Vanadium Isotope Composition of Rock Reference Materials by MC-ICP-MS
-
摘要:
随着分析方法的发展和分析精度的提升,钒同位素已经越来越多地被用于各种地质过程研究。为了确保钒同位素分析测试过程中,可以有效地监控数据的准确度和精度,方便国际各实验室之间的数据对比,同时考虑到早期国际上常用美国地质调查局(USGS)的标准物质面临着库存不足等问题,本文采用多接收电感耦合等离子体质谱仪(MC-ICP-MS)测定了一系列国际地质标准物质和国家地质标准物质的钒同位素组成,δ51V值的测试精度优于0.08‰。本文选取的标准物质主要来自日本地质调查局(GSJ)和中国地质科学院地球物理地球化学勘查研究所(IGGE),包括一个安山岩(JA-1),三个玄武岩(JB-3、JB-1b和GBW07105),一个辉长岩(JGb-1),一个辉绿岩(GBW07123)以及一个土壤(GBW07454),钒含量范围为77~635µg/g,涵盖了目前大部分火成岩和部分土壤等天然样品含量的范围。这些标准物质除了土壤GBW07454,其他标准物质的钒同位素组成未曾被报道。经测量表明,辉长岩标准物质JGb-1具有最高δ51V值,为−1.05‰±0.08‰,安山岩标准物质JA-1具有最低δ51V值,为−0.34‰±0.06‰,其余标准物质的δ51V值变化范围为−0.72‰~−0.81‰,均落在MORB范围内。本文对这些标准物质钒同位素组成的报道,丰富了钒同位素研究的标准物质数据库,有助于未来在更多领域开展钒同位素研究。
-
关键词:
- 钒同位素 /
- 火成岩;MC-ICP-MS /
- 标准物质 /
- 高精度分析方法
要点(1)采用MC-ICP-MS对国际岩石和土壤标准物质进行了高精度的钒同位素比值测量。
(2)报道了目前具有最低δ51V值的火成岩钒同位素标准物质。
(3)扩大了火成岩标准物质的钒同位素数据库,补充了钒同位素标准物质数据。
HIGHLIGHTS(1) The vanadium isotopes of seven reference materials were analyzed using MC-ICP-MS with high-precision and accuracy.
(2) The igneous rock vanadium isotope reference material with the lowest δ51V value at present was reported.
(3) The range of vanadium isotopic composition of igneous rock standards was broadened, and the data of vanadium isotope standard materials was supplemented.
Abstract:In order to ensure the accuracy and precision of data during the analysis of vanadium isotopes, and facilitate the comparison of data among laboratories internationally, considering the shortage of inventory for the commonly used reference materials from the United States Geological Survey (USGS), seven reference materials (JA-1, JB-3, JB-1b, JGb-1, GBW07105, GBW07123, and GBW07454) with unreported vanadium isotope composition were selected from the Geological Survey of Japan (GSJ) and the Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences (IGGE) and their vanadium isotopes were measured using MC-ICP-MS. Among these reference materials, the gabbro reference material JGb-1 has the highest δ51V value of −1.05‰±0.08‰, and the andesite reference material JA-1 has the lowest δ51V (−0.34‰±0.06‰). The δ51V values of the other reference materials range from −0.72‰ to −0.81‰, all falling within the MORB range. The reporting of the vanadium isotopic composition of these reference materials in this article will enrich the database of vanadium isotopic research and contribute to the future study of vanadium isotopes in more fields. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202405280123.
-
Keywords:
- vanadium isotope /
- igneous rock; MC-ICP-MS /
- reference materials /
- high precision analysis method
BRIEF REPORTSignificance: With the development of analytical methods and the improvement of analytical accuracy, vanadium isotopes have been increasingly used in the study of various geological processes. In the analysis process of vanadium isotopes, using reference materials similar to the sample matrix can reduce experimental bias, which is conducive to obtaining more accurate and precise vanadium isotope data. Previous studies have reported the vanadium isotopic composition of some common rock reference materials provided by the United States Geological Survey (USGS), with δ51V values ranging from −1.65‰ to −0.61‰[12,15,28,42]. However, many USGS reference materials with reported vanadium isotopic composition are facing issues such as insufficient inventory (some are already sold out). In order to provide continuous support for research in related fields with high-precision vanadium isotope data, there is an urgency to calibrate the vanadium isotopes of more new geological reference materials, so as to better monitor the precise measurement of vanadium isotopes and enable data comparison between laboratories internationally. A series of international and national geological reference materials with unreported vanadium isotope composition have been selected from the Geological Survey of Japan (GSJ) and the Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences (IGGE) for measuring vanadium isotopic composition. Their composition are widely distributed, with vanadium content ranging from 77g/g to 635g/g, SiO2 from 43.44% to 64.43%, and TiO2 from 0.64% to 2.94%, which cover the components of most natural samples. The vanadium isotopic composition of these reference materials is intended to supplement the reference materials database of vanadium isotope research and also to provide more options for the comparison of vanadium isotope data between different laboratories.
