• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

环境修复过程中溶解性有机质对镉环境行为影响研究进展

马嘉宝, 刘斯文, 王博, 吴迪, 魏吉鑫, 孙青, 马晨格, 黄毅, 严桃桃

马嘉宝,刘斯文,王博,等. 环境修复过程中溶解性有机质对镉环境行为影响研究进展[J]. 岩矿测试,2025,44(3):1−14. DOI: 10.15898/j.ykcs.202406180134
引用本文: 马嘉宝,刘斯文,王博,等. 环境修复过程中溶解性有机质对镉环境行为影响研究进展[J]. 岩矿测试,2025,44(3):1−14. DOI: 10.15898/j.ykcs.202406180134
MA Jiabao,LIU Siwen,WANG Bo,et al. Research Progress on the Effect of Dissolved Organic Matter on the Environmental Behavior of Cadmium in the Environmental Remediation[J]. Rock and Mineral Analysis,2025,44(3):1−14. DOI: 10.15898/j.ykcs.202406180134
Citation: MA Jiabao,LIU Siwen,WANG Bo,et al. Research Progress on the Effect of Dissolved Organic Matter on the Environmental Behavior of Cadmium in the Environmental Remediation[J]. Rock and Mineral Analysis,2025,44(3):1−14. DOI: 10.15898/j.ykcs.202406180134

环境修复过程中溶解性有机质对镉环境行为影响研究进展

基金项目: 中国地质调查局地质调查项目“典型地区健康地质调查”(DD20230118)
详细信息
    作者简介:

    马嘉宝,硕士,助理工程师,主要从事环境地球化学研究。E-mail:1870331679@qq.com

    通讯作者:

    刘斯文,博士,研究员,主要从事环境地球化学和健康地质调查研究。E-mail:siwenzliu@126.com

  • 中图分类号: X142

Research Progress on the Effect of Dissolved Organic Matter on the Environmental Behavior of Cadmium in the Environmental Remediation

  • 摘要:

    随着经济社会的快速发展和镉(Cd)的持续排放,Cd污染日益成为中国乃至全球面临的重大环境问题。溶解性有机质(DOM)作为有机物中最活跃的组分,其分子量通常在几Da至几百kDa之间。DOM包含的羧基、羟基、酚基等多种活性官能团是环境中诸多重金属的配位体和迁移载体。DOM与Cd之间通过物理吸附、配体交换、表面络合等作用,显著影响着Cd在环境中的形态、生物可利用性、毒性和迁移转化。但从Cd污染修复的角度来看,Cd与DOM的络合作用是控制Cd修复成效的关键因素。DOM可以通过配体交换直接形成DOM-Cd二元络合物。根据DOM、Cd(Ⅱ)和矿物/金属表面阳离子(Mi/Me)的不同桥接位置,也可以形成A型或B型两种三元络合物。DOM来源多样,成分、结构复杂,不同条件下DOM对Cd呈现钝化或活化两种作用,在Cd污染原位钝化修复、淋滤修复或者植物修复中得到广泛应用。本文在总结近年来国内外相关研究基础上,对DOM和Cd的络合作用类型进行了重点评述,分析了DOM分子量、环境pH值、离子强度、温度等因素影响Cd-DOM络合作用及Cd吸附(解吸)机制,在此基础上探讨了DOM在土壤/沉积物Cd污染原位钝化修复、异位修复中的主要应用方向,这些方法有助于降低Cd污染修复环境风险和修复成本。通常情况下,小分子量DOM含有更丰富的官能团和更复杂的络合位点,容易形成可溶性DOM-Cd络合物,特别是对于分子量<30kDa的DOM 组分,可向环境中释放更多的Cd;在较高pH值环境条件下,则有利于增强DOM-Cd络合物的稳定性和土壤对Cd的吸附,而高离子强度对Cd吸附有很强的抑制作用;在Cd污染修复工作中,选择腐殖化程度较高的较大分子量DOM(>30kDa),并配施铁氧化物等无机钝化剂,可明显地提升Cd污染原位钝化修复成效;在Cd的化学淋滤或植物修复中,选择小分子量DOM(<5kDa)以提高污染修复的成效。未来该领域研究建议关注三方面:①不同分子量DOM与Cd的络合作用研究,精准解析DOM内部不同组分的功能基团与Cd的络合作用。②加强多种因素影响和控制下DOM对Cd吸附与解吸、迁移转化和生物有效性研究。③加强DOM在Cd污染修复技术研究,完善DOM与Cd相互作用的数值模拟模型,为Cd污染长期观测工作提供路径指引和数据支撑,更加精准地揭示Cd在环境中的迁移转化过程。

    要点

    (1)络合反应是溶解性有机质(DOM)与Cd相互作用的主要机制,不同种类DOM对Cd分别具有钝化或活化两种环境效应。

    (2)较高分子量DOM、较高环境pH值和温度、较低离子强度有利于增强DOM-Cd络合物稳定性,降低Cd的迁移转化。

    (3)腐殖质指数(HIX)较高的大分子量DOM配施无机钝化剂,适用于Cd污染原位钝化修复,而小分子量DOM则适用于Cd污染的淋滤修复和植物修复。

    HIGHLIGHTS

    (1) The complexation reaction is the main mechanism between DOM and Cd, and different types of DOM have two effects on Cd: passivation or activation.

    (2) Higher molecular weight DOM, higher environmental pH and temperature, and lower ionic strength are beneficial for enhancing the stability of DOM-Cd complexes, reducing the migration of Cd.

    (3) High molecular weight DOM with high humus index (HIX) combined with inorganic passivators is suitable for in-situ passivation remediation of Cd pollution, while low molecular weight DOM is suitable for Cd pollution leaching remediation and plant remediation.

  • 总溶解氮(TDN)是水中所有溶解性的含氮化合物的总量,包括溶解无机氮(DIN)和溶解有机氮(DON),其中溶解无机氮还包括硝酸盐氮、氨氮、亚硝酸盐氮等1。总溶解氮主要来源于农业施肥、爆炸物、生活污水、大气沉降及动植物和微生物代谢活动等,是评价水质恶化的重要指标,衡量水质被污染及自净状况1-2。过量的总溶解氮随水体自然移动,对水质和人类健康造成重大威胁3。地热水作为宝贵的液态矿产资源,可用于温泉、发电、生产饮用矿泉水、养殖等4-5,近年来被广泛开发利用6-7。然而,由于人们的过度开采,导致了地热水中总溶解氮含量过高,地热水水质严重恶化8。过高的总溶解氮会导致地热水水体富营养化,影响养殖生物环境及其他方面;同时饮用过量的亚硝酸氮/硝酸氮和氨氮超标的地热矿泉水,对人体分别具有高致癌风险及对淋巴细胞、味觉、嗅觉毒害作用8-9,而总溶解氮中氨氮、亚硝酸氮、硝酸氮又可以相互转化,其危害作用不容忽视。为解决地热水中总溶解氮污染问题,精确、快速检测其中总溶解氮的含量十分必要,对于充分研究总溶解氮的生物地球化学循环和地热水的合理开发利用具有重要意义。

