线;(b)相同条件下, GBW07103、GBW07104、GBW07105和GBW07101的淋洗曲线;(c)图a中#76淋洗曲线Li峰放大;(d)图a中#74淋洗曲线Li峰放大;(e)图a中#73淋洗曲线Li峰放大;(f)图a中#72淋洗曲线Li峰放大;(g)图b中#54淋洗曲线Li峰放大;(h)图b中#53淋洗曲线Li峰放大;(i)图b中#52淋洗曲线Li峰放大。Figure 3. Leaching curves of standard solution and national geological sample solution in the matrix effect experiment2.5 最佳淋洗条件
利用高压离子色谱仪进行Li分离时,淋洗液(硝酸)的浓度对淋洗效果影响很大。本实验以GBW07107(页岩)溶液为对象,固定进样量200μL,色谱柱温60℃,淋洗液流速1mL/min,淋洗液浓度从40mmol/L递减为35、30、25mmol/L,对比Li的分离度,获得最佳的淋洗液浓度。
淋洗条件实验结果(图4)显示,固定样品溶液类型(GBW07107)、进样量(200μL和500μL)、色谱柱温度(60℃)和淋洗液流速(1mL/min),递减淋洗液浓度(40、35、30和25mmol/L),元素分离度随着淋洗液浓度降低而加大,同时整个分离时间随着淋洗液浓度降低而增加。综合考虑元素分离效果和分离时间,本研究认为淋洗液浓度为30mmol/L时,分离效果最佳,25min内完成单个样品Li的分离纯化。
综合以上,利用高压离子色谱仪进行碱金属元素分离时,分离柱的载荷较大,基体效应不明显,但对样品溶液的酸度很敏感。故,严格控制样品溶液的酸度非常重要,酸度越小,允许进样量越大,采用本实验优化的溶样方法,则能够很好地控制样品溶液酸度,使之适用于高压离子色谱仪进样。同时,当色谱柱温为60℃,淋洗液浓度为30mmol/L时,淋洗效果最佳。
2.6 Li的分离纯度及回收率
高压离子色谱仪配备的电导检测器只能检测出碱金属和碱土金属,并不能显示其他元素的峰。为确定Li峰处其他元素的情况,本实验在淋洗条件下(淋洗液浓度30mmol/L,流速1mL/min,色谱柱温60℃,进样量250μL),分离混合标准溶液10μg/gK-Na-Ca-Mg+1μg/g 1767+1μg/g Rb+1μg/g Cs,连续接收馏分(图5),用ICP-MS进行测试,通过计数对比,探明Li同位素的分离效果和回收率。这里以计数作对比,可能存在部分组分未被淋洗下来的情况,但后续实际地质样品中所收集的目标元素Li的回收率分析结果表明,Li的淋洗是没有问题的。
根据混合标准溶液10μg/g K-Na-Ca-Mg+1μg/g 1767+1μg/g Rb+1μg/g Cs的淋洗曲线出峰情况(图5),平均2min接一份馏分溶液(2mL),共接40份。利用ICP-MS进行分析测试时,获得各馏分中各元素的计数(扣除背景值),默认馏分涵盖了溶液中所有元素,以全部馏分中某元素的计数和为整体,计算各馏分中某元素的占比。分析测试的元素包括碱金属和碱土金属(Li、Na、K、Rb、Mg、Ca、Sr、Ba)以及其他元素(Al、Ti、Fe、Mn、V、Cr、Co、Ni、Cu、Zn、Cd、Sn、Pb、Tl)。从测试结果(图6)可以看到,在馏分4中,元素Li的占比达99.5%,Na、K、Rb、Mg、Ca、Sr、Ba的占比均为背景值,含痕量Ti、V、Cr、Pb。而在其他馏分中,元素Li的占比均为背景值。表明利用高压离子色谱仪进行Li同位素的分离,不仅分离纯度高,而且回收率高。
由于实际地质样品的元素组成远比混合标准溶液复杂,加上样品溶解过程中酸度的不确定性,可能导致Li的分离效果不佳。本实验进一步选取4个国家标准物质黄海海洋沉积物(GBW07333)、花岗岩(GBW07103)、稀土矿石(GBW07159)、铝土矿(GBW07180),按照本实验优化的溶样方法进行样品溶解之后,利用高压离子色谱仪淋滤、收集目标Li馏分,同时收集Li馏分的前段溶液和后段溶液。本实验对4个样品中的3种馏分均进行Li元素定量分析,每份溶液测试5次,取平均值。测试结果显示,Li前段溶液、Li后段溶液中的Li元素含量均小于0.2ng/g。将进入离子色谱仪的Li元素的量与Li馏分中Li元素的量进行对比,计算Li元素的回收率在99.3%以上(表3),满足测试需求。
表 3 国家地质标准样品Li馏分中Li元素含量和回收率Table 3. Content and recovery rate of Li element in Li fractions in national geological samples标准物质编号 样品Li浓度
(ng/g)进样量
(ng)收集Li浓度
(ng/g)收集量
(ng)回收率
