• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

土壤中典型矿物对锑的吸附-沉积行为研究

郭贵宾, 袁晓雅, 黄理金, 帅琴, 胡圣虹, 欧阳磊

郭贵宾,袁晓雅,黄理金,等. 土壤中典型矿物对锑的吸附-沉积行为研究[J]. 岩矿测试,2025,44(1):127−139. DOI: 10.15898/j.ykcs.202404210093
引用本文: 郭贵宾,袁晓雅,黄理金,等. 土壤中典型矿物对锑的吸附-沉积行为研究[J]. 岩矿测试,2025,44(1):127−139. DOI: 10.15898/j.ykcs.202404210093
GUO Guibin,YUAN Xiaoya,HUANG Lijin,et al. Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil[J]. Rock and Mineral Analysis,2025,44(1):127−139. DOI: 10.15898/j.ykcs.202404210093
Citation: GUO Guibin,YUAN Xiaoya,HUANG Lijin,et al. Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil[J]. Rock and Mineral Analysis,2025,44(1):127−139. DOI: 10.15898/j.ykcs.202404210093

土壤中典型矿物对锑的吸附-沉积行为研究

基金项目: 国家自然科学基金项目(22106147);湖北省自然科学基金项目(2024AFD399)
详细信息
    作者简介:

    郭贵宾,硕士研究生,主要从事锑环境化学行为研究。E-mail:3035887493@cug.edu.cn

    通讯作者:

    欧阳磊,博士,副教授,主要从事分析地球化学研究。E-mail:ouyanglei@cug.edu.cn

  • 中图分类号: X131.3

Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil

  • 摘要:

    矿物开采、煤炭燃烧等人类活动使大量的锑进入土壤,造成严重的锑污染,危害人类健康。厘清环境中锑的吸附-沉积行为对锑的环境归趋预测及污染防治具有重要意义,但土壤中典型矿物对锑的吸附沉积行为缺乏系统比较,界面吸附形态也难以表征。为了系统地比较土壤中典型矿物对锑的吸附能力差异,本文选用土壤中常见的5种金属氧化物(赤铁矿、针铁矿、水铁矿、氧化铝、斜方锰矿)和1种黏土矿物(高岭石),探究Sb(Ⅲ)和Sb(Ⅴ)在其表面的吸附热、动力学行为,并基于原位拉曼光谱表征分析了锑的吸附形态,推测其吸附机理。结果表明:铁锰氧化物对锑的吸附容量较大,而氧化铝、高岭石对锑吸附容量较小,6种典型矿物对Sb(Ⅲ)和Sb(Ⅴ)吸附容量(mg/g)分别为水铁矿(101.4、55.9)>斜方锰矿(16.52、7.58)>针铁矿(13.30、5.67)>赤铁矿(5.13、3.70)>氧化铝(1.66、1.69)>高岭石(0.27、0.51);受锑存在形态及矿物表面电位的影响,酸性条件下有利于Sb(Ⅴ)的吸附,吸附量较之碱性环境有24%~78%增加,而Sb(Ⅲ)的吸附受pH值影响较小(变化范围0.3%~14%);土壤中典型矿物对不同浓度的Sb(Ⅴ)主要为吸附作用,而Sb(Ⅲ)在较高浓度时,可能在矿物表面发生沉积,形成Sb2O3。本文通过采用拉曼光谱,基于锑的特征谱峰,可方便地对矿物表面吸附态和沉积态的锑进行原位表征。

     

    要点

    (1)获得典型铁锰氧化物和高岭土在中性条件下对Sb(Ⅲ)和Sb(Ⅴ)的吸附容量、吸附动力学等参数,并考察了pH等条件对吸附容量的影响。

    (2)采用拉曼光谱对吸附态和沉积态Sb(Ⅲ)和Sb(Ⅴ)进行了原位表征,获得Sb(Ⅲ)高浓度下沉积产生的Sb2O3的特征拉曼光谱信号。

    (3)基于吸附实验数据及相关表征分析了Sb(Ⅲ)和Sb(Ⅴ)的吸附机制,表明锑在本研究的矿物表面主要发生化学吸附,高浓度Sb(Ⅲ)在矿物表面可能发生沉积。

    HIGHLIGHTS

    (1) Parameters such as the adsorption capacity and adsorption kinetics of Sb(Ⅲ) and Sb(Ⅴ) by typical iron-manganese oxides and kaolinite under neutral conditions were obtained, and the effects of pH and other conditions on the adsorption capacity were investigated.

