• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

磺胺甲恶唑和卡马西平在孔隙介质中的吸附行为与影响因素研究

张威, 张书缘, 孔祥科, 许瑞峰, 韩梅, 刘圣华, 曾少坚, 吴林

张威,张书缘,孔祥科,等. 磺胺甲恶唑和卡马西平在孔隙介质中的吸附行为与影响因素研究[J]. 岩矿测试,2024,44(1):1−13. DOI: 10.15898/j.ykcs.202407110154
引用本文: 张威,张书缘,孔祥科,等. 磺胺甲恶唑和卡马西平在孔隙介质中的吸附行为与影响因素研究[J]. 岩矿测试,2024,44(1):1−13. DOI: 10.15898/j.ykcs.202407110154
ZHANG Wei,ZHANG Shuyuan,KONG Xiangke,et al. Adsorption Behavior and Influencing Factors of Sulfamethoxazole and Carbamazepine on Porous Media[J]. Rock and Mineral Analysis,2024,44(1):1−13. DOI: 10.15898/j.ykcs.202407110154
Citation: ZHANG Wei,ZHANG Shuyuan,KONG Xiangke,et al. Adsorption Behavior and Influencing Factors of Sulfamethoxazole and Carbamazepine on Porous Media[J]. Rock and Mineral Analysis,2024,44(1):1−13. DOI: 10.15898/j.ykcs.202407110154

磺胺甲恶唑和卡马西平在孔隙介质中的吸附行为与影响因素研究

基金项目: 中国地质科学院基本科研业务费青年英才项目(YK202303);厦门市自然科学基金项目(3502Z20227309);国家自然科学基金面上项目(4207071759);中国地质科学院水文地质环境地质研究所基本科研业务费项目 (SK202318)
详细信息
    作者简介:

    张威,硕士,高级工程师,主要从事地下水污染机理与修复方面的研究。E-mail:zw@mail.cgs.gov.cn

    通讯作者:

    孔祥科,博士,副研究员,主要从事土壤、地下水污染机理与修复方面的研究。E-mail:kongxiangke@mail.cgs.gov.cn

  • 中图分类号: X53

Adsorption Behavior and Influencing Factors of Sulfamethoxazole and Carbamazepine on Porous Media

  • 摘要:

    磺胺甲恶唑(SMX)和卡马西平(CBZ)作为水环境中被广泛检出的药用活性化合物,其进入水土环境给生态环境和人体健康带来潜在风险。为探究SMX和CBZ进入不同类型土壤后的吸附行为,本文研究了SMX和CBZ在粉土及细砂两种典型孔隙介质中的吸附动力学、等温吸附特征及溶液pH值、可溶性腐植酸(DHA)和土壤矿物组分三种因素的影响。结果表明:SMX和CBZ在孔隙介质上的吸附均符合Lagergren准二级动力学模型和Langmuir等温吸附模型,具有快速吸附、缓慢平衡的特点,属于单分子层化学吸附。孔隙介质对SMX的吸附属于自发的放热反应,而对CBZ的吸附则是吸热反应。在实验条件下,粒径小、有机质含量高和比表面积较大的粉土对SMX和CBZ的最大吸附量分别是细砂的3.0倍和2.3倍。SMX的吸附主要受矿物表面静电引力和有机质分配作用影响,而CBZ更多受分配作用控制。随溶液pH值升高(pH=5.0~9.0),孔隙介质对主要以阴离子态存在的SMX的吸附量明显下降,而对分子态CBZ的吸附量变化不明显。溶液中DHA(8~50mg/L)的共存对孔隙介质吸附SMX和CBZ具有竞争抑制作用。孔隙介质中蒙脱石和铁氧化物的含量越高,其对SMX和CBZ的吸附能力越强。

    要点

    (1) Lagergren准二级动力学方程和Langmuir等温吸附模型可以较好地拟合粉土和细砂对磺胺甲恶唑和卡马西平的吸附过程,属于单分子层吸附,主要受化学作用控制。

    (2)随溶液pH值增加(5.0~9.0),阴离子态磺胺甲恶唑受静电斥力影响下吸附量明显下降,而分子态卡马西平的吸附量变化不明显。

    (3)溶液中可溶性腐殖酸(8~50mg/L)的共存对孔隙介质吸附磺胺甲恶唑和卡马西平具有竞争抑制作用,孔隙介质中的蒙脱石和铁氧化物对其吸附磺胺甲恶唑和卡马西平具有促进作用。

    HIGHLIGHTS

    (1) Adsorption processes of SMX and CBZ by pore media follow Lagergren model and Langmuir model and belongs to single molecular layer chemisorption.

    (2) The adsorption capacity of SMX in silt that existed mainly in anionic form increases with the increase of pH value (5.0~9.0), while the adsorption capacity of CBZ in molecular form does not change significantly with the change of pH.

    (3) The coexistence of dissolved humic acid (8~50mg/L) inhibits the adsorption of SMX and CBZ. The adsorption capacity of SMX and CBZ increases with the increase of organic matter and iron oxide content in porous media.

    BRIEF REPORT

    Significance: Sulfamethoxazole (SMX) and carbamazepine (CBZ),as representatives of pharmaceutically active compoundss (PhACs),have attracted much attention. Adsorption plays a pivotal role in determining the migration of PhACs in environments. However,there is a lack of systematical analyses of the adsorption patterns of SMX and CBZ on porous media and the influence of environmental factors on adsorption. These limit the understanding of the potential environmental risks of SMX and CBZ. Explore the adsorption mechanism of SMX and CBZ on the porous medium,and identify the influence of solution pH,DHA content,and soil mineral composition on their adsorption. The results of these studies provide a scientific basis for elucidating the adsorption behavior of SMX and CBZ in soil and water environment.

    METHODS: The adsorption kinetics,isothermal adsorption characteristics and environmental influencing factors (pH,DHA and mineral composition) of SMX on two typical pore media such as silty soil and fine sand were carried out in batch experiments. A series of kinetic and equilibrium adsorption models were used to simulate the experimental results and reveal the fundamental mechanisms.

    Data and Results: The adsorption capacity of SMX and CBZ on porous media increases with time,and then reaches equilibrium,showing the characteristics of rapid adsorption and slow equilibrium (Fig.1). The Lagergren pseudo-second-order kinetic equation can well fit the adsorption process of SMX and CBZ on different porous media (R2 is greater than 0.99),and the fitted equilibrium adsorption capacity is basically the same as the experimental adsorption capacity (Table 3). Langmuir model can well describe the isothermal adsorption process of SMX and CBZ in silt and fine sand,and the maximum adsorption capacities of silt for SMX and CBZ are 0.566μg/g and 3.146μg/g,respectively,and 0.367μg/g for SMX and 1.566μg/g for CBZ in fine sand. The adsorption of SMZ and CBZ on porous media is a monomolecular layer chemical adsorption.