(%)GBW07333 (海洋沉积物) 70.00 14.00 12.97 14.27 101.9 GBW07103 (花岗岩) 88.50 17.70 17.02 18.73 105.8 GBW07159 (稀土矿石) 131.00 26.20 24.52 26.97 102.9 GBW07180 (铝土矿) 567.00 113.40 102.35 112.59 99.3 利用MC-ICP-MS分析样品中Li同位素比值时,要求Li的量大于100ng。离子色谱仪的实际最大进样量可达1.7mL。当样品中Li含量大于60μg/g时,进样量1.7mL,实际收集到的Li绝对含量大于102ng,一次进样、收集即可。当样品中Li含量小于60μg/g,建议将样品溶液富集浓缩后,再用高压离子色谱仪进行分离,以达到后续MC-ICP-MS测试对Li样品量的需求。另外,本实验虽然未对空白样品进行高压离子色谱仪的Li同位素分离纯化(即:收集相应时间段的溶液),并后续测试其含量,但本实验对实际样品溶液的目标Li元素溶液馏分的前段溶液(即:Li峰前的平坦段)进行了ICP-MS分析测试,Li元素含量均为未检出。在传统手工过柱方法中,大量不同浓度的不同酸的淋洗才是带入Li污染的主要因素,而在高压离子色谱分离过程中,仅使用30mmol/L高纯硝酸淋洗25min(约25mL,实际6mL时,已完成Li的收集),使用的酸量远小于传统手工过柱,其空白应远低于传统手工过柱方法。
3. 结论
尽管高压离子色谱仪在同位素分离纯化领域的应用受到了广泛关注,但与传统手工过柱相比,其应用范围依然非常有限,需要对高压离子色谱仪淋洗过程开展系统性研究,而大部分应用案例报道主要涉及仪器条件、样品类型、分离纯化效果以及同位素分析测试结果。本文从同位素分离纯化角度,设计了一系列条件实验,系统探索了高压离子色谱仪CS16阳离子分析柱的酸耐受性、载荷能力、基体效应等关键因素,并确定了CS16色谱柱的最佳淋洗条件(淋洗液浓度30mmol/L,流速1mL/min,色谱柱温60℃),分离后的Li馏分纯度很高,未有任何与Na的叠峰,回收率超过99.3%,Li空白低于传统手工过柱方法,满足MC-ICP-MS的分析测试需求。同时,本文通过优化溶样过程(即:在溶样后期采用少量多次加入超纯水、蒸至湿盐状的方式降低样品溶液酸度),将高压离子色谱仪的应用拓展到基体复杂的、难溶的天然地质样品中,为高压离子色谱仪在同位素分离纯化领域中的广泛应用奠定基础。
后续需进一步用MC-ICP-MS对Li馏分进行分析测试,通过Li同位素测试结果来进一步验证该分离方法的可靠性。在此基础上,借鉴高压离子色谱仪与MC-ICP-MS联机在线测定Sr同位素方法,通过流速匹配来获取平稳Li同位素信号,进而开发在线测定Li同位素方法,将极大地简化全岩Li同位素分析测试流程。
-
图 3 基体效应实验中标准溶液和国家地质物质样品溶液的淋洗曲线
(a) 250ng/g 1767溶液中依次加入50μg/g K-Na-Ca-Mg溶液、500ng/g Fe溶液、500ng/g Al溶液的淋洗曲线;(b)相同条件下, GBW07103、GBW07104、GBW07105和GBW07101的淋洗曲线;(c)图a中#76淋洗曲线Li峰放大;(d)图a中#74淋洗曲线Li峰放大;(e)图a中#73淋洗曲线Li峰放大;(f)图a中#72淋洗曲线Li峰放大;(g)图b中#54淋洗曲线Li峰放大;(h)图b中#53淋洗曲线Li峰放大;(i)图b中#52淋洗曲线Li峰放大。
Figure 3. Leaching curves of standard solution and national geological sample solution in the matrix effect experiment
表 1 天然地质标准物质中相关元素含量的推荐值
Table 1 The recommended values of relevant element contents in natural geological reference materials
标准物质编号 元素含量推荐值 Li(μg/g) Na2O(%) K2O(%) MgO(%) CaO(%) GBW07103 (花岗岩) 131±7 3.13±0.09 5.01±0.10 0.42±0.05 1.55±0.07 GBW07104 (安山岩) 18.3±0.9 3.86±0.11 1.89±0.07 1.72±0.08 5.20±0.11 GBW07105 (玄武岩) 9.5±1.3 3.38±0.07 2.32±0.08 7.77±0.26 8.81±0.14 GBW07101 (超基性岩) 1.3±0.5 0.008±0.003 0.010±0.001 41.03±0.13 0.10±0.01 GBW07107 (页岩) 44±2 (0.35) 4.16±0.15 2.01±0.07 0.60±0.06 GBW07333 (黄海海洋沉积物) (88.5) 2.93±0.11 3.53±0.09 3.08±0.12 1.47±0.06 GBW07159 (稀土矿石) (69.68) 0.158±0.014 4.98±0.12 0.077±0.010 (0.026) GBW07180 (铝土矿) 567±40 (0.04) 0.19±0.02 0.31±0.03 (0.12) 注:括号内的数据为参考值。 表 2 国家地质标准物质的元素测定值与推荐值对比
Table 2 Comparison of measured values and recommended values of elements in national geological reference materials