    溶解无机氮的检测方法有很多,而溶解有机氮的结构、成分复杂,其检测方法尚不明确。总溶解氮主要通过消解前处理,使各个形态的氮转化为硝酸盐氮,再进行定量测定。常见的消解方法有紫外氧化法10-11、高温燃烧法12-14、碱性过硫酸盐消解法15-17等。紫外氧化法存在氧化不完全、回收率较低和变异性大等问题;高温燃烧法的转化效率高,但需要特定的仪器且价格较高。样品中总溶解氮转化为硝酸盐氮后,可采用离子色谱法18-20、镉柱还原法21-23、紫外可见分光光度法24-26等方法测定。离子色谱法无需其他试剂,绿色环保,但分析时间长,效率低。镉柱还原法是将硝酸盐用镉柱还原为亚硝酸盐,还原率较高,但镉的毒性较大,污染环境。紫外可见分光光度法具有适用范围宽、灵敏度高等优点,但存在样品中多组分混合物重叠吸收、定性和定量分析准确度低等问题。

    碱性过硫酸盐消解法是一种被广泛应用的湿法化学消解方法,具有使用设备简单、氧化效率高等优点,过硫酸盐被热分解成毒性较小的硫酸盐,消解后样品中总溶解氮全部转化为硝酸盐氮。但在实际应用中,消解时间、消解温度、过硫酸盐用量等均影响总溶解氮的测定,一些研究1627表明消解时间长达40~60min,严重降低了测定效率。与其他水体相比,地热水具有化学成分复杂多变、盐度大的特点,采用行业标准《水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》(HJ 636—2012)测定总溶解氮时,干扰组分多,准确度低。而紫外二阶导数光谱法28-30是解决干扰因素多的最佳方法,其紫外二阶导数光谱图峰型好,灵敏度和分辨率高;而关于碱性过硫酸盐消解法和紫外二阶导数光谱法联用测定总溶解氮的报道较少27。基于此,本文采用碱性过硫酸盐消解-紫外二阶导数光谱法联用测定地热水中总溶解氮,其二阶导数光谱图可消除大部分干扰因素,是测定地热水中总溶解氮的理想方法,其中总溶解氮以硝酸根-氮的形式定量测定。实验主要研究了紫外二阶导数光谱图确定定量测定硝酸根-氮含量的特征吸光度,通过单因素水平实验和双因素方差分析实验,优化碱性过硫酸钾消解反应中的消解时间、稀释步骤等参数。考察了地热水中高含量共存离子的干扰情况和标准曲线的拟合度及线性范围后,通过实际样品加标回收实验以及与行业标准方法进行对比,对方法的可靠性和准确性进行了验证。

    实验主要使用仪器为紫外可见分光光度计(UV2550型,日本岛津公司),波长范围为190~800nm;石英比色皿光程10mm;高压蒸汽灭菌器(最高温度不低于120℃);具塞磨口玻璃比色管容量25mL等。

    硝酸钾标准储备溶液:BWZ7192—2016,1000mg/L,以氮计。

    水中总氮标准储备溶液:GBW(E)083307,1000mg/L,以氮计。

    水中氨氮标准储备溶液:GBW(E)083304,1000mg/L,以氮计。

    水中尿素氮标准储备溶液:GBW(E)085011,1000mg/L,以氮计。

    硝酸钾标准使用溶液(10.0mg/L,以氮计):由硝酸钾标准储备溶液逐级稀释而成。

    碱性过硫酸钾溶液(40.0g/L):称取40.0g过硫酸钾和15.0g氢氧化钠于超纯水中,定容至1.0L。

    过硫酸钾、氢氧化钠、浓盐酸、氯化钠、硫酸钠、碳酸氢钠等试剂皆为优级纯。10%盐酸溶液。实验用水为超纯水,电阻率为18.2MΩ·cm。

    精确移取0、0.20、0.50、1.00、2.00、3.00、5.00硝酸钾标准使用溶液(10.0mg/L,以氮计)于25mL玻璃比色管中,用超纯水定容体积至10mL。上述溶液中硝酸根(以氮计)的浓度分别为0.00、0.20、0.50、1.00、2.00、3.00、5.00mg/L,再分别加入5.00mL碱性过硫酸钾溶液(40.0g/L),塞紧管塞,用塑料膜和皮筋扎紧管塞,置于高压蒸汽灭菌器中进行消解反应,温度升至120℃后保持20min,冷却至室温后,加入1.0mL 10%的盐酸溶液,用超纯水定容体积至25mL,摇匀后上机测定。

    本实验采用紫外二阶导数光谱法,总溶解氮以硝酸根-氮的形式定量测定。以空白溶液作参比,采用10mm石英比色皿,波长扫描范围为190~270nm,选定并记录硝酸根(以氮计)在波长226.6nm处二阶导数吸收值。以标准溶液吸光度为横坐标,硝酸根(以氮计)含量为纵坐标绘制校准曲线,使用校准曲线对所有样品进行定量分析。样品溶液取样量为10.00mL,实验方法同硝酸根(以氮计)标准系列,同时做空白对照实验。如样品中总溶解氮含量过高,超出标准曲线最大值,可将样品溶液稀释后重新测定。

    地热水样品普遍矿化度较大,样品中各物质成分复杂,存在胶体、悬浮物及有机物,通过紫外可见分光光度法分析总溶解氮含量时特征峰值不明显,干扰因素多,相互重叠,且双波长紫外分光光度法也无法完全这些消除干扰。而紫外二阶导数光谱法则是解决这些问题的有效方法,具有放大微弱吸收峰、提高灵敏度和分辨率、消除噪声干扰等能力。

    紫外二阶导数光谱法中,波长的确定十分重要,波长的作用有提高灵敏度和分辨率,减少背景干扰等。图1为硝酸根-氮标准溶液和地热水样品溶液的紫外光谱图、一阶和二阶导数光谱图。其紫外光谱图峰型杂乱且不对称,特征吸收峰值不明显,干扰物质多;一阶导数光谱出现负峰,进行二阶导数处理后,其二阶导数光谱图分辨率高,大部分干扰因素消除,图像更为灵敏,在波长226.6nm处存在特征吸收值,且不受其他成分干扰的影响。本实验中硝酸根-氮二阶导数光谱图波形及出峰时间与王静敏等28、陈晓伟等29、Ferree等27研究获得的规律大致相同,进一步说明了方法的可靠性。图2为不同浓度的硝酸根-氮标准溶液的二阶导数光谱图,在波长226.6nm处峰型好,稳定性高,其特征吸收值与硝酸根-氮浓度成正比。因此,确定波长226.6nm对应的二阶导数值为定量测定硝酸根-氮含量的特征吸光度。

    图  1  硝酸根-氮标准溶液和地热水样品溶液的紫外光谱图(a)、一阶(b)和二阶导数光谱图(c)
    Figure  1.  UV spectra (a), first derivative spectra (b) and second derivative spectra (c) of nitrate-nitrogen standard solution and geothermal water sample solution
    图  2  不同浓度的硝酸根-氮标准溶液的二阶导数光谱图
    Figure  2.  Second derivative spectra of nitrate-nitrogen standard solutions with different concentrations