      At the experimental temperature (15~35℃),the Gibbs free energy delta (G) is less than 0,indicating that the adsorption reaction of SMX and CBZ by fine sand is spontaneous. The adsorption enthalpy change (ΔH) of SMX is less than 0,indicating that the adsorption of SMX by fine sand is an exothermic process,and the temperature rise has an inhibitory effect on the adsorption of SMX on fine sand. The enthalpy change (ΔH) of CBZ is greater than 0,indicating that the adsorption of fine sand to CBZ is an endothermic process,and the temperature rise can promote the reaction.

      The adsorption capacity of SMX on silt and fine sand decreases with the increase of solution pH (from 5.0 to 9.0),while the adsorption capacity of CBZ changes slightly with pH variation (Fig.3). The addition of dissolved HA in the solution can change the functional group structure and distribution on the surface of silt,thus affecting the adsorption process of SMX and CBZ on silt. With the increase of DHA concentration in solution (0-50mg/L),the adsorption processes of SMX and CBZ on the porous medium show a significant downward trend (Fig.4). The adsorption of SMX and CBZ are inhibited with the coexistence of DHA in the solution. With the increase of the montmorillonite and ferric oxide addition in the solution,the adsorption capacity of SMX and CBZ significantly increases (Fig.6). In addition to the electrostatic interactions and van der Waals forces,iron oxide surfaces can also form complexes by interacting with functional groups of SMX and CBZ.

      The adsorption processes of SMX and CBZ by pore media conform to Lagergren pseudo-second-order kinetic model and is mainly controlled by chemical adsorption. The adsorption process can be characterized by rapid absorption and slow equilibrium. The SMX and CBZ adsorption data are well fitted with Langmuir adsorption isotherm model,indicating that the adsorption is a monomolecular layer chemical adsorption. Thermodynamic analysis shows that the adsorption of SMX is a spontaneous exothermic process,while the adsorption of CBZ is an endothermic process. The adsorption capacity of SMX in silt increases with the increase of pH value,while the adsorption capacity of CBZ does not change significantly with the change of pH. The coexistence of DHA inhibits the adsorption of SMX and CBZ on porous media. The adsorption capacity of SMX and CBZ increases with the increase of organic matter and iron oxide content in porous media.

  • 药用活性化合物(PhACs)是一类具有不同分子结构、解离常数、疏水性等性质的复杂药物化合物,主要包括抗生素、消炎镇痛药及激素类药等1。人用或兽用药物的排放是环境中PhACs的主要来源2。PhACs可通过食物链迁移至人体,导致人类致癌或过敏反应3,且部分被降解后的产物可能比母体的毒性更大14。由于PhACs的大量使用及污水处理能力不足,河道沿线污水处理厂直接排放的再生水被普遍认为是PhACs进入水环境的一个重要污染源5-6,并通过受污染地表水的回灌、土壤淋滤下渗等途径进入地下水中7。近年来,国内外一些城市地下水中频繁检出浓度较高的PhACs,如磺胺甲恶唑、卡马西平、吉非罗齐、磺胺吡啶、氧氟沙星、林可霉素和诺氟沙星等在地下水中的检出浓度可达ng/L~μg/L8-9,对人体健康和生态环境具有较大的潜在风险10。其中,磺胺甲恶唑(SMX)是目前使用量最大的一种抗生素类药,调查结果显示其在中国部分地区再生水中的检出率达到100%,在地下水中检出率达到81.25%3。卡马西平(CBZ)作为具有抗惊厥、镇痛等作用的广普药物,其在水土中难以被吸附,表现为较高的浓度和迁移性,是国内外地下水中最普遍检出的药品类污染物,通常作为水体受药品类污染的指示物11。由于SMX和CBZ在水环境中的广泛检出及存在生态环境风险,其在水土环境中的迁移行为成为研究的热点12

    当前,中国京津冀地区正开展河流回补地下水试点工作,然而该地区受再生水影响的河流中普遍存在的PhACs已对水质安全构成风险,并通过包气带快速入渗进入地下水中13。吸附作用是控制PhACs在包气带及含水层孔隙介质中迁移转化的主导过程9。一方面,具有不同官能团及解离常数的SMX和CBZ在孔隙介质中的吸附与其在水土中的赋存状态有关,导致土壤对二者的吸附机理比较复杂。例如,SMX随溶液pH的不同呈现阳离子态SMX+(pH≤1.6)、阴离子态SMX(pH≥5.7)和分子态SMX(1.6<pH<5.7),而CBZ的形态基本不随pH的变化而改变,呈现分子态14。因此溶液中SMX可通过静电、配位、络合、离子交换等多种作用吸附到土壤中15,而分配作用和极性作用将对分子态的CBZ吸附起主要作用16。另一方面,SMX和CBZ的吸附特性与孔隙介质的理化性质也密切相关,孔隙介质的矿物组分、环境pH值17、腐植酸等溶解性有机质(DOM)含量18等都是影响其吸附的主要因素。研究发现,黏性质地的土壤对PhACs的吸附量显著高于砂土质地,土壤所含黏土矿物组成及含量是影响其吸附的重要因素19。另外,溶液中DOM可通过共溶效应、竞争吸附和络合作用等影响PhACs的吸附,DOM的输入将对孔隙介质表面变异及PhACs吸附产生双向影响(促进或抑制作用)10。但目前有关不同浓度DOM对PhACs吸附的影响还存在争议20-23。在河流回补地下水过程中,河床及含水层介质对污染物具有较好的渗滤和去除作用,但由于SMX和CBZ的价态结构、理化性质及代谢过程不同,以及含水层环境条件的复杂性和差异性,对SMX和CBZ与孔隙介质间的作用机理以及水体pH值、DOM和介质矿物组分等环境因素对其吸附的影响研究工作仍有待加强2

    本文选取检出率及检出浓度较高的SMX和CBZ作为典型的PhACs,通过开展其在两种代表性孔隙介质(粉土和细砂)中的吸附动力学、热力学特征及其环境因素影响研究,并采用高效液相色谱测试及红外光谱表征等方法,系统探究SMX和CBZ在孔隙介质上的吸附机理,以及溶液pH值、可溶性腐植酸(DHA)含量、孔隙介质的矿物组成对其吸附的影响程度,为阐明水-土环境中SMX和CBZ的吸附和迁移特征提供科学依据。

    磺胺甲恶唑(SMX)和卡马西平(CBZ)为色谱纯,购自德国Dr. Ehrenstorfe公司,基本理化性质见表1

    表  1  SMX和CBZ的理化性质1923-24
    Table  1.  Physical and chemical properties of SMX and CBZ1923-24
    PhACs
    化合物
    分子式 结构 pKa logKow
    SMX C10H11N3O3S 1.60/5.7 0.89
    CBZ C15H12N2O −0.5 1.9
    下载: 导出CSV 
    | 显示表格