元素 GBW07103 GBW07104 GBW07105 测定值 推荐值 测定值 推荐值 测定值 推荐值 Li 134 131±7 17.3 18.3±0.9 8.5 9.50±1.30 Be 13 12.4±2.1 1.28 1.10±0.20 2.83 2.50±0.60 Sc 5.96 6.10±0.60 8.53 9.50±1.10 14.7 15.2±1.8 V 18.6 24.0±3.0 108 94±6 86.3 167.0±17.0 Cr 4.19 3.60±1.10 28.1 32.0±5.0 146 134±16 Co 2.75 3.40±1.00 11.3 13.2±1.5 53.3 32.0±5.2 Ni 2.3 2.30±1.20 16 17.0±2.0 140 140±11 Cu 3.55 3.20±1.30 54.6 55.0±4.0 50 49.0±4.0 Zn 31.4 28.0±4.0 76.3 71.0±7.0 166 150±15 Ga 18.2 19.0±2.0 17.3 18.1±2.1 23.8 24.8±1.3 Ge 0.09 2.00±0.80 0.05 0.93±0.40 0.11 0.98±0.23 Rb 450 466±26 37.7 38.0±5.0 22.2 37±6 Sr 107 106±9 782 790±54 1125 1100±64 Y 68 62.0±7.0 8.6 9.30±1.80 24.9 22.0±5.0 Zr 92.3 167±14 103 99±16 271 277±30 Nb 43 40.0±4.0 5.64 6.80±2.20 5.45 68±12 Mo 2.51 3.50±0.30 0.55 0.54±0.14 0.43 2.60±0.30 Cd 0.02 0.029±0.014 0.05 0.061±0.021 0.07 0.067±0.024 Cs 39.1 38.4±1.5 2.14 2.30±0.70 0.28 (0.7) Ba 354 343±45 1078 1020±70 572 527±40 La 57.4 54.0±5.0 25.2 22.0±3.0 59.2 56±7 Ce 104 108±11 38.6 40.0±3.0 98.9 105±12 Pr 14.1 12.7±0.8 4.54 4.90±0.40 14.2 13.2±1.6 Nd 47.5 47.0±5.0 20 19.0±2.0 54.1 54±5 Sm 10.3 9.7±1.2 3.68 3.40±0.30 11 10.2±0.7 Eu 0.91 0.85±0.10 1.16 1.02±0.07 3.51 3.20±0.30 Tb 1.64 1.65±0.13 0.39 0.41±0.07 1.27 1.20±0.20 Gd 9.41 9.30±0.80 2.97 2.70±0.40 9.48 8.50±0.70 Dy 10.1 10.2±0.4 1.9 1.85±0.20 5.73 5.60±0.30 Ho 2.08 2.05±0.22 0.35 0.34±0.03 0.92 0.88±0.05 Er 6.59 6.50±0.40 0.97 0.85±0.16 2.18 2.00±0.30 Tm 1.15 1.06±0.09 0.14 0.15±0.05 0.26 0.28±0.04 Yb 7.93 7.40±0.70 0.9 0.89±0.20 1.38 1.50±0.50 Lu 1.18 1.15±0.12 0.13 0.12±0.04 0.19 0.19±0.07 Hf 3.39 6.30±0.80 2.81 2.90±0.50 6.2 6.50±0.80 Ta 6.54 7.20±0.70 0.43 0.40±0.09 0.25 4.30±0.60 W 7.99 8.40±0.70 0.54 (0.45) 0.06 0.40±0.02 Tl 2.28 1.93±0.55 0.19 0.16±0.06 0.09 (0.12) Pb 33.6 31.0±4.0 9.8 11.30±2.80 2.5 7.00±4.00 Th 59.5 54.0±4.0 2.53 2.60±0.40 3.64 6.00±1.20 U 20.2 18.8±2.2 0.96 0.90±0.28 1.19 1.40±0.40 注:括号内的数据为参考值,单位均为μg/g。 表 3 国家地质标准样品Li馏分中Li元素含量和回收率
Table 3 Content and recovery rate of Li element in Li fractions in national geological samples
标准物质编号 样品Li浓度
(ng/g)进样量
(ng)收集Li浓度
(ng/g)收集量
(ng)回收率
(%)GBW07333 (海洋沉积物) 70.00 14.00 12.97 14.27 101.9 GBW07103 (花岗岩) 88.50 17.70 17.02 18.73 105.8 GBW07159 (稀土矿石) 131.00 26.20 24.52 26.97 102.9 GBW07180 (铝土矿) 567.00 113.40 102.35 112.59 99.3 -
[1] Li W S, Liu X M, Chadwick O A, et al. Lithium isotope behavior in Hawaiian regoliths: Soil-atmosphere-biosphere exchanges[J]. Geochimica et Cosmochimica Acta, 2020, 285: 175−192. doi: 10.1016/j.gca.2020.07.012