Methods: The detailed information of the reference materials (GSP-2, BIR-1, GBW07454, JA-1, JB-3, JB-1b, GBW07105, JGb-1, and GBW07123) and isotope standard solutions (AA, USTC-V, BDH, and NIST-3165) used in the experiment is shown in Table 1. The samples are rock or soil standard materials. The rock standard materials were digested using the acid dissolution method on an electric heating plate at ordinary pressure, while the soil standard materials were digested using the dissolution method with bomb. Chemical purification used the four-column combined chemical separation method with AG50W-X12 cation exchange resin and AG1-X8 anion exchange resin described by Wu et al (2016)[15]. The vanadium isotopes were determined using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS), and the main working conditions of the instrument are shown in Table 2. The mass bias effect produced by the instrument during the test process was corrected using the sample standard bracket method. Although the majority of matrix elements Ti and Cr were removed during the resin purification, trace amounts of Ti and Cr can also affect the measurement of 50V during mass spectrometry analysis. Therefore, it is necessary to accurately correct the interference of residual 50Ti and 50Cr on 50V. Experimental condition testing shows that the sample solution must meet the conditions of 49Ti/51V<0.00004 and 53Cr/51V<0.00004. At this point, the interference of 50Ti and 50Cr on 50V can be corrected, and the test data is considered reliable[15].
Three methods were used to monitor the precision and accuracy of vanadium isotope measurements, including (1) internal laboratory standard monitoring; (2) monitoring of reference samples with recommended values; (3) monitoring of replicate samples. The vanadium isotopic composition of the laboratory internal standard solutions BDH and NIST-3165 during this test process is consistent with the long-term test results of this laboratory within the error range (Fig.2). The vanadium isotopic composition of the petrologic reference materials BIR-1 and GSP-2 is consistent with the data reported in previous literature within the error range. The vanadium isotopic composition of all standard materials in multiple replicate samples is consistent within the error range, and the measurement precision of δ51V is greater than 0.08‰ (2SD). The above results ensure the precision and accuracy of the test.
Date and Results: The δ51V value of the soil reference material GBW07454 is −0.78‰±0.06‰ (2SD, n=12), gabbro reference material JGb-1 is −1.05‰±0.08‰ (2SD, n=9), diabase reference material GBW07123 is −0.72‰±0.06‰ (2SD, n=15), basalt reference material JB-3 is −0.81‰±0.09‰ (2SD, n=9), basalt reference material JB-1b is −0.79‰±0.08‰ (2SD, n=9), basalt reference material GBW07105 is −0.80‰±0.06‰ (2SD, n=15), and andesite reference material JA-1 is −0.34‰±0.06‰ (2SD, n=9) (see Table 4 and Fig.3).
The δ51V value of the gabbro reference material JGb-1 is currently the lowest in reported igneous rock samples, lower than the average vanadium isotope composition of MORB (−0.84‰±0.10‰). Its lighter V vanadium isotope composition may be influenced by high-temperature hydrothermal alteration, but the specific genesis requires further research[27]. The vanadium isotopes of the diabase standard material and three basalt standard materials GBW07105, JB-3, and JB-1b are relatively homogeneous, all falling within the MORB range. The δ51V value of the andesite reference material JA-1 is the highest, indicating a significant enrichment of vanadium isotopes compared to basalt, indicating the possible presence of vanadium isotope fractionation during magma evolution[26-28,32-33]. The δ51V value of the soil reference material GBW07454 is consistent with previous reports (−0.74‰±0.08‰) and is close to the composition of MORB. It also indicates that continental weathering does not cause significant vanadium isotope fractionation, which is consistent with previous research findings on the weathering product of basalt, Zhanjiang laterite[34].