    腐植酸为分析纯,购自美国Aladdin公司。氯化钙和氢氧化钠均为分析纯,购自天津欧博凯化工有限公司;蒙脱石为药用级,购自美国Aladdin公司;三氧化二铁(Fe2O3)为分析纯,购自福晨(天津)化学试剂有限公司。

    盐酸为分析纯,购自天津市风船化学试剂科技有限公司;甲醇和乙腈均为色谱纯,购自德国Merck公司;乙酸为分析纯,购自天津市光要科技发展有限公司。实验用水均为超纯水。

    孔隙介质:在河北省石家庄滹沱河冲洪积扇地区采集土壤样品,自然晾干后剔除杂质,细砂过80~120目筛,粉土过120目筛,均置于常温下避光保存。开展实验前,将粉土和细砂分别在121℃条件下高温高压灭菌30min,反复3次,自然冷却后密封备用。孔隙介质的理化性质见表2,由北京中科百测技术服务有限公司完成测试。矿物测试结果表明,粉土主要由石英石、长石、蒙脱石组成,在总物相中占比分别为36.9%、24.8%和19.8%;细砂主要由长石和石英石组成,分别占总物相的67.1%和31.0%。

    表  2  孔隙介质的理化性质
    Table  2.  Physical and chemical properties of porous media
    孔隙介质pH有机质含量
    (g/kg)
    腐殖质含量
    (g/kg)
    比表面积
    (m2/g)
    阳离子交换量
    (cmol/kg)
    TFe
    (%)
    粉土8.365.353.1025.713.152.94
    细砂8.541.200.693.490.562.47
    下载: 导出CSV 
    | 显示表格

    磺胺甲恶唑和卡马西平污染液配制:称取一定质量的SMX和CBZ标准品溶解于5mL甲醇中,转移到容量瓶中加入超纯水定容,配制浓度为1g/L的SMX或CBZ标准储备溶液,置于40mL棕色玻璃瓶中,4℃条件下避光保存。在后续不同实验过程中,根据目标污染液浓度需求,逐级稀释(稀释后甲醇控制在0.1%以下)。污染液保存至棕色容量瓶中。

    恒温振荡器(SPH-2102C,上海世平实验设备有限公司),高效液相色谱仪(LC-2030C,日本Shimadzu公司),离心机(3K15,德国Sigma公司),红外光谱仪(Nicolet6700型,美国ThermoFisher公司)。

    采用0.005mol/L氯化钙溶液作为背景溶液,分别配制浓度为500μg/L的磺胺甲恶唑或卡马西平污染液,加入150mL污染液到装有7.50g灭菌的粉土或细砂的250mL棕色锥形瓶中,加盖密封,置于恒温振荡器中振荡反应(120r/min,25℃,避光),分别在 0.25、0.5、1、2、4、8、12、24、36、48和60h取上清液,过滤后4℃放置保存,待测。

    采用0.005mol/L氯化钙溶液作为背景溶液,配制初始浓度分别为100、150、250、350、500、1000和2000μg/L的磺胺甲恶唑或卡马西平污染液。在50mL棕色锥形瓶中分别加入2g粉土或细砂,再加入20mL上述浓度的磺胺甲恶唑或卡马西平污染液,分别置于15℃、25℃、35℃的恒温振荡器中振荡反应60h(120r/min,避光),取上清液过滤后4℃放置保存,待测。

    与等温吸附实验基本条件一致,通过改变背景溶液的pH值、DOM含量,分析水化学组分对孔隙介质吸附磺胺甲恶唑和卡马西平的影响;通过单独添加蒙脱石和Fe2O3,分析矿物组分对磺胺甲恶唑和卡马西平的吸附能力。其中溶液pH值用盐酸(0.1mol/L)和氢氧化钠溶液(0.1mol/L)调节背景电解质溶液,使背景溶液pH值分别为5、6、7、8和9。溶液DOM含量通过添加可溶性腐植酸(DHA)调节,先将腐植酸溶解于水溶液中,通过对溶液pH值调节和超声处理,使腐植酸水溶性部分充分溶解在水中,再通过0.45μm水系滤膜过滤得到DHA原液,并利用盐酸调节pH到中性,通过逐级稀释获得DHA浓度为0、8.0、12.5、25和50mg/L的背景液。选取土壤中代表性活性矿物组分蒙脱石和Fe2O3,通过向污染液中添加不同质量(0.5、1.0和2.0g)的蒙脱石或Fe2O3,分析不同矿物组分对磺胺甲恶唑和卡马西平的吸附能力。

    以上实验每组均设计空白对照样和3个平行样品,以降低实验误差,除pH值影响实验外,其他实验条件pH为中性。

    液体样品经0.22μm滤膜过滤后,磺胺甲恶唑和卡马西平采用高效液相色谱测定,仪器配备紫外线(UV)波长为不同波段的可见光探测器,样品取样点需要做三个平行以减少误差。测试条件为:Waters PAH C18色谱柱(150mm×4.6mm,5μm),柱温30℃,流速1.0mL/min,进样量10μL,流动相为乙腈-水(60∶40,V/V,水用乙酸调节pH=3)。其中,磺胺甲恶唑的检测波长λ=265nm,卡马西平的检测波长λ=284nm25-26

    以每组实验的所有样品为一个批次,每批次样品中加入空白样和空白加标样,以磺胺甲恶唑和卡马西平为回收指示物,磺胺甲恶唑的回收率为99.7%~100.08%,卡马西平的回收率为99.2%~101.02%。空白中目标污染物含量均低于检测限。采用内标法测定磺胺甲恶唑和卡马西平的标准曲线,其线性质量浓度范围分别为46~2103μg/L和52~2115μg/L,R2均达到0.99以上,证明测试方法准确可靠。根据检出限和定量限公式计算磺胺甲恶唑的检出限和定量限分别为3.7μg/L和14.8μg/L,卡马西平的检出限和定量限分别为2.4μg/L和9.6μg/L。

    (1)吸附动力学模型

    研究选用经典准一级动力学模型和准二级动力学模型进行吸附动力学实验数据拟合27

    $$ 准一级动力学模型: {Q}_{t}={Q}_{\mathrm{e}}(1{-\mathrm{e}}^{-{k}_{1}\cdot t}) $$ (1)
    $$ 准二级动力学模型: t/{Q}_{t}=1/{k}_{2}\cdot {Q}_{\mathrm{e}}^{2}+t/{Q}_{\mathrm{e}} $$ (2)

    式中:Qtt时刻的固相吸附量(μg/g);Qe为吸附平衡时的固相吸附量(μg/g);k1为准一级吸附速率常数(L/min);t为反应时间(min);k2为准二级吸附速率常数[g/(μg·min)];a为初始吸附速率[μg/(g·min)]。