[2] Liu X M, Rudnick R L. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 20873−20880. doi: 10.1073/pnas.1115671108
[3] Zhang J W, Zhao Z Q, Yan, Y N, et al. Lithium and its isotopes behavior during incipient weathering of granite in the eastern Tibetan Plateau, China[J]. Chemical Geology, 2021, 559: 119969. doi: 10.1016/j.chemgeo.2020.119969
[4] Bergquist B A, Boyle E A. Iron isotopes in the Amazon river system: Weathering and transport signatures[J]. Earth and Planetary Science Letters, 2006, 248: 54−68. doi: 10.1016/j.jpgl.2006.05.004
[5] Ma L, Teng F Z, Jin L X, et al. Magnesium isotope fractionation during shale weathering in the shale hills critical zone observatory: Accumulation of light Mg isotopes in soils by clay mineral transformation[J]. Chemical Geology, 2015, 397: 37−50. doi: 10.1016/j.chemgeo.2015.01.010
[6] Teng F Z, Hu Y, Ma J L, et al. Potassium isotope fractionation during continental weathering and implications for global K isotopic balance[J]. Geochimica et Cosmochimica Acta, 2020, 278: 261−271. doi: 10.1016/j.gca.2020.02.029
[7] Liu X M, Rudnick R L, McDonough W F, et al. Influence of chemical weathering on the composition of the continental crust: Insights from Li and Nd isotopes in bauxite profiles developed on Columbia River basalts[J]. Geochimica et Cosmochimica Acta, 2013, 115: 73−91. doi: 10.1016/j.gca.2013.03.043
[8] Hindshaw R S, Tosca R, Goût T L, et al. Experimental constraints on Li isotope fractionation during clay formation[J]. Geochimica et Cosmochimica Acta, 2019, 250: 219−237. doi: 10.1016/j.gca.2019.02.015
[9] Murphy M J, Porcelli D, von Strandmann P V, et al. Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes[J]. Geochimica et Cosmochimica Acta, 2019, 245: 154−171. doi: 10.1016/j.gca.2018.10.024
[10] Yang C H, Vigier N, Yang S Y, et al. Clay Li and Nd isotopes response to hydroclimate changes in the Changjiang (Yangtze) Basin over the past 14,000 years[J]. Earth and Planetary Science Letters, 2021, 561: 116793. doi: 10.1016/j.jpgl.2021.116793
[11] Zhu G H, Ma J L, Wei G J, et al. Lithium isotope fractionation during the weathering of granite: Responses to pH[J]. Geochimica et Cosmochimica Acta, 2023, 345: 117−129. doi: 10.1016/j.gca.2022.12.028