-
致密砂岩气作为三大非常规油气资源之一,是常规油气资源的主要接替者,该类储层中20~500nm是油气聚集的主要场所,而黏土矿物涵盖了所有小于2μm的铝硅酸岩矿物,常见的有绿泥石、伊利石、蒙脱石及混层黏土等,是致密砂岩储层主要的组成矿物之一,该类矿物表面发育大量的纳米孔隙,对其形貌特征进行精细刻画,不仅可建立不同成岩阶段与黏土矿物形貌特征的对应关系,还可追踪晶体生长过程中温度、杂质及原子行为对晶体微形貌特征产生的影响[1-3],为成岩环境、储层评价的研究提供依据,具有重要的研究意义。
目前用于表征矿物表面纳米形貌特征研究的核心方法主要有电子显微术、超分辨光学显微术与扫描探针显微术[4-6]。电子显微术作为一种主要的微区形貌观测手段,可对微米/纳米尺度的结构进行定性表征,运用该方法可观察到高岭石、伊利石等黏土矿物的形态特征[7],在成岩历史恢复[8]、热液蚀变研究、结晶习性[9-10]、油气生成[11]、运移及聚集等的研究中起着关键性作用然而该方法主要是在二维平面对矿物形貌进行定性表征,无法对显微结构进行定量分析。此外,该方法受样品导电性的制约,无法直接观察黏土矿物的形貌特征,更无法真实地呈现黏土矿物表面纳米/亚纳米尺度的结构特征。超分辨光学显微术主要通过可见光振幅的变化或偏振光的干涉对矿物表面的微形貌进行观察,前人利用该方法观察到绿柱石、金刚石、磁铁矿、黄铁矿、闪锌矿、沸石等矿物表面的螺旋位错结构,揭示了矿物形貌与生长机理间的相关关系,推动了矿物生长理论的发展。但是该方法观察对象局限在解理面这类平坦表面,无法对粗糙、凹凸不平的表面进行观察[6-14]。所以电子显微术与超分辨光学显微术在黏土矿物形貌精细表征与定量分析研究中存在一定的缺陷。原子力显微镜(AFM)作为第三代扫描探针显微镜,在纵、横向具有超高分辨率,不仅可同时观察矿物在二维平面与三维空间的形貌特征,还可对矿物形貌特征进行定量分析,是一种强有力的表面形貌观察手段。近年Gratz等[13]利用AFM对石英表面的蚀像进行了精细表征,观察到纳米级的突缘与位错沟,证实了硅酸盐溶解和生长的突缘运动模型。Hochella等[15]利用AFM观察到赤铁矿表面的波状起伏现象,揭示了矿物表面的断口效应。Friedbacher等[16]和Jr Eggleston等[17]和Johnson等[18]分别利用AFM观察到Stultorum贝壳和钠长石表面形貌特征,揭示了晶体生长机制。上述研究成果促进了矿物表面纳米/亚纳米尺度形貌特征的研究,使矿物表面生长形貌特征的研究日趋精细化。而且,AFM方法克服了黏土矿物在层间交换性阳离子及离子力的作用下形成团聚体及单晶难以剥离的影响,可直接观察黏土矿物表面微形貌特征,从而揭示晶体表面纳米/亚纳米形貌及孔隙结构特征,因此,该方法近年被逐渐应用于非常规油气储层评价工作中[19]。
川西须家河致密砂岩储层蕴藏了丰富的天然气资源,黏土矿物是该储层主要的组成矿物之一,随着勘探开发的深入,亟需对黏土矿物形貌进行精细表征。因此,本文以川西须家河组晚成岩阶段致密砂岩为研究对象,利用AFM分析技术研究黏土矿物中伊蒙混层、绿泥石与伊利石的形貌特征,揭示晶体表面微形貌的指示意义、黏土矿物形貌特征与成岩作用间的空间耦合关系,以及纳米孔隙的结构特征,从而为致密砂岩储层的评价提供科学依据。
1. 实验部分
1.1 实验样品
实验样品为川西须家河致密砂岩,石英和长石含量较高,填隙物含量低,主要为胶结物,杂基含量少[20],通过X射线衍射(XRD)分析,样品中黏土矿物主要为伊蒙混层黏土(占黏土总量的相对含量为76.2%)、绿泥石(占黏土总量的相对含量为21.2%)及少量伊利石(占黏土总量的相对含量为2.6%)。
1.2 样品制备
将致密砂岩粉碎至200目,按照《沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法》(SY/T 5163—2018)进行黏土提取,将提取的黏土矿物配制成浓度为5%的溶液,滴于干净的载玻片,待自然风干后用于测试。
1.3 实验方法
实验采用Park NX10原子力显微镜,横向分辨率0.05nm,纵向分辨率0.015nm,扫描频率0.15~0.4Hz,阈值(Setpoint)为20nm,XY扫描范围100μm×100μm,Z扫描范围15μm。在原子力显微镜扫描过程中,由于黏土矿物局部仍然存在团聚现象,形成表面的异常凸起,因此参数的选择兼顾不同扫描区域下仪器的分辨率与黏土矿物团聚体的大小,避免扫描过程中污染纳米探针,从而影响图像质量。
2. 结果与讨论
2.1 伊蒙混层黏土矿物的形貌特征
伊蒙混层黏土是川西须家河组主要的黏土矿物之一,是伊利石与蒙脱石两个端员矿物之间的过渡矿物,亦是成岩阶段划分的重要标志[21]。本文利用原子力显微镜观察伊蒙混层黏土矿物晶体表面形貌特征(图1中a,b,c),根据晶体结晶位向差可知[22],在1μm×1μm扫描区域存在两个晶界,将扫描区域分为三个晶粒(图1a),分别为图1a中的A、B、C,粒径在100~300nm之间,晶粒均由水平生长层在三维空间堆垛而层,晶棱间距整体上呈上疏下密的规律。而且从图1a-A中可明显观察到伊利石生长层在空间堆垛形成独特的“宝塔”形,伊利石与蒙脱石的晶棱局部呈溶蚀港湾状,而不是理想的面平棱直的晶体生长终态。此外,通过定量分析,晶粒上部阶梯间距集中分布在±0.6nm、晶粒下部阶梯间距集中分布在0.3~0.8nm(表1)。
伊蒙混层作为一常规与非常规油气储层中常见的混层黏土矿物,观察其形貌特征对于储层物理特性研究具有重要意义。前人利用电子显微术、超分辨光学显微术观察到伊蒙混层黏土矿物主要呈棉絮状包膜、薄膜状、栉壳状等形态特征,进而阐述了其晶面条纹的成因、晶体生长机制[4,7,23]。本次研究利用原子力显微镜观察到晶体亚纳米生长层在二维平面的展布特征与三维空间的堆垛规律[21]。根据伊蒙混层黏土形貌特征,结合晶体周期性键链(PBC)理论,在图1a-C中的晶面为伊蒙混层黏土矿物晶体生长层在三维空间堆垛形成的阶梯面(S面),该晶面与平坦面(F面)相邻,属于亚稳定状态的晶面,表明川西须家河组晚成岩阶段的伊蒙混层黏土矿物中伊利石与蒙脱石虽然是两种独立物相在二维平面紧密共生,但处于一个不稳定状态,再结合伊利石、蒙脱石晶体内部空间格子构造及晚成岩阶段伊利石、蒙脱石外部稳定赋存环境,可知该成岩阶段中伊蒙混层黏土中的两种黏土矿物处于一个动态转化过程,该晶面在伊蒙混层黏土中较发育,形成了大量的纳米孔隙,是致密砂岩中主要的纳米级储集空间。在伊利石生长过程中,由于晶面生长向外平行推移,在图1a中A、B形成了砂钟状构造,结合科赛尔-斯特兰斯基层生长理论,说明伊利石生长过程中物质浓度过饱和[22-24]。但是,不论是伊利石晶体还是蒙脱石晶体,其晶棱局部均呈溶蚀港湾状,而不是理想的面平棱直的晶体生长终态,表明晶体在生长过程中物质浓度发生了轻微的变化,导致晶棱出现不同程度的溶蚀,使得局部呈溶蚀港湾状。此外,伊蒙混层黏土矿物阶梯间距与单原子分子层厚度相当,表明伊蒙混层黏土矿物的基本结构单元为单原子层所组成,其生长机理是结晶微粒以晶核为中心二维附着生长并延展[22]。