    碱性过硫酸钾消解反应中,消解参数的选择对于准确定量测定地热水中总溶解氮至关重要。消解反应中,其中消解温度、消解时间、碱性过硫酸钾溶液体积、样品体积与稀释步骤是5个最为关键的因素。本实验中,逐级稀释配制总溶解氮(TDN)、溶解无机氮(DIN)-氨氮和溶解有机氮(DON)-尿素质控样品,其浓度分别为15.0、10.0、21.0mg/L,利用上述质控样品进行消解时间、消解温度、碱性过硫酸钾溶液体积的单因素水平实验,结果如图3所示。

    图  3  消解时间(a)、消解温度(b)和碱性过硫酸钾溶液体积(c)对总溶解氮(TDN)、溶解无机氮(DIN)和溶解有机氮(DON)质控样品测定结果的影响
    Figure  3.  Effect of digestion time (a), digestion temperature (b) and volume of alkaline potassium persulfate solution (c) on the determination of total dissolved nitrogen (TDN), dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) in quality control samples

    Ferree等27指出消解时间为60min时,总溶解氮的回收率高于消解时间30min的回收率。由图3a可以看出,本实验结果与刘振超等17改进测定水质总氮方法中对消解时间的讨论结果大致相同。在消解时间为0~60min范围内,消解时间为0时,所有质控样品中硝酸根-氮回收值为0,说明样品不经过高温高压反应,各种形式的氮无法转换成硝酸盐-氮。当消解时间<10min时,各质控样品回收值都偏低,且相对偏差大;当消解时间≥20min后,三种质控样品的回收值皆趋近理论值。如图3b所示,消解温度为105℃时,总氮和无机氮质控样品回收值偏大,其原因可能是温度过低,碱性过硫酸钾氧化不完全,干扰总氮的测定;当温度达到110℃后,三种质控样品的回收值与理论值没有显著差异。碱性过硫酸钾溶液体积对消解反应的影响如图3c所示,碱性过硫酸钾溶液体积为1.0~4.0mL时,三种质控样品的回收值皆有低于理论值的情况;当体积为5.0~6.0mL时,其回收值皆接近理论值。综合考虑质控及实际样品,实验推荐消解温度为120℃,消解时间为20min,碱性过硫酸钾溶液体积为5.0mL。

    对样品体积与稀释步骤进行双因素方差分析实验,结果如图4所示。消解后稀释的样品,各质控样品的回收值显著低于理论值;而样品体积对测定结果影响不大。稀释步骤是影响总溶解氮测定最重要的因素,与Ferree等27的实验结果相同。考虑样品稀释的倍率及相对误差,实验选择样品体积为10.0mL,稀释步骤安排在样品消解前。

    图  4  样品体积与稀释步骤对总溶解氮(TDN)、溶解无机氮(DIN)和溶解有机氮(DON)质控样品测定结果的影响
    Figure  4.  Effect of sample volume and dilution time on analytical results of total dissolved nitrogen (TDN), dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) quality control samples.

    地热水矿化度较高,基体成分复杂,样品消解后采用紫外二阶导数光谱法测定总溶解氮(TDN)时,可能有其他共存离子产生干扰。地热水中高含量离子主要以钠离子(Na+)、氯离子(Cl)、硫酸根离子(SO42−)、碳酸氢根离子(HCO3)、溴离子(Br)、碘离子(I)和氟离子(F)为主。结合实际样品中各离子的浓度范围,实验配制了6组分别含有2000mg/L氯化钠、2000mg/L硫酸钠、800mg/L碳酸氢钠、10mg/L溴离子、10mg/L碘离子、10mg/L氟离子的总溶解氮质控样品(3.0mg/L),通过比较这6组质控样品中总溶解氮的测定值,以评估各共存离子对总溶解氮测定的影响,结果如图5所示。6组总溶解氮质控样品中,含有10mg/L溴离子的质控样品回收值偏高,其他离子对总溶解氮分析的干扰不明显。在分析溴含量高的样品时,可以将样品先过银型预处理柱或者其他方法除去溴离子后,再进行定量分析。

    图  5  共存离子对总溶解氮测定结果的影响
    Figure  5.  Effect of coexisting ions on the determination of total dissolved nitrogen

    在0.20~5.0mg/L线性范围内,配制硝酸根(以氮计)标准系列溶液浓度分别为0.00、0.20、0.50、1.00、2.00、3.00、5.00mg/L,按照本文1.2节实验方法进行测定,绘制校准曲线。校准曲线线性回归方程为Y=1599.1X+0.0267,其中X为标准溶液紫外二阶导数光谱图在波长266.6nm处吸光度,Y为标准溶液硝酸根(以氮计)浓度(mg/L),决定系数R2=0.9996,线性拟合度令人满意,符合实验分析的要求。

    地热水中总溶解氮含量目前没有确定范围,取决于不同的用途及地质条件、污染因素等。参考《地表水环境质量标准》(GB 3838—2002)规定Ⅰ类水、Ⅱ类水、Ⅲ类水、Ⅳ类水、Ⅴ类水中总溶解氮限值(mg/L)分别为≤0.20、≤0.5、≤1.0、≤1.5、≤2.0。因此,0.20~5.0mg/L线性范围可满足总溶解氮的分析测定要求,部分因污染因素而导致含量特别高的样品可稀释后测定。

    为了验证采用本文方法测定地热水中总溶解氮(TDN)的可靠性,分别选取甘肃兰州、山西晋中、四川甘孜藏族自治州、河南安阳4个地区地热水样品,按照上述方法测定样品中的总溶解氮,同时加入不同含量的总氮标准溶液,其回收结果列于表1。扣除本底值后,各样品总溶解氮的加标回收率皆在94.0%~103.5%之间,相对偏差在0.83%~3.36%之间,说明本文方法检测结果准确可靠。

    表  1  实际样品的测定及加标回收率
    Table  1.  Determination of the actual samples and spiked recovery
    样品编号 总溶解氮含量(mg/L) 相对偏差
    (%)
    回收率
    (%)
    本底值 加标量 理论测定值 实际测定值
    1# 0.33 0.50 0.83 0.81 2.41 96.0
    1.00 1.33 1.37 3.01 104.0
    2.00 2.33 2.40 3.00 103.5
    2# 1.45 0.50 1.95 1.92 1.54 94.0
    1.00 2.45 2.40 2.04 95.0
    2.00 3.45 3.52 2.03 103.5
    3# 0.49
    0.50 0.99 0.97 2.02 96.0
    1.00 1.49 1.44 3.36 95.0
    2.00 2.49 2.42 2.81 96.5
    4# 1.92 0.50 2.42 2.40 0.83 96.0
    1.00 2.92 2.86 2.05 94.0
    2.00 3.92 3.83 2.30 95.5
    下载: 导出CSV 
    | 显示表格

    目前暂时缺乏地热水标准样品,因此本实验根据地热水中各离子的大致浓度范围,自配2个含有不同浓度总溶解氮的地热水标准样品(编号SI和S2),样品中常规离子大致浓度为:钾(20mg/L)、钠(2000mg/L)、钙(200mg/L)、镁(100mg/L)、氯离子(2500mg/L)、硫酸根(1300mg/L)、重碳酸根(500mg/L),总溶解氮浓度为1.60mg/L和4.50mg/L。分别采用本文方法和行业标准方法《水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》(HJ 636—2012)进行6次平行测定,计算的相对标准偏差(RSD)、与理论值偏差、两种方法测定结果相对偏差列于表2。由于自配样品化学成分相对简单,不含有胶体、有机物等干扰成分,两种方法的测定结果偏差不大,相对偏差分别为1.83%和2.18%,但是本文方法测定值的RSD及与理论值的偏差皆优于行业标准方法。