    (2)等温吸附模型

    研究选用Freundlich模型和Langmuir模型对等温吸附数据进行拟合28

    $$ \mathrm{Freundlich}模型:Q\mathrm{_e}=K_{\mathrm{F}}\cdot C_{\mathrm{e}}^n $$ (3)
    $$ \mathrm{Langmuir}模型:Q_{\mathrm{ }\mathrm{e}}=Q_{\mathrm{m}\mathrm{a}\mathrm{x}}\cdot K_{\mathrm{L}}\cdot C_{\mathrm{e}}/(1+K_{\mathrm{L}}\cdot C_{\mathrm{e}}) $$ (4)

    式中:Cs为吸附平衡时的液相浓度(μg/L);KF为Freundlich等温吸附平衡常数,表示污染物在吸附剂上的吸附亲和力大小[(μg/g)·(L/μg)n];n为Freundlich常数,代表吸附强度;Qmax为固相最大吸附量(μg/g);KL为Langmuir等温吸附平衡常数(L/μg),该值越大,表明吸附剂的吸附性能越强。

    (3)吸附热力学模型

    本研究选用吸附热力学模型来判断孔隙介质对污染物吸附过程的能量变化以及吸放热情况29

    $$ \Delta G=-R T \ln K_{\mathrm{d}}$$ (5)
    $$ \mathrm{l}\mathrm{n}{K}_{\mathrm{d}}=-\frac{\Delta H}{RT}+\frac{\Delta S}{R} $$ (6)

    式中:$\Delta G $代表吉布斯自由能(kJ/mol);R为气体常数,其值为8.314[J/(mol·K)];$\Delta H $代表焓变(J/mol);$\Delta S $为熵变[kJ/(mol·K)];T是绝对温度(K)。

    SMX和CBZ在粉土和细砂上的吸附动力学拟合曲线如图1所示。孔隙介质对SMX和CBZ的吸附量随时间增加而增大,随后趋于吸附平衡,呈现初始快速吸附、后期缓慢平衡的特点。根据公式(2)准二级动力学方程计算发现其可以很好地拟合不同孔隙介质对SMX和CBZ的吸附过程(R2均大于0.99),且拟合计算的平衡吸附量与实验吸附量基本一致(表3),即孔隙介质对SMX和CBZ的吸附过程主要受吸附位点影响,由化学作用主导。其中,粉土对SMX和CBZ的吸附量分别可达1.04μg/g和1.15μg/g,而细砂对SMX和CBZ的吸附量较小,仅为0.35μg/g和0.49μg/g,粉土对SMX和CBZ的吸附量分别是细砂的3.0倍和2.3倍。由于粉土的比表面积和阳离子交换量较大、有机质及铁含量较高(表2),可提供更多的吸附活性位点,有利于通过静电引力、分配等作用吸附SMX和CBZ,故表现为吸附速率较快,吸附容量较大。

    图  1  不同孔隙介质对SMX和CBZ的吸附动力学拟合曲线
    Figure  1.  Adsorption and pseudo-second-order kinetics fitting curves of SMX and CBZ by different porous media. (a) SMX adsorption; (b) SMX adsorption fitting curves; (c) CBZ adsorption; (d) CBZ adsorption fitting curves.
    表  3  吸附动力学方程拟合参数
    Table  3.  Parameters of adsorption kinetics models for SMX and CBZ
    PhACs化合物 孔隙介质类型 Lagergren准二级吸附速率方程
    k2
    [g/(μg·min)]
    方程拟合
    Qe (μg/g)
    实验计算
    Qe (μg/g)
    R2 相关系数
    r
    SMX 粉土 0.94 1.06 1.04 0.971 0.985
    细砂 2.88 0.35 0.35 0.996 0.998
    CBZ 粉土 0.27 1.15 1.15 0.989 0.994
    细砂 1.66 0.41 0.49 0.996 0.998
    下载: 导出CSV 
    | 显示表格

    SMX和CBZ在不同孔隙介质中的等温吸附拟合曲线如图2所示。Langmuir模型可以较好地拟合其在粉土和细砂中的等温吸附过程,表明SMX和CBZ在孔隙介质中易发生单分子层吸附,主要受吸附点位控制30-31。根据公式(3)Freundlich模型计算发现粉土和细砂对SMX和CBZ的吸附参数值(1/n)均小于0.5,表明吸附过程属于优惠吸附。相同初始浓度条件下粉土和细砂对SMX和CBZ的平衡吸附量存在显著差异(表4)。其中,根据公式(4)Langmuir模型计算得出粉土对SMX和CBZ的最大吸附量分别为0.57μg/g和3.15μg/g,细砂对SMX和CBZ的最大吸附量分别为0.37μg/g和1.57μg/g。粉土的等温吸附平衡常数(KL)是细砂的2倍,KL大小与土壤有机质含量和黏粒呈正相关32。在溶液pH中性条件下,CBZ在粉土中的最大吸附量是细砂中的2倍,分子态CBZ的吸附更易受到有机质的分配作用和极性作用的影响。粉土对SMX的吸附量是细砂的1.5倍,以离子态为主存在的SMX受孔隙介质中矿物的表面静电引力、有机组分配位和离子交换作用等控制33

    图  2  不同孔隙介质对(a) SMX和(b) CBZ的等温吸附拟合曲线
    Figure  2.  Isothermal adsorption fitting curves of (a) SMX and (b) CBZ by different porous media
    表  4  不同孔隙介质对SMX和CBZ的等温吸附模型参数
    Table  4.  Parameters of isothermal adsorption models for SMX and CBZ by different porous media
    等温吸附模型 参数 SMX CBZ
    粉土 细砂 粉土 细砂
    Freundlich KF [(μg/g)·(L/μg)n] 0.033 0.009 0.005 0.003
    n 0.363 0.504 0.759 0.732
    R2 0.930 0.810 0.966 0.989
    Langmuir KL (L/μg) 0.003 0.0017 4.56×10−4 4.55×10−4
    Qmax (μg/g) 0.57 0.37 3.15 1.57
    R2 0.984 0.902 0.983 0.996
    下载: 导出CSV 
    | 显示表格

    吸附热力学可以反映SMX和CBZ在孔隙介质上吸附的能量变化以及吸放热情况。以细砂为例(表5),根据公式(5)和(6)吸附热力学模型计算表明,在实验温度下(15~35℃)反应吉布斯自由能ΔG<0,说明细砂对SMX和CBZ的吸附反应是自发的,且随着温度增加ΔG减小,反应自发程度减小34。ΔG的绝对值随温度变化不大,说明温度不是影响吸附过程的主要因素29。SMX的吸附焓变ΔH<0,表明细砂对SMX的吸附是放热过程,升温对SMX在细砂上的吸附有抑制作用。CBZ的吸附焓变ΔH>0,表明细砂对CBZ的吸附是吸热过程,升温对反应进行有促进作用35。SMX和CBZ的吸附熵变ΔS均为正值,表明温度升高导致吸附过程中的混乱度增加(混乱度是体系混乱程度的度量),熵值升高,提高了SMX和CBZ向介质孔隙内部扩散速率36