2.2 绿泥石矿物的形貌特征
绿泥石作为川西须家河组致密砂岩中一种主要的黏土矿物,通过原子力显微镜观察到绿泥石生长层主要有两种形态特征:一种是呈面平棱直的近正六边形理想晶体生长终态,且生长层在纵向上呈有规律的无隙叠置(图2中a,b,c);另一种呈不规则纺锤状,与近正六边形晶体生长层在纵向交互出现(图2a)。通过原子力显微镜的精细刻画,揭示了处于生长状态的绿泥石生长层由小到大向外平行推移生长,晶棱平直且互相平行。此外,通过定量分析,绿泥石晶体生长层单层厚度在5nm左右。
绿泥石为2∶1型的层状硅酸盐,它与伊蒙不同的是,其间是八面体氢氧化物片层[20,25]。本次研究观察到的近正六边形绿泥石晶体生长层相较于扫描电镜下观察到的叶片状和玫瑰花状,该生长层在纵向上无隙叠置,结合黏土矿物层间电荷的相关特性,表明绿泥石层间域含一定的层间阳离子,具有较强的吸附性,导致其纵向上层间缝隙不发育[22-24]。根据绿泥石生长层形态特征,结合科赛尔-斯特兰斯基层生长理论,表明川西须家河晚成岩阶段绿泥石晶体生长处于过饱和且浓度稳定的生长环境。此外,通过定量分析绿泥石生长层厚度为单原子分子层厚度的5倍,结合晶体生长理论,表明川西须家河组晚成岩阶段绿泥石晶体处于过饱和的生长环境,但是由于生长过程中杂质原子被阶梯吸附,导致部分绿泥石生长层停止生长或生长速度减缓,形成生长层的重叠,从而使得绿泥石晶体的生长层变厚。
2.3 伊利石矿物的形貌特征
伊利石是一种富钾元素的二八面体黏土矿物,其晶体结构由2个四面体片夹一个八面体片构成,利用原子力显微镜在不同尺度分别对伊利石集合体与晶体生长层形貌特征进行观察。在10μm×10μm大视域形貌图中,伊利石集合体形态不规则,边界局部被溶蚀呈港湾状,由于溶蚀作用在伊利石集合体边界处发育阶梯面(S),集合体晶面局部可见伊利石鳞片状雏晶堆积(图3中a,b,c)。在1μm×1μm精细扫描图中,伊利石晶体生长层主要呈无定形态、表面平坦、平直晶棱与溶蚀港湾状晶棱间隔出现(图4中a,b,c)。此外,通过定量分析,伊利石生长层厚度在4~7nm。
伊利石作为川西须家河组致密砂岩晚成岩阶段一种主要的自生矿物,本次研究所观察到的伊利石晶体生长层的形态特征与扫描电镜下所观察到的刀片状、卷刃刀片状、薄膜状、丝缕状及蜂窝状有较大的差异[26-33]。根据伊利石集合体表面的形貌特征,结合晶体层生长理论与晶体周期性键链(PBC)理论,表明该阶段伊利石处于亚稳定状态,但是该晶面发育的大量平行阶梯条纹或波纹状阶梯可为非常规储层提供大量的纳米孔隙。通过精细扫描揭示伊利石晶体生长层并不是“面平棱直”的生长终态,结合晶体层生长理论,表明伊利石晶体生长层处于不稳定的生长状态[22-24]。此外,通过定量分析伊利石生长层厚度为单原子分子层厚度的5倍,结合晶体生长理论,表明川西须家河组晚成岩阶段伊利石晶体生长层生长过程中杂质原子被阶梯吸附,致使部分伊利石生长层停止生长或生长速度减缓,形成生长层的重叠,从而使得伊利石晶体生长层变厚。
3. 结论
利用原子力显微镜揭示了川西须家河组致密砂岩储层中黏土矿物的纳米/亚纳米形貌特征,利用原子力显微镜超高空间分辨率优势观察到伊蒙混层黏土矿物主要发育平行阶梯条纹,其表面发育的阶梯面(S面);伊利石作为主要的黏土矿物之一,晶面平坦光滑,纵向上发育生长层平行阶梯条纹及波纹状阶梯,是纳米孔隙发育的主要载体矿物;绿泥石形态规则,在纵向上无隙叠置。通过定量分析,伊利石与伊蒙混层生长层是单原子层构成,绿泥石生长层为多原子分子层所构成,揭示了同一成岩阶段不同黏土矿物生长层厚的差异,从而为非常规油气储层与黏土矿物形貌特征与成岩作用之间的耦合关系的研究提供微观依据。
利用原子力显微镜观察黏土矿物表面微形貌特征,解决了电子显微术前处理过程中金属离子对纳米形貌特征的“二次改造”,真实地呈现了黏土矿物生长层二维/三维空间形貌特征;同时亦克服了黏土矿物层间阳离子静电吸附的影响,精细表征了生长层纵横向的展布特点。为了更加系统地研究矿物亚纳米-纳米结构特征,该方法需与其他微区分析方法相结合,从而更加有力地支撑亚纳米-纳米矿物学的发展。
-
图 4 火成岩标准物质的钒同位素组成与V、TiO2、SiO2、MgO含量关系图,其中钒同位素组成与SiO2含量呈正相关,与其他元素没有明显相关性
Figure 4. The diagrams of the relationship between vanadium isotope composition and V, TiO2, SiO2, MgO content of igneous rock reference materials. The vanadium isotope composition is positively correlated with SiO2 content, but not significantly correlated with other elements
表 1 地质标准物质和钒同位素标准溶液详细信息
Table 1 Detail information of reference materials and vanadium isotope reference solutions.
标准物质编号 样品类型 研制单位 δ51V推荐值
(‰)AA 纯钒溶液 Alfa Aesar公司 0.00 USTC-V 纯钒溶液 中国有色金属及电子材料分析测试中心 −0.07±0.08 BDH 纯钒溶液 BDH公司 −1.24±0.08 NIST-3165 纯钒溶液 美国国家标准与技术研究院(NIST) 0.7±0.08 GSP-2 花岗闪长岩 美国国家地质调查局(USGS) −0.62 BIR-1 玄武岩 美国国家地质调查局(USGS) −0.92 GBW07454 土壤 中国地质科学院地球物理地球化学勘查研究所(IGGE) −0.74 JA-1 安山岩 日本地质调查局(GSJ) / JB-3 玄武岩 日本地质调查局(GSJ) / JB-1b 玄武岩 日本地质调查局(GSJ) / GBW07105 玄武岩 中国地质科学院地球物理地球化学勘查研究所(IGGE) / JGb-1 辉长岩 日本地质调查局(GSJ) / GBW07123 辉绿岩 中国地质科学院地球物理地球化学勘查研究所(IGGE) / 注:USTC-V是由两瓶GSB(国家实物标准样品)单元素纯钒溶液混合均匀制备而成,表格中δ51V推荐值来源于Prytulak等(2011)[12]、Wu等(2016)[15]和Zeng等(2024)[44]。 Note: USTC-V is made by mixing two bottles of GSB (National Physical Standard Sample) single element pure vanadium solution evenly,and the recommended values for δ51V in the table are sourced from Prytual et al (2011)[12],Wu et al (2016)[15] and Zeng et al (2024)[44]. 表 2 MC-ICP-MS仪器测量钒同位素的主要工作条件