    (2) The in situ characterization of adsorbed and deposited Sb(Ⅲ) and Sb(Ⅴ) was conducted using Raman spectroscopy, and the characteristic Raman spectral signals of Sb2O3 formed by deposition at high concentrations of Sb(Ⅲ) were obtained.

    (3) Based on the adsorption experimental data and related characterizations, the adsorption mechanisms of Sb(Ⅲ) and Sb(Ⅴ) were analyzed. The results showed that chemical adsorption was the primary mechanism for antimony on the surface of the studied minerals, and deposition of high concentrations of Sb(Ⅲ) on the mineral surface was also possible.

  • 近年来,随着有色金属开采、冶炼和电镀等重点行业的快速发展,汞、镉、砷、铅和铬等重金属污染物以多种途径进入地下水环境中1-3。据《2022中国生态环境状况公报》,全国1890个国家地下水环境质量考核点位显示:Ⅴ类水质点位占22.4%,部分点位重(类)金属超标。在场地调查案例中,也发现大量污染地下水中的重金属浓度远远高于《地下水质量标准》(GB/T 14848—2017)中Ⅴ类水质阈值:汞>0.002mg/L,砷>0.05mg/L,镉>0.01mg/L,铅>0.1mg/L,铬(Ⅵ)>0.1mg/L。例如,Xu等4研究表明广西贺州某场地砷浓度高达106.24mg/L。此外,钟林健等5研究表明湖南某铅锌矿区的复合金属污染物中的镉污染超出《地下水质量标准》(GB/T 14848—2017)Ⅴ类标准值的65.2~222.4倍。这些进入地下水中的重金属,不仅不可降解,造成了地下水持续污染,而且长期滞留在地下水中的重金属可通过食物链的富集和放大作用最后进入人体,威胁人类健康。Lei等6对中国58个铅锌冶炼场地进行了分析,认为34.2%和7.7%的土壤点位可能对儿童造成不良健康影响和较高的慢性病风险。因此,建立有效的重金属检测方法对于场地地下水重金属污染识别、模拟和污染评估至关重要,也是进行场地风险管控与处置的关键技术与手段,在地下水污染风险预测预警、应急管理与处置和环境污染修复等领域有广泛的应用需求。

    目前国内外普遍采用“取样—运输—实验室检测”的异位检测方法对地下水重金属进行检测,主要方法包括原子吸收/发射光谱法、原子荧光光谱法和电感耦合等离子体质谱等实验室检测方法7。尽管这些方法拥有精密度高、选择性好、检出限低等优势,但这些方法通常需要复杂的前处理步骤,如消解、萃取、浓缩富集或抑制干扰,而且检测所需的大型仪器本身耗资昂贵,运行成本高,且需要足够的工作空间以及操作经验丰富的技术人员。除了传统的实验室检测,采用“取样—前处理—检测”的现场检测方法也有部分报道,如便携式阳极溶出伏安法和比色法等,这些方法虽然能实现现场检测,但阳极溶出伏安法需要清洗电极等步骤,流程较为繁复,而比色法的检测限较高8-9。部分使用“取样—前处理—检测”在线阳极溶出伏安法设备,保证了相对实时和一定的多通道检测,但针对地下水重金属检测时也存在维护成本高、不便携和无法原位检测等问题。因此,考虑到污染场地检测样品多且时效性较强,而传统的实验室方法周期长且成本高,专门针对典型重金属的现场检测更是新技术新装备研发的方向和必然。近年来激光技术取得突破性进展,这为水体中重金属超痕量检测提供了可能。目前,备受关注的激光检测技术主要包括激光诱导击穿荧光光谱法(LIB)和激光诱导荧光光谱法(Laser-induced fluorescence,LIF)10-12。其中,LIB技术通过激发样品获得其等离子体光谱来分析元素种类、浓度等信息,但短脉冲激光器需要数百伏到上千伏的大体积专用电源,无法实现样品原始形态无损检测,且水下现场检测难度系数大。相比之下,LIF技术仅需恒流驱动的百毫瓦级小封装激光二极管或发光二极管即可激发重金属络合物以获得其荧光光谱,从而可以无损分析重金属元素浓度尤其是形态等特征,为解决长期以来传统设备无法实现现场重金属低浓度检测这一难题提供了关键保障。