[12] Elliott T, Thomas A, Jeffcoate A, et al. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts[J]. Nature, 2006, 443: 565−568. doi: 10.1038/nature05144
[13] Fan J J, Tang G J, Wei G J, et al. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet[J]. Lithos, 2020, 352−353: 105236. doi: 10.1016/j.lithos.2019.105236
[14] Miao W L, Zhang X Y, Li Y L, et al. Lithium and strontium isotopic systematics in the Nalenggele River catchment of Qaidam Basin, China: Quantifying contributions to lithium brines and deciphering lithium behavior in hydrological processes[J]. Journal of Hydrology (Part B), 2022, 614: 128630. doi: 10.1016/j.jhydrol.2022.128630
[15] 刘丽君, 王登红, 侯可军, 等. 锂同位素在四川甲基卡新三号矿脉研究中的应用[J]. 地学前缘, 2017, 24(5): 167−171. doi: 10.13745/j.esf.yx.2017-1-16 Liu L J, Wang D H, Hou K J, et al. Application of lithium isotope to Jiajika new No.3 pegmate lithium polymetallic vein in Sichuan[J]. Earth Science Frontiers, 2017, 24(5): 167−171. doi: 10.13745/j.esf.yx.2017-1-16
[16] Misra S, Froelich P N. Lithium isotope history of cenozoic seawater: Changes in silicate weathering and reverse weathering[J]. Science, 2012, 335(6070): 818−823. doi: 10.1126/science.1214697
[17] Liu M C, McKeegan K D, Goswami J N, et al. Isotopic records in CM hibonites: Implications for timescales of mixing of isotope reservoirs in the Solar nebula[J]. Geochimica et Cosmochimica Acta, 2009, 73: 5051−5079. doi: 10.1016/j.gca.2009.02.039
[18] Kaplan L, Wilzbach K E. Lithium isotope determination by neutron activation[J]. Analytical Chemistry, 1954, 26: 1797−1798. doi: 10.1021/ac60095a031
[19] Magna T, Wiechert U H, Halliday A N. Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICP-MS[J]. International Journal of Mass Spectrometry, 2004, 239: 67−76. doi: 10.1016/j.ijms.2004.09.008
[20] 唐清雨, 陈露, 田世洪, 等. 锂硼同位素MC-ICP-MS分析中的记忆效应研究[J]. 岩矿测试, 2024, 43(2): 201−212. doi: 10.15898/j.ykcs.202310260167 Tang Q Y, Chen L, Tian S H, et al. A study on memory effects in lithium and boron isotope analysis using MC-ICP-MS[J]. Rock and Mineral Analysis, 2024, 43(2): 201−212. doi: 10.15898/j.ykcs.202310260167
[21] Zhu G H, Ma J L, Wei G J, et al. A rapid and simple method for lithium purification and isotopic analysis of geological reference materials by MC-ICP-MS[J]. Frontiers in Chemistry, 2020, 8: 557489. doi: 10.3389/fchem.2020.557489