Table 2 Operating conditions for vanadium isotopic determination of MC-ICP-MS instrument
工作参数 实验条件 射频功率 1160~1200W 冷却气流速 ~16L/min 辅助器气体流速 ~0.8L/min 样品气流速 0.85L/min 灵敏度 51V为200V/(μg/g) 锥 X截取锥和镍Jet样品锥 膜去溶系统 Aridus 3 进样速率 50μL/min 分辨率 中分辨率(>5500) 法拉第杯 L4 L2 L1 C H2 H3 48Ti 49Ti 50V 51V 52Cr 53Cr 电阻 1011Ω 1011Ω 1011Ω 1010Ω 1011Ω 1011Ω 表 3 地质标准物质的钒同位素组成测量结果
Table 3 Vanadium isotopic composition of geological reference materials from different laboratories and our date
标准物质编号 样品类型 V含量
(μg/g)δ51V
(‰)2SD n 文献来源 BIR-1 玄武岩 310 −0.91 0.03 3 本文研究 −0.94 0.15 52 Prytulak等(2011)[12] −0.92 0.09 52 Wu等(2016)[15] −1.05 0.22 7 Sossi等(2018)[20] −0.96 0.03 3 Wu等(2018)[27] −0.89 0.23 3 Hopkins等(2019)[22] −1.01 0.08 3 Qi等(2022)[34] GSP-2 花岗闪长岩 52 −0.60 0.02 3 本文研究 −0.63 0.1 6 Prytulak等(2011)[12] −0.62 0.07 26 Wu等(2016)[15] GBW07454 黄土 77 −0.78 0.06 12 本文研究 −0.74 0.08 12 Zeng等(2024)[44] 表 4 7个地质标准物质的钒同位素组成测量结果
Table 4 Determined values of vanadium isotopic composition of seven geological reference materials
标准物质编号 样品类型 V含量
(μg/g)δ51V测定值
(‰)2SD
(‰,n=3)δ51V总平均值
(‰)总测试数据的2SD
(‰)GBW07454 黄土
(loess)77 −0.81a 0.06 −0.78
(−0.74*)0.06 (n=12)
(0.08*)−0.74a 0.04 −0.78a 0.01 −0.80a 0.04 GBW07123 辉绿岩
(diabase)268 −0.75a 0.07 −0.72 0.06 (n=15) −0.71a 0.02 −0.70b 0.01 −0.69a 0.07 −0.74b 0.02 JGb-1 辉长岩
(gabrro)635 −1.11a 0.03 −1.05 0.08 (n=9) −1.03a 0.04 −1.03a 0.03 GBW07105 玄武岩
(basalt)167 −0.83a 0.05 −0.80 0.06 (n=12) −0.82a 0.04 −0.78a 0.05 −0.77a 0.04 JB-1b 玄武岩
(basalt)214 −0.79a 0.10 −0.79 0.08 (n=9) −0.74a 0.04 −0.83a 0.08 JB-3 玄武岩
(basalt)372 −0.83a 0.06 −0.81 0.09 (n=9) −0.84a 0.04 −0.76a 0.07 JA-1 安山岩
(andesite)105 −0.35a 0.03 −0.34 0.06 (n=12) −0.37a 0.02 −0.33a 0.03 −0.30b 0.05 注:a代表相同样品粉末单独进行化学纯化得到的数据;b代表相同的溶液重复测试得到的数据;n代表单次测量次数;*代表Zeng等(2024)[44]报道的δ51V数据值。 Note: a. Data obtained from chemical purification of the same sample powder separately; b. Data obtained from repeated testing of the same solution;n. Single measurement frequency; *. The data values of δ51V reported by Zeng et al. (2024)[44]. -
[1] Karner J M. Application of a new vanadium valence oxybarometer to basaltic glasses from the Earth, Moon, and Mars[J]. American Mineralogist, 2006, 91(2-3): 270−277. doi: 10.2138/am.2006.1830
[2] Siebert J, Badro J, Antonangeli D, et al. Terrestrial accretion under oxidizing conditions[J]. Science, 2013, 339(6124): 1194−1197. doi: 10.1126/science.1227923
[3] Wood B J, Wade J, Kilburn M R. Core formation and the oxidation state of the Earth: Additional constraints from Nb, V and Cr partitioning[J]. Geochimica et Cosmochimica Acta, 2008, 72(5): 1415−1426. doi: 10.1016/j.gca.2007.11.036