    表  5  细砂对SMX和CBZ的吸附热力学参数
    Table  5.  Adsorption thermodynamic parameters of SMX and CBZ by fine sand
    污染物 θ
    (℃)
    ΔG
    (kJ/mol)
    ΔH
    (kJ/mol)
    ΔS
    [J/(K·mol)]
    SMX 35 −7.432 −0.00249 0.0241
    25 −7.191
    15 −6.950
    CBZ 35 −9.218 0.00499 0.0299
    25 −8.919
    15 −8.619
    下载: 导出CSV 
    | 显示表格

    溶液的pH值可以改变污染物形态及孔隙介质表面电荷进而影响吸附进程37。由图3可知,粉土和细砂对SMX的吸附量随溶液pH值的增加均呈下降趋势,而对CBZ的吸附量随pH值的变化不明显。根据溶液中SMX和CBZ随pH值的形态变化规律2314,当溶液pH≥5.7时,SMX主要以阴离子SMX 形态存在38,CBZ则以分子态存在。因此,随pH由5.0升高至9.0,SMX与带负电的孔隙介质颗粒之间的静电斥力增大,孔隙介质对SMX的吸附量降低,CBZ主要受到孔隙介质中矿物组分的专性吸附和有机质的分配作用控制39,表现为不同孔隙介质对CBZ的吸附量随溶液pH值变化不明显。

    图  3  溶液pH对(a) SMX和(b) CBZ在孔隙介质上吸附的影响
    Figure  3.  Effect of pH on the (a) SMX and (b) CBZ adsorption by porous media

    图4可以看出,随着溶液中DHA浓度逐渐增加(0~12.5mg/L),孔隙介质对SMX和CBZ的吸附量呈显著下降趋势,表现为溶液中DHA共存条件下对孔隙介质吸附SMX和CBZ具有抑制作用。一方面,溶液中DHA具有较大的比表面积和活性点位,可与SMX和CBZ在孔隙介质上的吸附产生竞争作用,降低孔隙介质对SMX和CBZ的吸附能力。另一方面,DHA与SMX和CBZ可通过疏水作用相结合,起到增溶或表面活性剂作用,降低SMX和CBZ与孔隙介质的吸附亲和力40。随着溶液中DHA浓度进一步增加(12.5~50mg/L),其对孔隙介质吸附SMX和CBZ的抑制作用减弱,推测溶液中部分DHA与SMX和CBZ结合后,可间接被吸附到孔隙介质上19

    图  4  溶液DHA浓度对(a) SMX和(b) CBZ在孔隙介质上吸附的影响
    Figure  4.  Effects of DHA concentration on the (a) SMX and (b) CBZ adsorption by porous media

    进一步分析污染液中添加DHA(50mg/L)前后,粉土吸附CBZ和SMX的红外光谱图(FTIR)变化(图5)。图中波数为1440.56cm−1处的吸收峰是与羧基(—COOH)有关的峰,3389.76cm−1处代表羟基(—OH)的伸缩振动峰41,1640.64cm−1处波动峰是醚基(C—O—C)的拉伸和氨基(—NH2)的弯曲振动42,添加DHA后粉土吸附CBZ后在3389.76cm−1和1640.64cm−1的特征峰位置分别移动至3426.89cm−1和1633.41cm−1处,说明羟基(—OH)和氨基(—NH2)参与了DHA的吸附过程,氨基和含氧官能团一般形成氢键43。添加DHA后吸附SMX在1440.56cm−1处的吸收峰移动至1433.33cm−1处且峰形变宽,说明羧基参与了DHA的吸附。由此可见,溶液中DHA的添加可以改变孔隙介质吸附SMX和CBZ后的官能团结构、分布和强度,进而影响其对SMX和CBZ的吸附过程。

    图  5  添加DHA前后粉土吸附(a) SMX和(b) CBZ的红外吸收光谱谱图对比
    Figure  5.  Infrared adsorption spectra of (a) SMX and (b) CBZ by silt before and after adding DHA

    图6可以看出,随着溶液中蒙脱石、Fe2O3添加量的增加,对SMX和CBZ的吸附量均呈增大趋势。在溶液pH条件下,SMX和CBZ在溶液中分别主要以阴离子态和分子态存在,因此以静电作用和离子交换作用为主的蒙脱石对二者吸附能力较弱44。另一方面,SMX和CBZ含有丰富的有机官能团(—NO2、—SO2—、—C=O),可以吸附在铁氧化物表面的活性点位上而形成络合物。例如,含氧官能团中的氧原子与Fe原子结合形成双齿单核络合物45。因此,除静电作用、范德华力外,铁氧化物表面还可通过与SMX和CBZ的官能团相互作用形成络合物。整体上Fe2O3对SMX和CBZ的吸附亲和力大于蒙脱石。

    图  6  蒙脱石及三氧化二铁对(a) SMX和(b) CBZ的吸附能力对比
    Figure  6.  Comparison of adsorption capacity of (a) SMX and (b) CBZ by montmorillonite and iron oxide

    通过研究表明,孔隙介质粉土和细砂对SMX和CBZ的吸附过程均呈现初始快速吸附,然后缓慢增加至饱和两个阶段,主要受化学吸附控制。Langmuir模型可以较好地拟合SMX和CBZ在粉土和细砂中的等温吸附过程,主要为单分子层吸附。通过热力学参数的研究发现CBZ的吸附过程是吸热反应,而SMX的吸附属于自发放热反应。

    随着溶液pH值的升高(pH 5.0~9.0),以阴离子态存在的SMX在粉土上的吸附量呈明显下降趋势,而以分子态存在的CBZ在粉土上的吸附量则受pH值影响较小。DHA共存下将改变孔隙介质表面官能团结构、分布和强度,并通过增溶作用抑制孔隙介质对SMX和CBZ的吸附。孔隙介质中蒙脱石和Fe2O3含量升高,对SMX和CBZ吸附起促进作用。

  • 图  1   不同孔隙介质对SMX和CBZ的吸附动力学拟合曲线

    Figure  1.   Adsorption and pseudo-second-order kinetics fitting curves of SMX and CBZ by different porous media. (a) SMX adsorption; (b) SMX adsorption fitting curves; (c) CBZ adsorption; (d) CBZ adsorption fitting curves.