    基于LIF的地下水典型重金属检测方法,利用有机小分子、金属有机骨架材料(MOFs)和量子点(QDs)等典型荧光探针,在目标重金属存在下,通过激光诱导荧光探针产生/猝灭荧光光谱,从而完成对重金属的识别和检测,具有可同时实现对地下水重金属污染特性的甄别和无损获取其价态的技术优势。本文在简述LIF检测重金属原理和LIF原位检测地下水重金属装备基础上,重点从荧光探针合成及其在重金属传感检测方法的构建方面,总结了基于不同荧光探针的LIF现场检测重金属的研究进展。目前可用于重金属检测的荧光探针包括有机荧光探针和纳米荧光探针。这些探针的合成及其对应的传感检测方法的构建表明LIF技术在地下水重金属检测中具有巨大优势。而在针对地下水重金属检测的LIF设备研发方面的成果虽不如荧光传感检测方法丰富,但已研制出部分重金属的传感器和检测装备。此外,本文还讨论了LIF技术检测地下水典型重金属的未来发展趋势,为后续场地地下水典型重金属LIF检测技术的研究提供参考。

    荧光是物质吸收光照或者其他电磁辐射后发出的光。分子荧光是从第一电子激发态的最低振动能级向基态中各能级跃迁而产生的13。因此,分子荧光光谱只取决于该分子第一电子激发态最低振动能级和基态中各能级的能级结构,即分子荧光光谱直接反映分子的结构信息14。利用荧光发射光谱的发射波长和发射强度等参数,可实现对受测体系中的物质进行定性和定量检测。但是,荧光产生的效率通常都比较低,因而荧光信号也很微弱,从而导致检测的灵敏度较低。若照射光越强,被激发到激发态的分子数越多,因而产生的荧光强度越强,测量时灵敏度也就越高。

    以激光作为光源激发物质所产生的荧光称为激光诱导荧光(LIF)。其原理为:让一束激光通过检测区域,调节激光波长,当激光光子的能量(与激光波长相关)等于检测区域某种组分分子的某两个特定能级之间的能量之差时,该分子会吸收光子能量跃迁至高能态15。处于高能态的分子不稳定,在一定时间内它会从高能态返回到基态。在此过程中,分子会通过自发辐射释放能量发光而产生荧光。由于激光的单色性高、光强度大,由LIF测量可比由一般光源诱导荧光所测的灵敏度提高2~10倍。与普通荧光分析方法不同,LIF的激发光源采用激光,灵敏度较高和检测效果好,探测下限可达1.0×106个粒子/cm3,检测浓度最低可达1.0×10−3nmol/L。此外,由于激光参数可以精确控制,其强度大、方向性和单色性好,使得产生荧光信号信噪比高,分辨率高16-17。LIF作为目前灵敏度最高的检测技术之一,在生物、化学、医学等领域已有广泛应用。例如,根据荧光的分布,可以探测粒子的种类;根据荧光的强弱,可得知粒子的浓度以及温度18-19