[4] Canil D. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present[J]. Earth and Planetary Science Letters, 2002, 195(1): 75−90. doi: 10.1016/S0012-821X(01)00582-9
[5] Aeolus Lee C T, Leeman W P, Canil D, et al. Similar V/Sc systematics in MORB and arc basalts: Implications for the oxygen fugacities of their mantle source regions[J]. Journal of Petrology, 2005, 46(11): 2313−2336. doi: 10.1093/petrology/egi056
[6] Mallmann G, O’Neill H S C. The crystal/melt partition-ing of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb)[J]. Journal of Petrology, 2009, 50(9): 1765−1794. doi: 10.1093/petrology/egp053
[7] Bennett W W, Canfield D E. Redox-sensitive trace metals as paleoredox proxies: A review and analysis of data from modern sediments[J]. Earth-Science Reviews, 2020, 204: 103175. doi: 10.1016/j.earscirev.2020.103175
[8] Algeo T J, Maynard J B. Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments[J]. Geosphere, 2008, 4(5): 872−887. doi: 10.1130/ges00174.1
[9] Shore A, Fritsch A, Heim M, et al. Discovery of the vanadium isotopes[J]. Atomic Data and Nuclear Data Tables, 2010, 96(4): 351−357. doi: 10.1016/j.adt.2010.02.002
[10] 黄方, 吴非. 钒同位素地球化学综述[J]. 地学前缘, 2015, 22(5): 94−101. doi: 10.13745/j.esf.2015.05.007 Huang F, Wu F. A review of vanadium isotope geochemistry[J]. Earth Science Frontiers, 2015, 22(5): 94−101. doi: 10.13745/j.esf.2015.05.007
[11] Nielsen S G, Prytulak J, Halliday A N. Determination of precise and accurate 51V/50V isotope ratios by MC-ICP-MS, Part 1: Chemical separation of vanadium and mass spectrometric protocols[J]. Geostandards and Geoanalytical Research, 2011, 35(3): 293−306. doi: 10.1111/j.1751-908X.2011.00106.x
[12] Prytulak J, Nielsen S G, Halliday A N. Determination of precise and accurate 51V/50V isotope ratios by multi-collector ICP-MS, Part 2: Isotopic composition of six reference materials plus the allende chondrite and verification tests[J]. Geostandards and Geoanalytical Research, 2011, 35(3): 307−318. doi: 10.1111/j.1751-908X.2011.00105.x
[13] Ventura G T, Gall L, Siebert C, et al. The stable isotope composition of vanadium, nickel, and molybdenum in crude oils[J]. Applied Geochemistry, 2015, 59: 104−117. doi: 10.1016/j.apgeochem.2015.04.009
[14] Nielsen S G, Owens J D, Horner T J. Analysis of high-precision vanadium isotope ratios by medium resolution MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2): 531−536. doi: 10.1039/c5ja00397k
[15] Wu F, Qi Y H, Yu H M, et al. Vanadium isotope measurement by MC-ICP-MS[J]. Chemical Geology, 2016, 421: 17−25. doi: 10.1016/j.jpgl.2015.06.048
[16] Schuth S, Horn I, Brüske A, et al. First vanadium isotope analyses of V-rich minerals by femtosecond laser ablation and solution-nebulization MC-ICP-MS[J]. Ore Geology Reviews, 2017, 81: 1271−1286. doi: 10.1016/j.oregeorev.2016.09.028
[17] Schuth S, Brüske A, Hohl S V, et al. Vanadium and its isotope composition of river water and seawater: Analytical improvement and implications for vanadium isotope fractionation[J]. Chemical Geology, 2019, 528: 119261. doi: 10.1016/j.chemgeo.2019.07.036