    表  2  方法对比实验(n=6)
    Table  2.  Comparison of analytical results obtained by different methods (n=6)
    样品编号 总溶解氮含量理论值
    (mg/L)
    本文方法 碱性过硫酸钾消解紫外分光光度法 测定结果相对偏差
    (%)
    测定值
    (mg/L)
    RSD
    (%)
    与理论值偏差
    (%)
    测定值
    (mg/L)
    RSD
    (%)
    与理论值偏差
    (%)
    S1 1.60 1.62 1.85 1.25 1.65 2.89 3.12 1.83
    S2 4.50 4.54 1.69 0.89 4.64 3.57 3.11 2.18
    下载: 导出CSV 
    | 显示表格

    建立了碱性过硫酸盐消解-紫外二阶导数光谱法测定地热水中总溶解氮的方法,总溶解氮以硝酸根-氮的形式定量分析。通过研究硝酸根-氮紫外二阶导数光谱图确定特征吸光度,其特征吸光度与硝酸根-氮浓度呈现良好的线性关系。通过单因素水平实验和双因素方差分析实验,优化消解反应中的条件参数,降低了基体干扰,提高了分析效率和准确性。消除共存离子干扰后,采用本文方法建立标准曲线,测定实际样品中总溶解氮含量,同时与行业标准方法进行对比实验,其重现性好,准确性高。

    本文方法具有强抗干扰能力,可解决地热水样品化学组成复杂、干扰因素多的问题,需要的样品量小,仪器成本低,为地热水中总溶解氮的测定提供了一种高效、适用的分析方法。该方法也适用于分析地表水、生活饮用水等其他水样中的硝酸根和总溶解氮含量,后续工作可以进一步探索研究。

  • 图  1   元素Cd在自然环境中的吸附、解吸和迁移转化过程

    Figure  1.   The adsorption, desorption, migration and transformation processes of Cd in natural environment

    表  1   三元络合体系对Cd的吸附机理和影响因素

    Table  1   Adsorption mechanism and influencing factors of Cd in the ternary complexation system

    吸附系统 影响Cd吸附的因素 吸附效果 主要吸附作用类型 参考文献
    针铁矿-柠檬酸-Cd pH 增加 B-tc,矿物吸附 16
    蒙脱石-HA-Cd Cd浓度 增加 B-tc,矿物吸附 29
    纤铁矿-FA-Cd pH,RO/M,时间 增加 Cd-DOM,B-tc,矿物吸附 30
    高岭石-HA/FA-Cd pH,时间,Cd浓度 增加 静电作用,A-tc,矿物吸附 31
    氯磷灰石-纤维素-Cd pH,IS,DOM浓度 增加 B-tc,矿物吸附 32
    膨润土/沸石-DOM-Cd RM/O,Cd浓度 降低 Cd-DOM,B-tc,矿物吸附 33
    铁氢氧化物-HA-Cd pH,时间,RM/O 不详 Cd-DOM,B-tc,矿物吸附 34
    下载: 导出CSV
  • [1]

    Han G, Wang J W. A Critical Review on the Removal and Recovery of Hazardous Cd from Cd-containing Secondary Resources in Cu-Pb-Zn Smelting Processes[J]. 2022, 12: 1846.

    [2]

    Joeri K, Marta P R, Harald B. Molecular Probing of DOM Indicates a Key Role of Spruce-derived Lignin in the DOM and Metal Cycles of a Headwater Catchment: Can Spruce Forest Dieback Exacerbate Future Trends in the Browning of Central European Surface Waters?[J]. Environmental Science & Technology, 2022, 56(4): 2747−2759. doi: 10.1021/acs.est.1c04719

    [3]

    Mu T T, Wu T, Zhou T, et al. Geographical Variation in Arsenic, Cadmium, and Lead of Soils and Rice in the Major Rice Producing Regions of China[J]. Science of the Total Environment, 2019, 677(10): 373−381. doi: 10.1007/s10661-024-12654-7

    [4]

    Xiang J, Xu P, Chen W Z, et al. Pollution Characteristics and Health Risk Assessment of Heavy Metals in Agricultural Soils over the Past Five Years in Zhejiang, Southeast China[J]. International Journal of Environmental Research and Public Health, 2022, 19(22): 14642. doi: 10.3390/ijerph192214642

    [5]

    Chen J, Li K, Hu A, et al. The Mechanisms of DOMs Derived from Biostabilized Wastewater Activated Sludge Alleviate the Adverse Effects of Cd-stress in Rice Seedlings (Oryza sativa L)[J]. Science of the Total Environment, 2022, 845: 157157. doi: 10.1016/j.scitotenv.2022.157157

    [6] 郝港利, 邓文博, 刘文娟. 芦芽山阔叶林土壤中腐殖酸和富里酸的提取与表征研究[J]. 山西大学学报(自然科学版), 2023, 46(4): 961−968. doi: 10.13451/j.sxu.ns.2022069

    He G L, Deng W B, Liu W J, et al. Extraction and Characterization of Humic Acid and Fulvic Acid from Broad-Leaved Forest Soil in Luya Mountain[J]. Journal of Shanxi University (Natural Science Edition), 2023, 46(4): 961−968. doi: 10.13451/j.sxu.ns.2022069

    [7]

    Ni M F, Li S Y. Ultraviolet Humic-like Component Contributes to Riverine Dissolved Organic Matter Biodegradation[J]. Journal of Environmental Sciences, 2023, 124: 165−175. doi: 10.1016/j.jes.2021.10.011

    [8]

    Liu M X, Han X K, Liu C Q, et al. Differences in the Spectroscopic Characteristics of Wetland Dissolved Organic Matter Binding with Fe3+, Cu2+, Cd2+, Cr3+ and Zn2+[J]. Science of the Total Environment, 2021, 800: 149476. doi: 10.1016/j.scitotenv.2021.149476

    [9]

    Fang W, Wei Y H, Liu J G. Comparative Characterization of Sewage Sludge Compost and Soil: Heavy Metal Leaching Characteristics[J]. Journal of Hazardous Materials, 2016, 310: 1−10. doi: 10.1016/j.jhazmat.2016.02.025

    [10]

    Cowayd E K, Ohno T, Plante A F. Adsorption and Molecular Fractionation of Dissolved Organic Matter on Iron-bearing Mineral Matrices of Varying Crystallinity[J]. Environmental Science & Technology, 2018, 52(3): 1036−1044. doi: 10.1021/acs.est.7b04953

    [11]

    Markus K, Ian C B, Elizabeth K C, et al. Dynamic Interactions at the Mineral-Organic Matter Interface[J]. Nature Reviews Earth & Environment, 2021, 2: 402−421. doi: 10.1038/s43017-021-00162-y

    [12]

    Fan T T, Wang Y J, Li C B, et al. Effects of Soil Organic Matter on Sorption of Metal Ions on Soil Clay Particles[J]. Soil Science Society of America Journal, 2015, 79(3): 794−802. doi: 10.2136/sssaj2014.06.0245

    [13]

    Chen M S, Ding S M, Li C, et al. High Cadmium Pollution from Sediments in a Eutrophic Lake Caused by Dissolved Organic Matter Complexation and Reduction of Manganese Oxide[J]. Water Research, 2021, 190: 116711. doi: 10.1016/j.watres.2020.116711

    [14] 文萍, 汤佳, 蔡茜茜, 等. 超高温堆肥腐殖酸与Cd(Ⅱ)高效络合机制2DCOS分析[J]. 光谱学与光谱分析, 2020, 40(5): 1534−1540.