[22] Li X, Han G, Zhang Q, et al. Accurate lithium isotopic analysis of twenty geological reference materials by multi-collector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 188: 106348. doi: 10.1016/j.sab.2021.106348
[23] Macpherson G L, Phan T T, Stewart B W. Direct determination (without chromatographic separation) of lithium isotopes in saline fluids using MC-ICP-MS: Establishing limits on water chemistry[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(7): 1673−1678. doi: 10.1039/c5ja00060b
[24] Yoshimura T, Araoka D, Tamenori Y, et al. Lithium, magnesium and sulfur purification from seawater using an ion chromatograph with a fraction collector system for stable isotope measurements[J]. Journal of Chromatography A, 2018, 1531: 157−162. doi: 10.1016/j.chroma.2017.11.052
[25] Zhu Z Y, Yang T, Zhu X K. Achieving rapid analysis of Li isotopes in high-matrix and low-Li samples with MC-ICPMS: New developments in sample preparation and mass bias behavior of Li in ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(7): 1503−1513. doi: 10.1039/c9ja00076c
[26] Li W S, Liu X M, Godfrey L V. Optimisation of lithium chromatography for isotopic analysis in geological reference materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2019, 43(2): 261−276. doi: 10.1111/ggr.12254
[27] Gou L F, Jin Z D, Deng L, et al. Effects of different cone combinations on accurate and precise determination of Li isotopic composition by MC-ICP-MS[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 146: 1−8. doi: 10.1016/j.sab.2018.04.015
[28] He M Y, Luo C G, Lu H, et al. Measurements of lithium isotopic compositions in coal using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(9): 1773−1778. doi: 10.1039/c9ja00204a
[29] Lin J, Liu Y S, Hu Z C, et al. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2): 390−397. doi: 10.1039/c5ja00231a
[30] 苏嫒娜, 田世洪, 李真真, 等. MC-ICP-MS高精度测定Li同位素分析方法[J]. 地学前缘, 2011, 18(2): 304−314. Su Y N, Tian S H, Li Z Z, et al. High-precision measurement of lithium isotopes using MC-ICP-MS[J]. Earth Science Frontiers, 2011, 18(2): 304−314.
[31] Tomascak P B, Magna T, Dohemen R. Advances in lithium isotope geochemistry[M]. Switzerland: Springer International Publishing, 2016: 1−195.