[18] Dong L H, Wei W, Yu C L, et al. Determination of vanadium isotope compositions in carbonates using an Fe coprecipitation method and MC-ICP-MS[J]. Analytical Chemistry, 2021, 93(19): 7172−7179. doi: 10.1021/acs.analchem.0c04800
[19] Nielsen S G, Prytulak J, Wood B J, et al. Vanadium isotopic difference between the silicate earth and meteorites[J]. Earth and Planetary Science Letters, 2014, 389: 167−175. doi: 10.1016/j.jpgl.2013.12.030
[20] Sossi P A, Moynier F, Chaussidon M, et al. Early Solar system irradiation quantified by linked vanadium and beryllium isotope variations in meteorites[J]. Nature Astronomy, 2017, 1(4): 103175. doi: 10.1038/s41550-017-0055
[21] Nielsen S G, Auro M, Righter K, et al. Nucleosynthetic vanadium isotope heterogeneity of the Early Solar system recorded in chondritic meteorites[J]. Earth and Planetary Science Letters, 2019, 505: 131−140. doi: 10.1016/j.jpgl.2018.10.029
[22] Hopkins S S, Prytulak J, Barling J, et al. The vanadium isotopic composition of Lunar basalts[J]. Earth and Planetary Science Letters, 2019, 511: 12−24. doi: 10.1016/j.jpgl.2019.01.008
[23] Nielsen S G, Bekaert D V, Magna T, et al. The vanadium isotope composition of Mars: Implications for planetary differentiation in the Early Solar system[J]. Geochemical Perspectives Letters, 2020: 35−39.
[24] Nielsen S G, Bekaert D V, Auro M. Isotopic evidence for the formation of the Moon in a canonical giant impact[J]. Nature Communications, 2021, 12(1): 1−7. doi: 10.1038/s41467-021-22155-7
[25] 戚玉菡, 吴非, 李春辉, 等. 地幔和大洋玄武岩的钒同位素研究[J]. 矿物岩石地球化学通报, 2019, 38(3): 643−650. doi: 10.19658/j.issn.1007-2802.2019.38.052 Qi Y H, Wu F, Li C H, et al. Vanadium isotope compositions of the mantle and oceanic basalts[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(3): 643−650. doi: 10.19658/j.issn.1007-2802.2019.38.052
[26] Prytulak J, Nielsen S G, Ionov D A, et al. The stable vanadium isotope composition of the mantle and mafic lavas[J]. Earth and Planetary Science Letters, 2013, 365: 177−189. doi: 10.1016/j.jpgl.2013.01.010
[27] Wu F, Qi Y H, Perfit M R, et al. Vanadium isotope compositions of mid-ocean ridge lavas and altered oceanic crust[J]. Earth and Planetary Science Letters, 2018, 493: 128−139. doi: 10.1016/j.jpgl.2018.04.009
[28] Qi Y H, Wu F, Ionov D A, et al. Vanadium isotope composition of the bulk silicate earth: Constraints from peridotites and komatiites[J]. Geochimica et Cosmochimica Acta, 2019, 259: 288−301. doi: 10.1016/j.gca.2019.06.008
[29] Novella D, Maclennan J, Shorttle O, et al. A multi-proxy investigation of mantle oxygen fugacity along the Reykjanes Ridge[J]. Earth and Planetary Science Letters, 2020, 531: 115973. doi: 10.1016/j.jpgl.2019.115973
[30] Chen Z W, Ding X, Kiseeva E S, et al. Vanadium isotope fractionation of alkali basalts during mantle melting[J]. Lithos, 2023, 442−443: 107082.