    Wen P, Tang J, Cai Q Q, et al. Insight into Efficient Complexation Mechanism of Cd(Ⅱ) to Hyperthermophilic Compost-derived Humic Acids by Two Dimensional Correlation Analyses[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1534−1540.

    [15] 梁明欣, 寇莹莹, 王京刚, 等. 不同生态混凝土坡岸中溶解性有机质与镉的相互作用机理研究[J]. 环境科学研究, 2020, 33(8): 1857−1868. doi: 10.13198/J.issn.1001-2969.2020.02.10

    Liang M X, Kou Y Y, Wang J G, et al. Interaction Mechanism of Dissolved Organic Matter and Cadmium in Different Ecological Concrete Slopes[J]. Research of Environmental Sciences, 2020, 33(8): 1857−1868. doi: 10.13198/J.issn.1001-2969.2020.02.10

    [16] 吴江彤, 曾安容, 李清兰, 等. 重金属-柠檬酸-针铁矿三元体系的表面络合模型研究[J]. 环境化学, 2021, 40(2): 520−530. doi: 10.7524/j.issn.0254-6108.2020053102

    Wu J T, Zeng A R, Li Q L, et al. Development of Surface Complexation Model of Heavy Metal-Citricacid-Ggoethiteternary System[J]. Environmental Chemistry, 2021, 40(2): 520−530. doi: 10.7524/j.issn.0254-6108.2020053102

    [17] 金晓丹, 何俊贺, 黄宇钊, 等. 麦饭石在修复水体和土壤中重金属污染方面的研究[J]. 环境科技, 2021, 34(4): 23−28. doi: 10.19824/j.cnki.cn32-1786/x.2021.0052

    Jin X D, He J H, Huang Y Z, et al. The Study on Immobilization of Heavy Metal Contaminated Water and Soils by Manfan Stone[J]. Environmental Science and Technology, 2021, 34(4): 23−28. doi: 10.19824/j.cnki.cn32-1786/x.2021.0052

    [18]

    Xu Z B, Tsang D C W. Mineral-mediated Stability of Organic Carbon in Soil and Relevant Interaction Mechanisms[J]. Eco-Environment & Health, 2024, 3(1): 59−76. doi: 10.1016/j.eehl.2023.12.003

    [19]

    Zhang Y C, Liu X D, Zhang C, et al. A Combined First Principles and Classical Molecular Dynamics Study of Clay-Soil Organic Matters (SOMs) Interactions[J]. Geochimica et Cosmochimica Acta, 2020, 291(15): 110−125. doi: 10.1016/j.gca.2019.12.022

    [20]

    Qu C C, Chen W L, Hua X P, et al. Heavy Metal Behaviour at Mineral-Organo Interfaces: Mechanisms, Modelling and Influence Factors[J]. Environment International, 2019, 131: 1−15. doi: 10.1016/j.envint.2019.104995

    [21]

    Qu C, Chen J, Mortimer M, et al. Humic Acids Restrict the Transformation and the Stabilization of Cd by Iron(hydr) Oxides[J]. Science of the Total Environment, 2022, 430: 128365. doi: 10.1016/j.jhazmat.2022.128365

    [22]

    Wen J J, Li Z W, Jin C S, et al. Fe Oxides and Fulvic Acids Together Promoted the Migration of Cd(Ⅱ) to the Root Surface of Phragmites Australis[J]. Journal of Hazardous Materials, 2022, 425(5): 1−11. doi: 10.1016/j.jhazmat.2021.127998

    [23]

    Martinez C E, Mcbride M B. Dissolved and Labile Concentrations of Cd, Cu, Pb and Zn in Aged Ferrihydrite-Organic Matter Systems[J]. Environmental Science and Technology, 1999, 33(5): 745−750. doi: 10.1021/es980576c

    [24] 易层, 严玉鹏, 王小明, 等. 天然有机质和金属离子在矿物表面的共吸附[J]. 农业环境科学学报, 2018, 37(8): 1574−1583. doi: 10.11654/jaes.2018-0307

    Yi C, Yan Y P, Wang X M, et a. Co-sorption of Natural Organic Matter and Metal Ions on Minerals[J]. Journal of Agro-Environment Science, 2018, 37(8): 1574−1583. doi: 10.11654/jaes.2018-0307

    [25] 王萌, 雷丽萍, 方敦煌, 等. 巯基修饰和胡敏酸包裹纳米Fe3O4颗粒的制备及其对溶液中Pb2+Cd2+Cu2+的吸附效果研究[J]. 农业环境科学学报, 2011, 30(8): 1669−1674.

    Wang M, Lei L P, Fang D H, et al. Adsorption Studies on Aqueous Cd2+, Pb2+, Cu2+ Ions by Thiol and Humic Acid Functionalized Fe3O4 Nanoparticles[J]. Journal of Agro-Environment Science, 2011, 30(8): 1669−1674.

    [26] 王慧, 唐杉, 韩上, 等. 磷对镉离子在针铁矿及针铁矿-胡敏酸复合体表面吸附的影响[J]. 生态与农村环境学报, 2019, 35(5): 659−667. doi: 10.19741/j.issn.1673-4831.2018.0372

    Wang H, Tang S, Han S, et al. The Cadmium Adsorption on Goethite and Humic Acid Coated Goethite Complexes Under Phosphate Application[J]. Journal of Ecology and Rural Environment, 2019, 35(5): 659−667. doi: 10.19741/j.issn.1673-4831.2018.0372

    [27]

    Silvia O, María D L, Estela M A. Binding of Pb(Ⅱ) in the System Humic Acid/Goethite at Acidic pH[J]. Chemosphere, 2006, 65(11): 2313−2321. doi: 10.1016/j.Chemosphere.2006.05.009

    [28] 唐一夫, 曹长春, 吕鹏. 羟基氧化铁对镉-腐殖酸的吸附研究[J]. 无机盐工业, 2023, 55(8): 124−131. doi: 10.19964/j.issn.1006-4990.2022-0643

    Tang Y F, Cao C C, Lyu P. Study on Adsorption of Cadmium-Humic Acid by Hydroxyiron Oxide[J]. Inorganic Chemicals Industry, 2023, 55(8): 124−131. doi: 10.19964/j.issn.1006-4990.2022-0643

    [29] 牟海燕, 黄武, 万娟, 等. 不同分子量胡敏酸对蒙脱石吸附镉的影响及作用机制[J]. 工程科学与技术, 2021, 53(5): 207−213. doi: 10.15961/j.jsuese.202001016