    图  2   不同孔隙介质对(a) SMX和(b) CBZ的等温吸附拟合曲线

    Figure  2.   Isothermal adsorption fitting curves of (a) SMX and (b) CBZ by different porous media

    图  3   溶液pH对(a) SMX和(b) CBZ在孔隙介质上吸附的影响

    Figure  3.   Effect of pH on the (a) SMX and (b) CBZ adsorption by porous media

    图  4   溶液DHA浓度对(a) SMX和(b) CBZ在孔隙介质上吸附的影响

    Figure  4.   Effects of DHA concentration on the (a) SMX and (b) CBZ adsorption by porous media

    图  5   添加DHA前后粉土吸附(a) SMX和(b) CBZ的红外吸收光谱谱图对比

    Figure  5.   Infrared adsorption spectra of (a) SMX and (b) CBZ by silt before and after adding DHA

    图  6   蒙脱石及三氧化二铁对(a) SMX和(b) CBZ的吸附能力对比

    Figure  6.   Comparison of adsorption capacity of (a) SMX and (b) CBZ by montmorillonite and iron oxide

    表  1   SMX和CBZ的理化性质1923-24

    Table  1   Physical and chemical properties of SMX and CBZ1923-24

    PhACs
    化合物
    分子式 结构 pKa logKow
    SMX C10H11N3O3S 1.60/5.7 0.89
    CBZ C15H12N2O −0.5 1.9
    下载: 导出CSV

    表  2   孔隙介质的理化性质

    Table  2   Physical and chemical properties of porous media

    孔隙介质pH有机质含量
    (g/kg)
    腐殖质含量
    (g/kg)
    比表面积
    (m2/g)
    阳离子交换量
    (cmol/kg)
    TFe
    (%)
    粉土8.365.353.1025.713.152.94
    细砂8.541.200.693.490.562.47
    下载: 导出CSV

    表  3   吸附动力学方程拟合参数

    Table  3   Parameters of adsorption kinetics models for SMX and CBZ

    PhACs化合物 孔隙介质类型 Lagergren准二级吸附速率方程
    k2
    [g/(μg·min)]
    方程拟合
    Qe (μg/g)
    实验计算
    Qe (μg/g)
    R2 相关系数
    r
    SMX 粉土 0.94 1.06 1.04 0.971 0.985
    细砂 2.88 0.35 0.35 0.996 0.998
    CBZ 粉土 0.27 1.15 1.15 0.989 0.994
    细砂 1.66 0.41 0.49 0.996 0.998
    下载: 导出CSV

    表  4   不同孔隙介质对SMX和CBZ的等温吸附模型参数

    Table  4   Parameters of isothermal adsorption models for SMX and CBZ by different porous media

    等温吸附模型 参数 SMX CBZ
    粉土 细砂 粉土 细砂
    Freundlich KF [(μg/g)·(L/μg)n] 0.033 0.009 0.005 0.003
    n 0.363 0.504 0.759 0.732
    R2 0.930 0.810 0.966 0.989
    Langmuir KL (L/μg) 0.003 0.0017 4.56×10−4 4.55×10−4
    Qmax (μg/g) 0.57 0.37 3.15 1.57
    R2 0.984 0.902 0.983 0.996
    下载: 导出CSV

    表  5   细砂对SMX和CBZ的吸附热力学参数

    Table  5   Adsorption thermodynamic parameters of SMX and CBZ by fine sand

    污染物 θ
    (℃)
    ΔG
    (kJ/mol)
    ΔH
    (kJ/mol)
    ΔS
    [J/(K·mol)]
    SMX 35 −7.432 −0.00249 0.0241
    25 −7.191
    15 −6.950
    CBZ 35 −9.218 0.00499 0.0299
    25 −8.919
    15 −8.619
    下载: 导出CSV
  • [1]

    Wang H, Xi H, Xu L L, et al. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal careproducts in the water environment: A review[J]. Science of the Total Environment, 2021, 78: 147819. doi: 10.1016/j.scitotenv.202l.147819.

    [2] 吴林, 李峰, 杜蓓蓓. 药物及个人护理品在土壤中的淋溶迁移性评价[J]. 环境科学与技术, 2015, 38(5): 163−167. doi: 10.3969/j.issn.1003-6504.2015.05.032

    Wu L, Li F, Du B B. Evaluation of leachability of pharmaceuticals and personal care products in soils[J]. Environmental Science & Technology, 2015, 38(5): 163−167. doi: 10.3969/j.issn.1003-6504.2015.05.032

    [3]

    Li H, Cai Y, Gu Z, et al. Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater[J]. Chemosphere, 2020, 248: 126014. doi: 10.1016/j.chemosphere.2020.126014

    [4]

    Zhang Y N, Zhang T T, Liu H Y, et al. Simulated sunlight-induced inactivation of tetracycline resistant bacteria and effects of dissolved organic matter[J]. Water Research, 2020, 185: 116241. doi: 10.1016/j.watres.2020.116241

    [5] 郭子宁, 王旭升, 向师正, 等. 再生水入渗区典型抗生素分布特征与地下水微生物群落影响因素研究[J]. 岩矿测试, 2022, 41(3): 451−462. doi: 10.15898/j.cnki.11-2131/td.202111040163

    Guo Z N, Wang X S, Xiang S Z, et al. Distribution characteristics of typical antibiotics in reclaimed water infiltration area and influencing factors of groundwater microbial community[J]. Rock and Mineral Analysis, 2022, 41(3): 451−462. doi: 10.15898/j.cnki.11-2131/td.202111040163

    [6]

    Kovačević S, Radišić M, Laušević M, et al. Occurrence and behavior of selected pharmaceuticals during riverbank filtration in the republic of Serbia[J]. Environmental Science and Pollution Research, 2017, 24(2): 2075−2088. doi: 10.1007/s11356-016-7959-4

    [7]

    Cao S S, Duan Y P, Tu Y J, et al. Pharmaceuticals and personalcare products in a drinking water resource of Yangtze River Delta ecology and greenery integration development demonstration zone China: Occurrence and human health risk assessment[J]. Science of the Total Environment, 2020, 721:137624

    [8] 牛颖, 安圣, 陈凯, 等. 2012—2021年中国地下水抗生素污染现状及分析技术研究进展[J]. 岩矿测试, 2023, 42(1): 39−58. doi: 10.15898/j.cnki.11-2131/td.202210120192

    Niu Y, An S, Chen K, et al. A review of current status and analysis methods of antibiotic contamination in groundwater in China (2012—2021)[J]. Rock and Mineral Analysis, 2023, 42(1): 39−58. doi: 10.15898/j.cnki.11-2131/td.202210120192

    [9]

    Adeleye A S, Xue J, Zhao Y X, et al. Abundance, fate, and effects of pharmaceuticals and care products in aquatic personal environments[J]. Journal of Hazardous Materials, 2022, 424(Pt B):127284.

    [10]

    Yuan Q L, Li Z P, Li L C, et al. Pharmaceuticals and personal care products transference-transformation in aquifer system[J]. Journal of Groundwater Science and Engineering, 2020, 8(4): 358−365. doi: 10.19637/j.cnki.2305-7068.2020.04.007

    [11] 巢铸, 夏鹏, 司静宜, 等. 我国淡水中卡马西平的水质基准初探及生态风险评估[J/OL]. 环境工程(2023-01-19).https://kns.cnki.net/kcms/detail//11.2097.x.20230117.1619.006.html.