    LIF技术在重金属离子检测中也有广泛应用。由于众多的重金属离子等无机化合物(或离子)自身内源的荧光效率低,LIF技术很难像X射线荧光光谱仪一样直接针对重金属离子进行检测,而必须辅以各类荧光探针与待测样品中重金属离子进行特异性结合,使得探针的原有荧光信号发生改变,从而间接地指示或检测目标物质20。例如,汪宝堆等21制备了可激活的花菁分子甲基汞荧光探针,该探针在罗丹明中含有单硫螺内酯基团,与甲基汞结合后,探针经历了从无荧光的硫内酯形式到近红外二区荧光开环形式的独特转变,对甲基汞具有良好的选择性和高灵敏度。以下将根据荧光探针种类对典型重金属离子检测进行详细的介绍。

    LIF检测装备主要由激光器、光学组件、样品池、光电探测器和信号处理模块及其相关附属部件组成。激光器是提供激光光源的器件,包括气体激光器、固体激光器、液体激光器、半导体激光器等;光学组件是能实现光路调整、光路转换和过滤杂散光等作用的部件;样品池是放置样品的部件,包括气体密闭池和液体池。窗口与光路上不产生激发光的散射,窗口与池壁不产生荧光,样品池的窗口通常制成布儒斯特角;光电探测器是将光信号转变成电信号,包括光电倍增管、光电二极管和电荷耦合器件(CCD)等。信号处理模块主要用于信号采集、分析、显示和处理,根据信号控制激光、检测光路和光电探测器等模块,实现在线分析、处理和信号优化。

    考虑到在地下水重金属现场检测环境复杂性和检测要求,LIF检测装备需要在光源选型、恒温控制系统设计、检测光路设计以及现场检测面临的降噪增敏和稳定性等方面进行LIF装备的设计和优化。具体需要考虑三个方面:一是地下水监测井井口直径仅为110mm,要求检测装备便携化及检测探头小型化;二是地下水重金属浓度低,要求激光光源激发效率要高,即设备检测下限应与探针材料在实验室设备上测试结果相当或优于实验室设备检测结果;三是考虑到野外多变且复杂的环境,需要设备稳定性好,即重复性要好。考虑上述因素,已有学者研发了针对LIF地下水重金属原位检测装置样机(如图1所示)22,并结合对应的荧光探针,在汞和铬污染的地下水现场检测应用中显示出较好的稳定性和灵敏度23-24

    图  1  LIF地下水重金属原位检测装置(a)外部结构示意图,(b)内部结构示意图,(c)光路图以及(d)修饰有选择性敏感材料的敏感膜结构示意图22
    1—防水腔体,101—通光窗口,102—光纤与信号线防水接口;2—光学系统,201—激光二极管,202—激发光准直聚焦镜组,203—激发光光陷阱,204—荧光准直镜,205—滤光片,206—荧光聚焦镜,207—光纤;3—重金属膜,301—拦截膜,302—响应膜;4—信号处理与控制单元,401—光电探测器,402—控制中心,403—光源驱动模块。
    Figure  1.  Schematic diagram of (a) the external structure, (b) the internal structure, (c) optical path, and (d) membrane structure modified with selective and sensitive materials of LIF device for on-site detection of heavy metal in groundwater 22

    由于重金属离子自身内源的荧光效率低,很难直接通过LIF检测重金属离子。为了区分不同样品或者同一种样品的不同重金属,就必须以各类荧光探针与待测样品中重金属离子进行特异性结合,使得探针的原有荧光信号发生改变,从而间接地指示或检测出目标重金属。如表1所示,根据荧光材料的不同,LIF检测重金属可分为两大类:有机分子荧光探针和纳米荧光探针。虽然荧光技术检测水体中重金属离子具有信号响应快、信号处理简便和设备易于小型化等优势,但普遍存在信号易受其他离子干扰的问题。因此,检测过程中还要辅以特异性识别材料,如适配体和分子印迹材料等,以增加检测方法的特异性和抗干扰性。