    Mu H Y, Huang W, Wan J, et al. Effect and Mechanism of Humic Acid with Different Molecular Weight on Adsorption of Cadmium on Montmorillonite[J]. Advanced Engineering Sciences, 2021, 53(5): 207−213. doi: 10.15961/j.jsuese.202001016

    [30]

    Bu H L, Lei Q K, Tong H, et al. Humic Acid Controls Cadmium Stabilization During Fe(Ⅱ)-Induced Lepidocrocite Transformation[J]. Science of the Total Environment, 2023, 861(25): 1−11. doi: 10.1016/j.scitotenv.2022.160624

    [31]

    Hizal J, Apak R, Hoell W H. Modeling Competitive Adsorption of Copper(Ⅱ), Lead(Ⅱ), and Cadmium(Ⅱ) by Kaolinite-Based Clay Mineral/Humic Acid System[J]. Environmental Progress and Sustainable Energy, 2009, 28(4): 493−506. doi: 10.1002/ep.10331

    [32]

    Li Z L, Gong Y Y, Zhao D Y, et al. Enhanced Removal of Zinc and Cadmium from Water Using Carboxymethyl Cellulose-Bridged Chlorapatite Nanoparticles[J]. Chemosphere, 2021, 263(1): 1−11. doi: 10.1016/j.chemosphere.2020.128038

    [33]

    Zhou W J, Ren L W, Zhu L Z. Reducement of Cadmium Adsorption on Clay Minerals by the Presence of Dissolved Organic Matter from Animal Manure[J]. Environmental Pollution, 2017, 223(16): 247−254. doi: 10.1016/j.envpol.2017.01.019

    [34]

    Du H H, Huang Q Y, Lei M, et al. Sorption of Pb(Ⅱ) by Nanosized Ferrihydrite Organo-Mineral Composites Formed by Adsorption Versus Coprecipitation (Article)[J]. ACS Earth and Space Chemistry, 2018, 2(6): 556−564. doi: 10.1021/acsearthspacechem.8b00005

    [35]

    Vermeer A W P, McCulloch J K, Riemsdijk W H, et al. Metal Ion Adsorption to Complexes of Humic Acid and Metal Oxides: Deviations from the Additivity Rule[J]. Environmental Science & Technology, 1999, 33(21): 3892−3897. doi: 10.1021/es990260k

    [36]

    Du H, Qu C, Liu J. Molecular Investigation on the Binding of Cd(Ⅱ) by the Binary Mixtures of Montmorillonite with Two Bacterial Species[J]. Environmental Pollution, 2019, 229: 871-878.

    [37]

    Zhang X Y, Su C, Liu X Y, et al. Periodical Changes of Dissolved Organic Matter (DOM) Properties Induced by Biochar Application and Its Impact on Downward Migration of Heavy Metals Under Flood Conditions[J]. Journal of Cleaner Production, 2020, 275(1): 1−8. doi: 10.1016/j.jclepro.2020.123787

    [38]

    Borrok D, Aumend K, Fein J B. Significance of Ternary Bacteria-Metal-Natural Organic Matter Complexes Determined Through Experimentation and Chemical Equilibrium Modeling[J]. Chemical Geology, 2008, 238(1): 44−62. doi: 10.1016/j.chemgeo.2006.10.013

    [39]

    Bai H C, Jiang Z M, He M J, et al. Relating Cd2+ Binding by Humic Acids to Molecular Weight: A Modeling and Spectroscopic Study[J]. Journal of Environmental Sciences, 2018, 70(8): 154−165. doi: 10.13451/j.sxu.ns.2022069

    [40] 于振亚, 杜晓丽, 高参, 等. 道路雨水径流溶解性有机物与重金属结合作用分析[J]. 环境科学学报, 2018, 38(8): 3004−3011.

    Yu Z Y, Du X L, Gao C, et al. Complexation Between Heavy Metals and Dissolved Organic Matters in Road Stormwater Runoffs[J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3004−3011.

    [41] 姚文斌. 不同分子量有机酸与镉的络合作用及对土壤中镉固持/释放的影响机制[D]. 长沙: 中南大学, 2023: 1−61.

    Yao W B. The Complexation of Different Molecular Weight Organic Acids with Cadmium and Their Impact Mechanism on Cadmium Sequestration/Release in Soil[D]. Changsha: Central South University, 2023: 1−61.

    [42]

    Ni L, Su L, Wang P, et al. The Characterization of Dissolved Organic Matter Extracted from Different Sources and Their Influence on Cadmium Uptake by Microcystis Aeruginosa[J]. Environmental Toxicology & Chemistry, 2017, 36(7): 1856−1863. doi: 10.1002/etc.3728

    [43]

    Zhang X Q, Li Y, Ye J, et al. The Spectral Characteristics and Cadmium Complexation of Soil Dissolved Organic Matter in a Wide Range of Forest Lands[J]. Environmental Pollution, 2022, 299: 118834. doi: 10.1016/j.envpol.2022.118834

    [44]

    Liang Y, Hou M B, Zhang W, et al. Effects of Colloidal and Dissolved Organic Matters on Cd Adsorption in Soil[J]. Journal of Agro-Environment Science, 2023, 42(6): 1285−1293. doi: 10.11654/jaes.2022-1238

    [45] 薛向东, 杨宸豪, 于荐麟, 等. 圩区河道底泥腐殖酸对重金属和抗生素的共吸附[J]. 环境科学, 2021, 42(6): 2856−2867. doi: 10.13227/j.hjkx.202010152

    Xue X D, Yang C H, Yu J L, et al. Coadsorption of Heavy Metal and Antibiotic onto Humic Acid from Polder River Sediment[J]. Environmental Science, 2021, 42(6): 2856−2867. doi: 10.13227/j.hjkx.202010152

    [46] 吴洪燕, 李清君, 陈士更, 等. 不同分子量腐植酸的结构特征及其对土壤镉有效性的影响[J]. 土壤, 2022, 54(6): 1233−1239. doi: 10.13758/j.cnki.tr.2022.06.018

    Wu H Y, Li Q J, Chen S G, et al. Structural Characteristics of Humic Acids with Different Molecular Weights and Their Effect on Cadmium Availability in Soil[J]. Soils, 2022, 54(6): 1233−1239 . doi: 10.13758/j.cnki.tr.2022.06.018

    [47]

    Zhang X Q, Li Y, Ye J, et al. The Spectral Characteristics and Cadmium Complexation of Soil Dissolved Organic Matter in a Wide Range of Forest Lands[J]. Environmental Pollution, 2022, 299: 118834. doi: 10.1016/j.envpol.2022.118834

    [48]

    Kozyatnyk I, Bounchet S, Bjorn E, et al. Fractionation and Size-Distribution of Metal and Metalloid Contaminants in a Polluted Groundwater Rich in Dissolved Organic Matter[J]. Journal of Hazardous Materials, 2016, 318: 194−202. doi: 10.1016/j.jhazmat.2016.07.024

    [49]

    Xie J, Dong A Q, Liu J, et al. Relevance of Dissolved Organic Matter Generated from Green Manuring of Chinese Milk Vetch in Relation to Water-Soluble Cadmium[J]. Environmental Science & Pollution Research, 2019, 26(16): 16409−16421. doi: 10.1007/s11356-019-05114-0