[32] Xu L, Luo C, Wen H. A revisited purification of Li for ‘Na breakthrough’ and its isotopic determination by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 201−214. doi: 10.1111/ggr.12305
[33] Chan L H. Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate[J]. Analytical Chemistry, 1987, 59(22): 2662−2665. doi: 10.1021/ac00149a007
[34] Nishio Y, Nakai S I. Accurate and precise lithium isotopic determinations of igneous rock samples using multi-collector inductively coupled plasma mass spectrometry[J]. Analytica Chimica Acta, 2002, 456(2): 271−281. doi: 10.1016/S0003-2670(02)00042-9
[35] Misra S, Froelich P N. Measurement of lithium isotope ratios by quadrupole-ICP-MS: Application to seawater and natural carbonates[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(11): 1524−1533. doi: 10.1039/b907122a
[36] Bohlin M S, Misra S, Lloyd N, et al. High-precision determination of lithium and magnesium isotopes utilising single column separation and multi-collector iductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2018, 32(2): 93−104. doi: 10.1002/rcm.8020
[37] 宋以龙, 刘敏, 侯可军. 锂同位素阳离子交换树脂分离提纯方法与应用进展[J]. 岩矿测试, 2024, 43(5): 677−692. doi: 10.15898/j.ykcs.202409050181 Song Y L, Liu M, Hou K J. Research progress on separation and purification methods of lithium isotopes using cation exchange resin and their applications[J]. Rock and Mineral Analysis, 2024, 43(5): 677−692. doi: 10.15898/j.ykcs.202409050181
[38] Latkoczy C, Prohaska T, Watkins M, et al. Strontium isotope ratio determination in soil and bone samples after on-line matrix separation by coupling ion chromatography (HPIC) to an inductively coupled plasma sector field mass spectrometer (ICP-SFMS)[J]. Journal of Analytical Atomic Spectrometry, 2001, 16(8): 806−811. doi: 10.1039/b102797m
[39] Karasinski J, Bulska E, Wojciechowski M, et al. On-line separation of strontium from a matrix and determination of the 87Sr/86Sr ratio by ion chromatography/multi-collector-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(7): 1459−1463. doi: 10.1039/c6ja00109b
[40] Schmitt A D, Gangloff S, Cobert F, et al. High performance automated ion chromatography separation for Ca isotope measurements in geological and biological samples[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(8): 1089−1097. doi: 10.1039/b903303c
[41] Morgan L E, Santiago Ramos D P, Davidheiser-Kroll B, et al. High-precision 41K/39K measurements by MC-ICPMS indicate terrestrial variability of δ41K[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 175−186. doi: 10.1039/c7ja00257b
[42] Karasinski J, Bulska E, Wojciechowski M, et al. High precision direct analysis of magnesium isotope ratio by ion chromatography/multicollector-ICPMS using wet and dry plasma conditions[J]. Talanta, 2017, 165: 64−68. doi: 10.1016/j.talanta.2016.12.033
[43] Zakon Y, Halicz L, Gelman F. Isotope analysis of sulfur, bromine, and chlorine in individual anionic species by ion chromatography/multicollector-ICPMS[J]. Analytical Chemistry, 2014, 86(13): 6495−6500. doi: 10.1021/ac5010025
[44] Shimizu K, Suzuki K, Saitoh M, et al. Simultaneous determinations of fluorine, chlorine, and sulfur in rock samples by ion chromatography combined with pyrohydrolysis[J]. Geochemical Journal, 2015, 49(1): 113−124. doi: 10.2343/geochemj.2.0338
[45] García-Ruiz S, Moldovan M, Alonso J I G. Measurement of strontium isotope ratios by MC-ICP-MS after on-line Rb-Sr ion chromatography separation[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(1): 84−93. doi: 10.1039/b708936h
[46] 董学林. 典型地质样品的前处理方法及其应用[D]. 武汉: 华中科技大学, 2020. Dong X L. A study on new pretreatment methods for typical geological samples and their applications in trace analysis[D]. Wuhan: Huazhong University of Science and Technology, 2020.