    表  1  荧光探针检测重金属离子(有机荧光探针和纳米荧光探针)
    Table  1.  Fluorescent probes (organic and nanomaterial fluorescent probes) for the detection of heavy metals
    荧光探针
    材料类型
    荧光探针 识别元件 靶标 检出限 线性范围 样品 优点 缺点 参考
    文献
    有机
    荧光探针
    材料
    罗丹明衍生物 螺旋内酰胺 Pb2+ 0.56μg/L 0.21~210μg/L 海产品 可视化,检测范围宽 合成复杂 25
    喹啉类 羰基 Cd2+ 132μg/L / 活细胞 荧光稳定 低灵敏度 26
    香豆素类 硫代碳酸盐 Hg2+ 1678.3μg/L / 河水 高特异性 低灵敏度 27
    适配体基 三螺旋核酸分子 As(Ⅲ) 5ng/L 10ng/L~10mg/L 湖水 高特异性,高灵敏度和
    检测范围宽
    修饰复杂 28
    Pb2+适配体 Pb2+ 12.22μg/L 20.7~518.0μg/L 茶叶 高特异性,合成简单 成本较高 29
    AIE分子 萘酰亚胺 Hg2+ 4.35μg/L 20.7~103.6μg/L 湖水 重复性好,特异性强 线性范围窄 30
    偶氮四唑 Hg2+ 0.394μg/L 79.665μg/L~2.072mg/L 地下水 荧光稳定,特异性强 抗干扰能力弱 31
    改性壳聚糖 氨基、羟基 Hg2+/Hg+ 126.4/97.4μg/L / / 有机可溶,抗干扰能力和
    高重复性好
    合成复杂,成本高 32
    纳米
    荧光探针
    材料
    碳量子点 羟基、羧基 Cr6+ 3.7mg/L 5~200mg/L 井水和湖水 环境友好 低灵敏度,线性范围窄 33
    Cu@AuNCs 胸腺嘧啶 Hg2+ 1.385μg/L 140.8~1971.3μg/L 水产品 特异性强,稳定性好 / 34
    AuNCs 胸腺嘧啶 Hg2+ 0.59μg/L 2.8~84.486μg/L 河水和湖水 高灵敏度,高选择性 线性范围窄 35
    UCNPs-AuNCs UCNPs Pb2+ 0.216μg/L 0~2.63μg/L 污水 高选择性(可检测复合
    金属离子中的Pb2+)
    / 36
    AuNCs 适配体 Pb2+ 14.99ng/L 26.3~52595.8 ng/L 自来水 高灵敏度 检测时间长 37
    N-GQDs 羟基 Fe3+ 72.99μg/L 0~81102μg/L 水溶液 量子产率高,检测时间短 灵敏度低 38
    CQDs-AgNPs AgNPs Hg2+ 0.02816μg/L 0.14081~140.810μg/L 湖水和废水 量子产率高,重复性好 / 39
    ZnSe QDs 四乙氧基硅烷 Pb2+ 0.335μg/L 1~60μg/L 海水和湖水 重复性好,多通道检测 合成复杂 40
    N-CQDs 羟基、羧基 Pb2+ 0.507μg/L 0~10.52μg/L 自来水和池塘水 高灵敏度,抗干扰能力强 / 41
    ZIF-8 适配体 Cd2+ 0.018ng/L 0.02364~28.37ng/L 自来水 超高灵敏度 / 42
    2D-MOF 适配体 Pb2+ 0.174μg/L 0.263~52.6μg/L 自来水 高选择性,检测时间短 / 43
    ZnMOF-74 酚羟基 Fe3+ 2.22μg/L 5.55~5554.34μg/L 河水 高选择性 灵敏度低 44
    Eu3+@UIO-66 2,6-二羧基吡啶 Hg2+ 2.326μg/L 2.816~70.4μg/L 水溶液 稳定性好,特异性强 / 45
    下载: 导出CSV 
    | 显示表格

    有机分子荧光探针由于具有种类众多、结构可调、荧光量子效率高和光谱可调节等优点,被广泛应用在环境监测和生物成像等领域。图2表1介绍了常见的有机荧光探针及其在重金属检测中的应用。通常,有机荧光探针主要包括三个部分46:①识别基团,通常也被称为受体,它能够高选择性和特异性地与检测靶标结合,产生不同的光电性质,是荧光探针的最重要的部分,也是决定检测效果的主要因素;②荧光基团,作为该体系中最基本的结构,是产生荧光信号的源头,主要作用是当识别基团与分析物结合后,由于其特异性,产生不同的光信号,表达出不同的性质,从中可以看出探针的灵敏度;③连接基团,将识别基团和荧光团有效地连接起来,作为识别枢纽,促进识别信息转化为输出信号。这三个部分协同作用,以此来实现探针分子的整体性能。由于有机荧光探针对环境中重金属离子的检测具有高选择性、高灵敏性和良好的稳定性等优势,其已成为常用的重金属离子检测方法之一。