[31] Prytulak J, Sossi P A, Halliday A N, et al. Stable vanadium isotopes as a redox proxy in magmatic systems?[J]. Geochemical Perspectives Letters, 2017, 3(1): 75−84.
[32] Ding X, Helz R T, Qi Y H, et al. Vanadium isotope fractionation during differentiation of Kilauea Iki Lava Lake, Hawaii[J]. Geochimica et Cosmochimica Acta, 2020, 289: 114−129. doi: 10.1016/j.gca.2020.08.023
[33] Tian S Y, Ding X, Qi Y H, et al. Dominance of felsic continental crust on Earth after 3 billion years ago is recorded by vanadium isotopes[J]. Proceedings of the National Academy of Sciences, 2023, 120(11): e2220563120. doi: 10.1073/pnas.2220563120
[34] Qi Y H, Gong Y Z, Wu F, et al. Coupled variations in V-Fe abundances and isotope compositions in latosols: Implications for V mobilization during chemical weathering[J]. Geochimica et Cosmochimica Acta, 2022, 320: 26−40. doi: 10.1016/j.gca.2021.12.028
[35] Heard A W, Wang Y, Ostrander C M, et al. Coupled vanadium and thallium isotope constraints on Mesoproterozoic ocean oxygenation around 1.38-1.39Ga[J]. Earth and Planetary Science Letters, 2023, 610: 118127. doi: 10.1016/j.jpgl.2023.118127
[36] Fan H F, Ostrander C M, Auro M, et al. Vanadium isotope evidence for expansive ocean euxinia during the appearance of early Ediacara Biota[J]. Earth and Planetary Science Letters, 2021, 567: 117007. doi: 10.1016/j.jpgl.2021.117007
[37] Li S Q, Friedrich O, Nielsen S G, et al. Reconciling biogeochemical redox proxies: Tracking variable bottom water oxygenation during OAE-2 using vanadium isotopes[J]. Earth and Planetary Science Letters, 2023, 617: 118237. doi: 10.1016/j.jpgl.2023.118237
[38] Wei W, Chen X, Ling H F, et al. Vanadium isotope evidence for widespread marine oxygenation from the late Ediacaran to early Cambrian[J]. Earth and Planetary Science Letters, 2023, 602: 117942. doi: 10.1016/j.jpgl.2022.117942
[39] Chételat J, Nielsen S G, Auro M, et al. Vanadium stable isotopes in Biota of Terrestrial and aquatic food chains[J]. Environmental Science and Technology, 2021, 55(8): 4813−4821. doi: 10.1021/acs.est.0c07509
[40] Huang Y, Long Z, Zhou D, et al. Fingerprinting vanadium in soils based on speciation characteristics and isotope compositions[J]. Science of the Total Environment, 2021, 791: 148240. doi: 10.1016/j.scitotenv.2021.148240
[41] An Y J, Li X, Zhang Z F. Barium isotopic compositions in thirty-four geological reference materials analysed by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2019, 44(1): 183−199. doi: 10.1111/ggr.12299
[42] Wu F, Owens J D, Scholz F, et al. Sedimentary vanadium isotope signatures in low oxygen marine conditions[J]. Geochimica et Cosmochimica Acta, 2020, 284: 134−155. doi: 10.1016/j.gca.2020.06.013
[43] 杨林, 石震, 于慧敏, 等. 多接收电感耦合等离子体质谱法测定岩石和土壤等国家标准物质的硅同位素组成[J]. 岩矿测试, 2023, 42(1): 136−145. doi: 10.15898/j.cnki.11-2131/td.202112060195 Yang L, Shi Z, Yu H M, et al. Determination of silicon isotopic compositions of rock and soil reference materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(1): 136−145. doi: 10.15898/j.cnki.11-2131/td.202112060195
[44] Zeng Z, Wu F. Rapid determination of V isotopes with MC-ICP-MS: New developments in sample purification[J]. Journal of Analytical Atomic Spectrometry, 2024, 39(1): 121−130. doi: 10.1039/d3ja00285
-
期刊类型引用(1)
1. 孟欣,袁珍,杨琛皓. 某区块砂岩储层沉积相及储层物性研究. 石化技术. 2025(03): 263-265 . 百度学术
其他类型引用(0)