    Chao Z, Xia P, Si J Y, et al. Preliminary study on water quality criteria and ecological risk assessment of carbamazepine in freshwater in China[J/OL]. Environ-mental Engineering (2023-01-19).https://kns.cnki.net/kcms/detail//11.2097.x.20230117.1619.006.html.

    [12] 马琳, 李广贺. 地下水中新型污染物的赋存与分布特征[C]//昆明: 中国环境科学学会学术年会论文集, 2013: 3701−3705.

    Ma L, Li G H. Occurrence and distribution characteristics of new pollutants in groundwater[C]//Kunming: Proceedings of the Annual Conference of the Chinese Society of Environmental Sciences, 2013: 3701−3705.

    [13]

    Wang J L, Zhang C, Xiong L, et al. Changes of antibiotic occurrence and hydrochemistry in groundwater under the influence of the South-to-North Water Diversion (the Hutuo River, China)[J]. Science of the Total Environment, 2022, 832: 154779. doi: 10.2139/ssrn.3997719

    [14] 李烨. 抗生素电离形态对其植物吸收的影响[D]. 大连: 大连理工大学, 2020.

    Li Y. Effect of ionization speciation on the plant uptake of antibiotics[D]. Dalian: Dalian University of Technology, 2020.

    [15]

    Cai N, Larese-Casanova P. Application of positively-charged ethylenediamine-functionalized graphene for the sorption of anionic organic contaminants from water[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 2941−2951. doi: 10.1016/j.jece.2016.06.004

    [16]

    Kodešová R, Grabic R, Kočárek M, et al. Pharmaceuticals’ sorptions relative to properties of thirteen different soils[J]. Science of the Total Environment, 2015, 511: 435−443. doi: 10.1016/j.scitotenv.2014.12.088

    [17]

    D’alessio M, Durso L M, Miller D N, et al. Environmental fate and microbial effects of monensin, lincomycin, and sulfamethazine residues in soil[J]. Environmental Pollution, 2019, 246: 60−68. doi: 10.1016/j.envpol.2018.11.093

    [18]

    Cuprys A, Pulicharla R, Lecka J, et al. Ciprofloxacin-metal complexes-stability and toxicity tests in the presence of humic substances[J]. Chemosphere, 2018, 202: 549−559. doi: 10.1016/j.chemosphere.2018.03.117

    [19] 王东升, 李鑫. 不同质地土壤中四环素类抗生素的吸附解吸特性研究[J]. 安全与环境学报, 2017, 17(1): 227−231. doi: 10.13637/j.issn.1009-6094.2017.01.044

    Wang D S, Li X. Adsorption and desorption features of tetracycline antibiotics in different texture soils[J]. Journal of Safety and Environment, 2017, 17(1): 227−231. doi: 10.13637/j.issn.1009-6094.2017.01.044

    [20] 梁雨, 何江涛, 张思. DOM不同相对分子质量组分在无机矿物上的吸附及其对卡马西平吸附的影响实验[J]. 环境科学, 2018, 39(5): 2219−2229. doi: 10.13227/j.hjkx.201708012

    Liang Y, He J T, Zhang S. Adsorption of dissolved organic matter with different relative molecular masses on inorganic minerals and its influence on carbamazepine adsorption behavior[J]. Environmental Science, 2018, 39(5): 2219−2229. doi: 10.13227/j.hjkx.201708012

    [21] 孔晨晨, 张世文, 聂超甲, 等. 农用地土壤抗生素组成特征与积累规律[J]. 环境科学, 2019, 40(4): 1981−1989. doi: 10.13227/j.hjkx.201809018

    Kong C, Zhang S W, Nie C J, et al. Composition, characteristics, and aceumulation of antibiotics in the soil in agricultural land[J]. Environmental Science, 2019, 40(4): 1981−1989. doi: 10.13227/j.hjkx.201809018

    [22] 曹文庚, 王妍妍, 张亚南, 等. 含微塑料地下水的污染现状、环境风险及其发展趋势[J/OL]. 中国地质(2024-01-30).https://link.cnki.net/urlid/11.1167.P.20240130.1025.004.

    Cao W G, Wang Y Y, Zhang Y N, et al. Pollution status, environmental risk and development trend of groundwater containing microplastics[J/OL]. Geology in China (2024-01-30).https://link.cnki.net/urlid/11.1167.P.20240130.1025.004

    [23]

    Reguyal F, Sarmah A K. Adsorption of sulfame-thoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and 17α-ethinylestradiol[J]. Science of the Total Environment, 2018, 628/629: 722−730. doi: 10.1016/j.scitotenv.2018.01.323

    [24]

    Martinez-Costa J I, Maldonado-Rubio M I, Leyva R R. Degradation of emerging contaminants diclofenac, sulfamethoxazole, trimethoprim and carbamazepine by bentonite and vermiculite at a pilot solar compound parabolic collector[J]. Catalysis Today, 2020, 341: 26−36. doi: 10.1016/j.cattod.2018.07.021

    [25] 梁建军, 何芹, 郑怀礼, 等. 卡马西平印迹吸附剂的分子模拟与吸附机理[J]. 分析化学, 2019, 47(6): 846−854. doi: 10.19756/i.issn.0253-3820.191084

    Liang J J, He Q, Zheng H L, et al. Molecular simulation and adsorption mechanism of carbamazepine imprinted adsorbent[J]. Chinese Journal of Analytical Chemistry, 2019, 47(6): 846−854. doi: 10.19756/i.issn.0253-3820.191084

    [26] 张文文. 碳基材料对典型 PPCPs在水环境中的吸附行为研究[D]. 北京: 北京建筑大学, 2017.

    Zhang W W. Study on the sorption behavior of typical PPCPs to carbonaceous materials[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2017.

    [27] 张威, 孔祥科, 韩占涛, 等. 7-ACA发酵药渣生物炭对水体中Pb(Ⅱ)和Cd(Ⅱ)的吸附特性[J]. 安全与环境工程, 2022, 29(4): 1−9. doi: 10.13578/j.cnki.issn.1671-1556.20210694

    Zhang W, Kong X K, Han Z T, et al. Adsorption characteristics of Pb(Ⅱ) and Cd(Ⅱ) in water bodies onto biochars derived from 7-ACA fermented residue[J]. Safety and Environmental Engineering, 2022, 29(4): 1−9. doi: 10.13578/j.cnki.issn.1671-1556.20210694

    [28]

    Wang P, Kong X K, Ma L S, et al. Metal(loid)s removal by zeolite-supported iron particles from mine contaminated groundwater: Performance and mechanistic insights[J]. Environmental Pollution, 2022, 313: 120155. doi: 10.1016/j.envpol.2022.120155

    [29]