    图  2  典型重金属检测有机荧光分子探针(据Pang等27、Wu等29、Su等30、He等32修改)
    Figure  2.  Organic fluorescent probes for the detection of heavy metals (Revised from Pang et al27, Wu et al29, Su et al30, He et al32)

    常见的有机小分子荧光探针有罗丹明类、荧光素类、卟琳类、香豆素类、BODIPY类、花菁素类以及相应衍生物类等。这类有机荧光探针往往利用荧光基团结合本身特异性基团或具有特异性基团修饰的分子进行重金属离子的荧光定量检测。罗丹明衍生物特有的“turn-on”特征更有利于增强型探针的开发。例如Wan等25基于罗丹明衍生物设计合成了荧光探针,该探针可以通过螺旋内酰受体与无环杂蒽荧光团的结合诱导开环对Pb2+识别,Pb2+浓度在1.0×10−8~1.0×10−5mol/L范围内时,荧光强度与其呈线性关系,溶液由浅黄色变为粉红色,检出限为2.7×10−9mol/L。由于Cd2+与羰基间具有高配位亲和力,Dai等26合成了一类以富含羰基的N,N-(2-吡啶基)(2-吡啶甲基)胺(受体)和2-(羟甲基)喹啉-8-醇(荧光团)结合的一类Cd2+的有机荧光探针,该探针可于检测水体以及活细胞内的Cd2+。Pang等27以香豆素为荧光团和硫代碳酸盐为受体设计合成了一种水溶性荧光探针,对Hg2+离子具有高选择性和高灵敏性,Hg2+与探针中的硫原子结合而脱硫,使探针中保护羟基的基团被移除,导致在450nm处的荧光强度显著增大,在365nm的紫外灯照射下产生蓝色荧光。通常,特异性有机小分子荧光探针利用羧基、氨基、醛基和巯基等有机基团的配位、螯合以及化学反应实现与重金属离子特异性识别,但有机官能团能够识别多种离子会导致这类有机荧光探针抗干扰能力较差,从而影响这类荧光探针在实际应用中定量检测的准确性。

    适配体是通过指数富集的配体系统进化(SELEX)技术,从人工合成的寡核苷酸文库中筛选获得的能够与靶分子特异结合的一类短单链核酸分子47-48。采用适配体作为识别元件对无特异性有机荧光分子进行修饰可得到高特异性的荧光探针。例如Pan等28设计了一个利用Exo Ⅲ辅助级联靶标循环扩增策略实现了As(Ⅲ)监测的无标记荧光传感器。THMS发夹作为As(Ⅲ)适配体和2-氨基-5,6,7-三甲基-1,8-萘啶(ATMND)为荧光基团,该方法具有较高的选择性检测As(Ⅲ);不同于常规荧光传感器,DNA三螺旋分子开关基于适配体与目标分子结合后构象发生变化,以此制备的传感器在灵敏度和特异性方面都有很大的提升。此外,Wu等29开发了具有双荧光信号分子的Pb2+适配体荧光探针,适配体与K+形成结合4,6-二脒基-2-苯基吲哚(DAPI)与N-甲基卟啉IX(NMM),此时在波长450nm与610nm处均有强荧光,在Pb2+与适配体结合后,NMM荧光基团离去,610nm处荧光强度会降低,该方法能提供两种荧光基团的内置校正,提高精确度。