    [50]

    Wang Z, Han R X, Muhammad A, et al. Correlative Distribution of DOM and Heavy Metals in the Soils of the Zhangxi Watershed in Ningbo City, East of China[J]. Environmental Pollution, 2022, 299: 118811. doi: 10.1016/j.envpol.2022.118811

    [51] 胡斌, 王沛芳, 张楠楠, 等. 基于光谱特征的pH对溶解态有机质与铜相互作用的影响研究[J]. 光谱学与光谱分析, 2023, 43(5): 1628−1635. doi: 10.3964/j.issn.1000-0593(2023)-05-1628-08

    Hu B, Wang P F, Zhang N N, et al. Effect of pH on Interaction Between Dissolved Organic Matter and Copper: Based on Spectral Features[J]. Spectroscopy and Spectral Analysis, 2023, 43(5): 1628−1635. doi: 10.3964/j.issn.1000-0593(2023)-05-1628-08

    [52]

    Shi W J, Lü C W, He J, et al. Nature Differences of Humic Acids Fractions Induced by Extracted Sequenceas Explanatory Factors for Binding Characteristics of Heavy Metals[J]. Ecotoxicology and Environmental Safety, 2018, 154: 59−68. doi: 10.1016/j.ecoenv.2018.02.013

    [53]

    Welikala D, Lehto N, Hartland A, et al. Cadmium Mobilisation by Dissolved Organic Matter in Contaminated Soils Amended with Compost and Peat[J]. Geophysical Research Abstracts, 2019, 21(1): 1−13. doi: 10.1016/j.scitotenv.2022.153985

    [54]

    Tang X Y, Hidetaka K, Katsuhiro S. Liming Effects on Dissolved and Colloid-Associated Transport of Cadmium in Soil Under Intermittent Simulated Rainfall[J]. Journal of Hazardous Materials, 2020, 400: 123244. doi: 10.1016/j.jhazmat.2020.123244

    [55] 邵坤, 赵改红, 赵朝辉. 腐植酸改性强化磁铁矿吸附水体中铅镉的实验研究[J]. 岩矿测试, 2019, 38(6): 715−723. doi: 10.15898/j.y-cnki.112131/d201901250017

    Shao K, Zhao G H, Zhao Z H. Enhancement of Pb and Cd Adsorption in Water Samples by Magnetite Using Humic Acid as Modifier[J]. Rock and Mineral Analysis, 2019, 38(6): 715−723. doi: 10.15898/j.y-cnki.112131/d201901250017

    [56] 于倩雯, 吴寅凯, 尹俊权, 等. DOM对飞灰中重金属溶出影响及环境风险评估[J]. 环境科学与技术, 2022, 45(12): 174−181. doi: 10.19672/j.cnki.1003-6504.1349.22.338

    Yu Q W, Wu Y K, Yin J Q, et al. Effects of DOM on Leaching of Heavy Metals Inflyashanden Vironmental Risk Assessment[J]. Environmental Science & Technology, 2022, 45(12): 174−181. doi: 10.19672/j.cnki.1003-6504.1349.22.338

    [57]

    Wang P C, Peng H, Liu J L, et al. Effects of Exogenous Dissolved Organic Matter on the Adsorption-Desorption Behaviors and Bioavailabilities of Cd and Hg in a Plant-Soil System[J]. The Science of the Total Environment, 2020, 728: 138252. doi: 10.1016/j.scitotenv.2020.138252

    [58] 李静, 林青, 徐绍辉. 不同pH/离子强度时Cu/Cd复合污染土壤解吸和迁移特征[J]. 土壤学报, 2023, 60(4): 1026−1034.

    Li J, Lin Q, Xu S H. Desorption and Migration Characteristics of Cu/Cd Composite Contaminated Soil Under Different pH/Ionic Strength[J]. Acta Pedologica Sinica, 2023, 60(4): 1026−1034.

    [59] 刘小兰, 宋志鑫, 宋刚福, 等. 水体溶解性有机质与重金属影响机理的研究进展[J]. 环境科技, 2024, 37(2): 62−68. doi: 10.19824/j.cnki.cn32-1786/x.2024.0021

    Liu X L, Song Z X, Song G F, et al. Research Progress on Interaction Mechanism Between Dissolved Organic Matter and Heavy Metalsin Water[J]. Environmental Science and Technology, 2024, 37(2): 62−68. doi: 10.19824/j.cnki.cn32-1786/x.2024.0021

    [60] 曾祥峰, 王祖伟, 魏树和, 等. 碱性条件下胡敏酸吸附镉的特征研究[J]. 生态环境学报, 2014, 23(10): 1691−1696. doi: 10.16258/j.cnki.1674-5906.2014.10.015

    Zeng X F, Wang Z W, Wei S H, et al. Adsorption Features of Cadmium by Humic Acid in Alkaline Conditions[J]. Ecology and Environmental Sciences, 2014, 23(10): 1691−1696. doi: 10.16258/j.cnki.1674-5906.2014.10.015

    [61] 郑骁, 王学松, 陈光, 等. 离子强度和pH对针铁矿吸附水溶液中Cd(Ⅱ)的影响[J]. 环境工程, 2019, 37(7): 119−123. doi: 10.13205/j.hjgc.201907022

    Zheng X, Wang X S, Chen G, et al. The Effect of Ionic Strength and pH on the Adsorption of Cd(Ⅱ) in Aqueous Solution by Goethite[J]. Environmental Engineering, 2019, 37(7): 119−123. doi: 10.13205/j.hjgc.201907022

    [62] 张康, 戴亮, 赵伟繁, 等. 污泥腐殖酸对Cd2+的吸附特性[J]. 环境科学研究, 2020, 33(6): 1459−1468. doi: 10.13198/j.issn.1001-6929.2020.04.14

    Zhang K, Dai L, Zhao W F, et al. Adsorption Properties of Sludge-Based Humic Acid to Cd2+[J]. Research of Environmental Sciences, 2020, 33(6): 1459−1468. doi: 10.13198/j.issn.1001-6929.2020.04.14

    [63] 杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J]. 云南农业大学学报, 2005, 20(4): 539−543.

    Du C Y, Zu Y Q, Li Y. Effect of pH and Organic Matter on the Bioavailability Cd and Zn in Soil[J]. Journal of Yunnan Agricultural University, 2005, 20(4): 539−543.