    Shi G W, Li Y S, Liu Y C, et al. Predicting the speciation of ionizable antibiotic ciprofloxacin by biochars with varying carbonization degrees[J]. RSC Advances, 2023, 13: 9892−9902. doi: 10.1039/d3ra00122a

    [30]

    Manjunath S V, Singh B R, Kumar M. Antagonistic and synergistic analysis of antibiotic adsorption on Prosopis juliflora activated carbon in multicomponent systems[J]. Chemical Engineering Journal, 2020, 381: 122713. doi: 10.1016/j.cej.2019.122713

    [31]

    Rajapaksha A, Ok Y, Vithanage M, et al. Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethazine sorption[J]. Journal of Soils and Sediments, 2016, 16(3): 889−895. doi: 10.1007/s11368-015-1325-x

    [32] 时雯雯, 魏兴, 周金龙, 等. 新疆不同质地土壤对石油类污染物的吸附作用[J]. 环境工程, 2022, 40(4): 127−133. doi: 10.13205/j.hjgc.202204018

    Shi W W, Wei X, Zhou J L, et al. Adsorption of petroleum pollutants on different texture soils in Xinjiang China[J]. Environmental Engineering, 2022, 40(4): 127−133. doi: 10.13205/j.hjgc.202204018

    [33] 汤家喜, 向彪, 李玉, 等. 硅藻土对水中氟化物的吸附特性研究[J]. 生态环境学报, 2022, 31(2): 335−343. doi: 10.16258/j.cnki.1674-5906.2022.02.014

    Tang J X, Xiang B, Li Y, et al. Study on adsorption characteristics of fluoride in water by diatomite[J]. Ecology and Environmental Sciences, 2022, 31(2): 335−343. doi: 10.16258/j.cnki.1674-5906.2022.02.014

    [34]

    Jiang Y, Ma X L, Sun F Y, et al. A comparative study on the adsorption properties of heavy metal Cr in lake sediment and soil[J]. Applied Ecology and Environmental Research, 2021, 19(2): 901−914. doi: 10.15666/AEER/1902_901914

    [35] 何红珠, 王欣怡, 卫潇, 等. 牡丹果荚基多孔碳材料对水中四环素的吸附[J]. 农业环境科学学报, 2024, 43(6): 1389−1399. doi: 10.11654/jaes.2023-1106

    He H Z, Wang X Y, Wei X, et al. Adsorption of tetracycline in water by peony pod–based porous carbon material[J]. Journal of Agro-Environment Science, 2024, 43(6): 1389−1399. doi: 10.11654/jaes.2023-1106

    [36] 钱子妍, 曾娟, 张立刚, 等. 南海深海沉积物对Cu(Ⅱ)的吸附特性研究[J]. 环境科学学报, 2023, 43(9): 152−163. doi: 10.13671/j.hjkxxb.2023.0006

    Qian Z Y, Zeng J, Zhang L G, et al. Cu(Ⅱ) adsorption characteristics by deep-sea sediment from the South China Sea[J]. Acta Scientiae Circumstantiae, 2023, 43(9): 152−163. doi: 10.13671/j.hjkxxb.2023.0006

    [37]

    Chauhan M, Saini V K, Suthar S, et al. Removal of pharmaceuticals and personal care products (PPCPs) from water by adsorption on aluminum pillared clay[J]. Journal of Porous Materials, 2020, 27: 383−393. doi: 10.1007/s10934-019-00817-8

    [38] 俞伟, 赵思钰, 王宇航, 等. 苜蓿生物炭对磺胺甲恶唑的吸附机理研究[J]. 西北大学学报(自然科学版), 2022, 52(1): 116−127. doi: 10.16152/j.cnki.xdxbzr.2022-01-014

    Yu W, Zhao S Y, Wang Y H, et al. Mechanism of adsorption of sulfamethoxazole by alfalfa biochar at different pyrolysis temperatures[J]. Journal of Northwest University (Natural Science Edition), 2022, 52(1): 116−127. doi: 10.16152/j.cnki.xdxbzr.2022-01-014

    [39] 李仁杰. 有机质和团聚物对PPCPs在土壤中吸附和迁移的影响[D]. 北京: 中国科学院大学, 2020.

    Li R J. Effects of organic matter and aggregate on adsorption and transport of PPCPs in soil[D]. Beijing: University of Chinese Academy of Sciences, 2020.

    [40]

    Wu Q L, Xian Y, He Z L, et al. Adsorption characteristics of Pb(Ⅱ) using biochar derived from spent mushroom substrate[J]. Scientific Reports, 2019, 9: 15999. doi: 10.1038/s41598-019-52554-2

    [41] 南志江, 蒋煜峰, 毛欢欢, 等. 玉米秸秆生物炭对灰钙土吸附金霉素的影响[J]. 环境科学, 2021, 42(12): 5896−5904. doi: 10.13227/j.hjkx.202103284

    Nan Z J, Jiang Y F, Mao H H, et al. Effect of corn stalk biochar on the adsorption of aureomycin from sierozem[J]. Environmental Science, 2021, 42(12): 5896−5904. doi: 10.13227/j.hjkx.202103284

    [42] 李志琳, 解宇峰, 程德义, 等. 氨化改性小麦秸秆对水体Cd2+的吸附性能研究[J]. 环境工程技术学报, 2019, 9(5): 566−572. doi: 10.12153/j.issn.1674-991X.2019.04.010

    Li Z L, Xie Y F, Cheng D Y, et al. Adsorption properties of ammonia-modified wheat straw on aquatic cadmium[J]. Journal of Environmental Engineering Technology, 2019, 9(5): 566−572. doi: 10.12153/j.issn.1674-991X.2019.04.010

    [43]

    Rizzuto S, Baho D L, Jones K C, et al. Binding of waterborne pharmaceutical and personal care products to natural dissolved organic matter[J]. Science of the Total Environment, 2021, 784(36): 147208. doi: 10.1016/j.scitotenv.2021.147208

    [44] 汪玉瑛, 尤凌聪, 刘玉学, 等. 蒙脱石对恩诺沙星吸附性能研究[J]. 安全与环境学报, 2019, 19(4): 1349−1358. doi: 10.13637/j.issn.1009-6094.2019.04.034

    Wang Y Y, You L C, Liu Y X, et al. Investigation of adsorptive properties of enrofloxacin by using montmorillonite[J]. Journal of Safety and Environment, 2019, 19(4): 1349−1358. doi: 10.13637/j.issn.1009-6094.2019.04.034

    [45]

    Zhi D, Yang D, Zheng Y, et al. Current progress in the adsorption, transport and biodegradation of antibiotics in soil[J]. Journal of Environmental Management, 2019, 251: 109598. doi: 10.1016/j.jenvman.2019.109598

图(6)  /  表(5)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  7
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-10
  • 修回日期:  2024-09-11
  • 录用日期:  2024-09-13
  • 网络出版日期:  2024-10-20

目录

/

返回文章
返回