    基于聚集诱导发光(AIE)机制的有机分子也应用于重金属离子的检测中49。例如,Su等30设计合成了一种具有扭曲分子内电荷转移(TICT)、聚集诱导发光增强(AIEE)机制的水溶性萘酰亚胺荧光探针,用于检测Hg2+,该探针通过氯取代萘酰亚胺与二乙醇胺进行亲核取代得到。探针在水溶液中只有微弱的荧光,这是由于二乙醇胺取代基具有TICT效应,导致探针所获得的能量通过旋转释放;当加入Hg2+后,Hg2+与探针以1∶2分子量形成聚集体,产生AIE效应从而可以观察到明显的荧光。此外,Wu等31利用四唑-Hg2+配位聚合物的协调触发过程,报道了一个AIE荧光Hg2+传感体系,该体系利用所开发的TPE-4TA探针可以在nmol/L浓度下感知Hg2+直接水中检测,且不存在荧光自猝灭问题。该荧光传感体系对大多数其他金属离子具有选择性,且在pH为4~7.5的水环境中具有良好的稳定性,在环境样本中分析具有显著的优势。

    有机大分子荧光探针是一类具有大量识别基团的荧光分子,相较于识别基团较单一的小分子荧光探针,这类探针具有高灵敏度。常见的有机大分子荧光探针包括荧光高聚物和荧光树脂等。例如,改性壳聚糖具有优异的有机溶剂溶解度和灵敏的检测性能,He等32以甲基丙烯酸酯和烯丙基作为功能单体,通过RAFT聚合引入壳聚糖主链,并通过烯丙基荧光单体参与反应,使得修饰的壳聚糖具有荧光功能,可作为荧光探针检测汞离子。

    近年来纳米材料的快速发展为荧光探针领域提供了新的发展途径50。因此,除了有机小分子荧光探针,针对重金属离子的纳米荧光探针也有诸多报道,如金纳米团簇、量子点(QDs)和金属有机框架(MOFs)等(图3)。

    图  3  典型重金属检测纳米荧光探针(据Lei等51、Ren等52、Ghosh等53、Guo等54、Wu等55修改)
    Figure  3.  Nano-fluorescent probes for the detection of heavy metals (Revised from Lei et al51, Ren et al52, Ghosh et al53, Guo et al54, Wu et al55)

    金纳米团簇(AuNCs)通常由几十个金原子组成,其核心尺寸不超过10nm,是一种新型发光纳米材料。由于其具有大比表面积、较大的斯托克斯位移、良好的生物相容性和环境友好性,被广泛应用于环境监测等领域56。例如,Lei等51开发了一种由纤维素纳米晶体和AuNCs组成的荧光纳米纤维素水凝胶(NH),用于高效捕获和检测Hg2+。Hg2+不仅通过静电作用吸附在水凝胶表面,而且由于NH的三维多孔结构很容易进入水凝胶。富集的Hg2+通过亲金属相互作用淬灭AuNCs的荧光,从而实现极其灵敏的荧光检测。为了进一步增强AuNCs的光学特性,通常会将AuNCs与功能材料结合,以显著改善AuNCs的性能57。例如,为了实现比率荧光检测,Yan等58将发蓝光的碳点作为参考信号,发红光的AuNCs作为响应信号,利用Hg2+-Au+的高亲和性相互作用来猝灭AuNCs荧光,从而实现对Hg2+的检测,检出限低至28nmol/L。