    [64]

    Tang H M, Xiao B H, Xiao P W. Interaction of Ca2+ and Soil Humic Acid Characterized by a Joint Experimental Platform of Potentiometrictration, UV-Visible Spectroscopy, and Fluorescence Spectroscopy[J]. Acta Geochimica, 2021, 40(3): 300−311. doi: 10.1007/s11631-021-00453-7

    [65]

    He E, Lu C W. Binding Characteristics of Cu2+ to Natural Humic Acid Fractions Sequentially Extracted from the Lake Sediments[J]. Environmental Science & Pollution Research, 2016, 23(22): 22667−22677. doi: 10.1007/s11356-016-7487-2

    [66]

    Zhang Z R, Shi W J. Binding Mechanism Between Fulvic Acid and Heavy Metals: Integrated Interpretation of Binding Experiments, Fraction Characterizations, and Models[J]. Water Air & Soil Pollution, 2020, 231(4): 1−12. doi: 10.1007/s11270-020-04558-2

    [67]

    Hu X P, Qu C C, Han Y, et al. Elevated Temperature Altered the Binding Sequence of Cd with DOM in Arable Soils[J]. Chemosphere, 2022, 288(2): 132572. doi: 10.1016/j.Chemosphere.2021.132572

    [68]

    Cornu J Y, Denaix L, Lacoste J. Impact of Temperature on the Dynamics of Organic Matter and on the Soil-to-Plant Transfer of Cd, Zn and Pb in a Contaminated Agricultural Soil[J]. Environmental Science and Pollution Research, 2016, 23(4): 2997−3007. doi: 10.1007/s11356-015-5432-4

    [69]

    Tjisse H, Shamim M, Pierre B D, et al. Natural and Pyrogenic Humic Acids at Goethite and Natural Oxide Surfaces Interacting with Phosphate[J]. Environmental Science & Technology, 2013, 47(16): 9182−9189. doi: 10.1021/es400997n

    [70]

    Ye Q T, Ding Z C, Li R, et al. Kinetics of Cadmium (Cd), Nickel (Ni), and Lead (Pb) Release from Fulvic Acid: Role of Reassociation Reactions and Quantitative Models[J]. Science of the Total Environment, 2022, 843: 156996. doi: 10.1016/j.scitotenv.2022.156996

    [71]

    Sun C M, Peng L, Chen A W, et al. Effects and Possible Mechanisms of Dissolved Organic Matter Originated from Cattle Manure on Adsorption of Cadmium by Periphyton[J]. Journal of Water Process Engineering, 2021, 43: 1−8. doi: 10.1016/j.jwpe.2021.102258

    [72] 叶碧莹, 柏宏成, 刘高云, 等. 天然有机质不同分子量组分对紫色土镉吸附-解吸的影响[J]. 农业环境科学学报, 2019, 38(8): 1963−1972. doi: 10.11654/jaes.2018-1578

    Ye B Y, Bai H C, Liu G Y, et al. Effects of Different Molecular Weight Fractions of Natural Organic Matter on the Adsorption and Desorption of Cadmium in Purple Soil[J]. Journal of Agro-Environment Science, 2019, 38(8): 1963−1972. doi: 10.11654/jaes.2018-1578

    [73]

    Xu P, Sun C, Ye X Z, et al. The Effect of Biochar and Crop Straws on Heavy Metal Bioavailability and Plant Accumulation in a Cd and Pb Polluted Soil[J]. Ecotoxicology and Environmental Safety, 2016, 132: 94−100. doi: 10.1016/j.ecoenv.2016.05.031

    [74] 赵芹, 程东会, 王燕, 等. 不同物料堆肥过程中溶解性有机质和腐殖酸的物质结构演化时序差异分析[J]. 环境工程技术学报, 2023, 13(4): 1514−1524. doi: 10.12153/j.issn.1674-991X.20221230

    Zhao Q, Cheng D H, Wang Y, et al. Analysis of the Time Series Difference of the Material Structure Evolution of DOM and Humic Acid During Composting of Different Materials[J]. Journal of Environmental Engineering Technology, 2023, 13(4): 1514−1524. doi: 10.12153/j.issn.1674-991X.20221230

    [75] 韩林沛, 李蕾, 徐欣怡, 等. 餐厨垃圾高温预处理堆肥修复镉铅污染土壤潜能及机制[J/OL]. 环境科学(2024-07-12).

    Han L P, Li L, Xu X Y, et al. Potential and Mechanism of High-Temperature Pretreatment Composting of Food Waste for Amendment of Cadmium and Lead-Contaminated Soil[J/OL]. Environmental Science (2024-07-12).

    [76]

    Liang S S, Qing G, Lu J, et al. The Influence Mechanism of Dissolved Organic Matter on the Adsorption of Cd(Ⅱ) by Calcite[J]. Environmental Science and Pollution Research International, 2021, 28(28): 1−10. doi: 10.1007/s11356-021-14585-z

    [77]

    Palansooriya K N, Shaheen S M, Chen S S, et al. Soil Amendments for Immobilization of Potentially Toxic Elements in Contaminated Soils: A Critical Review[J]. Environment International, 2020, 134.

    [78]

    Yu Z, Liu X, Zhao M, et al. Hyperthermophilic Composting Accelerates the Humifcation Process of Sewage Sludge: Molecular Characterization of Dissolved Organic Matter Using EEM-PARAFAC and Two-Dimensional Correlation Spectroscopy[J]. Bioresource Technology, 2019, 274: 198−206. doi: 10.1016/j.biortech.2018.11.084

    [79] 方宇潇, 张维, 崔俊芳, 等. 猪粪源DOM对三峡消落带土壤吸附Cd的影响[J]. 农业环境科学学报, 2020, 39(6): 1240−1248. doi: 10.13254/j.jare.2020.0331

    Fang Y X, Zhang W, Cui J F, et al. Effects of Pig Manure-Derived Dissolved Organic Matter on the Adsorption of Cadmium to Soils in the Three Gorges Reservoir Region, China[J]. Journal of Agro-Environment Science, 2020, 39(6): 1240−1248. doi: 10.13254/j.jare.2020.0331

    [80] 张维, 侯孟彬, 伍诗宇, 等. 猪粪源溶解性有机质对锰矿区耕地土壤中镉迁移的影响[J]. 环境科学研究, 2024, 37(9): 1997−2005. doi: 10.13198/j.issn.1001-6929.2024.05.17

    Zhang W, Hou M B, Wu S Y, et al. Effect of Manure-Derived Dissolved Organic Matter on the Transport of Cadmium Through Tillage Soil in a Manganese Mining Area[J]. Research of Environmental Sciences, 2024, 37(9): 1997−2005. doi: 10.13198/j.issn.1001-6929.2024.05.17

    [81]

    Bao Y P, Bolan N S, Lai J H, et al. Interactions Between Organic Matter and Fe(hydr)oxides and Their Influences on Immobilization and Remobilization of Metal(loid)s: A Review[J]. Critical Reviews in Environmental Science and Technology,2021, 1974766.

    [82]

    Min T, Luo T, Chen L L. Effect of Dissolved Organic Matter on the Phytore Mediation of Cd-Contaminated Soil by Cotton[J]. Ecotoxicology and Environmental Safety, 2021, 226: 112842. doi: 10.1016/j.ecoenv.2021.112842

    [83]

    Lian M H, Wang J, Ma Y Y. Infuence of DOM and Its Subfractions on the Mobilization of Heavy Metals in Hizosphere Soil Solution[J]. Scientifc Reports, 2022, 12: 14082. doi: 10.11654/jaes.2019-1305

    [84]

    Li Y, Fang F, Wei J, et al. Humic Acid Fertilizer Improved Soil Properties and Soil Microbial Diversity of Continuous Cropping Peanut: A Three Year Experiment[J]. Scientific Reports, 2019, 9(1): 12014. doi: 10.1038/s41598-019-48620-4

图(1)  /  表(1)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  12
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-17
  • 修回日期:  2025-01-05
  • 录用日期:  2025-01-10
  • 网络出版日期:  2025-01-21

目录

/

返回文章
返回