    量子点(QDs)是一种零维纳米晶体,它一般由Ⅱ、Ⅵ、Ⅲ、Ⅴ或Ⅳ族元素组成,尺寸在1~10nm范围59。由于量子约束效应,连续的半导体能带结构会变成离散的能级结构。激发产生的电子和空穴可以发射荧光,发射波长可以通过改变QDs的尺寸和形态来调节60。与有机染料和荧光蛋白等其他荧光团相比,QDs具有高亮度、高光稳定性、大斯托克斯偏移、宽吸收光谱、大摩尔消光系数、高量子产率、长荧光时间、抗光漂白、与尺寸有关的光电特性、宽吸收光谱和可调发射光谱等特点61。由于其荧光特性和光稳定性,QDs为重金属传感提供了更广阔的应用空间。例如Zhang等62报道了一种基于低带隙Ag2S和宽带隙ZnS量子点的可见光驱动电化学传感器。在可见光照射下,Hg2+会在ZnS表面引发Zn与Hg的替换,导致HgS/ZnS@Ag2S异质结构的形成,这会特异性地激活该传感器的光电流响应,从而实现对Hg2+的高灵敏检测。此外,非金属基量子点也被用于重金属传感。例如Yuan等33报道了一种基于量子点的纤维素木材用于Cr(Ⅵ)的检测与吸附,该方法检测Cr(Ⅵ)具有较好的抗干扰能力,在吸附Cr(Ⅵ)后的木材中碳量子点发生荧光淬灭,该方法线性范围为5~200mg/L,检测限为3.7mg/L。Patir等63也报道了石墨氮化碳量子点类型的聚合物纳米材料,通过光致发光淬灭机制来检测Hg2+

    作为迅速发展起来的一种新型材料,金属有机框架(MOFs)以其独特的结构和优异的性质成为荧光传感器的理想材料。MOFs以共轭芳香族有机连接体和金属离子/簇为基础,兼具无机材料和有机材料的优点,包括较高的孔隙率和比表面积、中到高的结构稳定性和化学可调性64-65。此外,MOFs含有许多π和n电子,有利于形成优异的可变荧光信号66。具体地说,荧光MOFs可通过选择具有荧光特性的配体、光活性金属离子和具有荧光功能化的修饰基团来获得。例如,将带有芳香基团或共轭π系统的荧光连接体与光活性金属离子整合到MOFs中,可显著调节MOFs的发光特性,从而有望实现不同的传感应用67

    除此之外,通过修饰荧光官能团和调节桥接配体与金属中心离子之间的电荷转移也能增强MOFs的荧光特性。例如,Wang等68成功制备了一种具有AIE的锌卟啉基MOFs(Zn-TCPP-MOFs),用于灵敏检测水溶液中的Pb2+。该实验中,无需任何设备即可观察到具有鲜红色的Zn-TCPP-MOFs在与Pb2+混合后转变为无色。同时,当Pb2+含量较低时,荧光淬灭效率与浓度之间仍呈现出出色的线性关系,其检测限为49.9nmol/L。Samanta等69制备了一种丁炔修饰的荧光MOFs探针(UiO-66@butyne),它在水中具有很高的稳定性,可通过Hg2+与炔基的羟汞化反应来特异性识别和检测Hg2+,检测限低至10.9nmol/L,反应时间短至3min。

    综上,目前用于重金属离子检测的荧光探针主要包括有机荧光材料和纳米荧光材料,这些荧光材料在针对汞、镉、砷、铅和铬等典型重金属离子检测中均有应用,且在实验室条件下表现出良好的检测灵敏度和特异性。从表1可知,许多荧光探针由于本身携带有羰基、羟基或羧基等基团能在一定程度上特异性识别特定的重金属离子,如香豆素类荧光探针通过硫代碳酸盐识别汞离子。但也有部分荧光探针不具备特异性识别基团,如金纳米团簇,且由于地下水成分复杂以及受环境因子影响较大,需要进一步增强荧光探针的特异性以适应复杂的环境。适配体能与相应的配体进行高亲和力和强特异性的结合,是一种很有潜力的重金属识别元件,用于荧光检测。从表1可知,除了铬以外,砷、汞、铅和镉均有自己的适配体,这在一定程度上弥补了荧光探针特异性不足的问题。在实际样品验证方面,大部分是通过添加标样或者在实验室模拟条件下进行,用于实际样本的验证仍然较少。

    地下水重金属的高灵敏快速检测对地下水污染的有效评价具有重要意义。荧光分析技术是目前研发便携式检测装备的优先选择。但LIF在地下水中典型重金属检测仍然处于起步阶段,现有的此类传感检测设备缺乏足够的灵敏度、选择性、抗干扰性或稳定性,难以满足复杂地下水低浓度重金属的精准检测。因此,针对LIF技术在重金属检测领域应用现状,考虑到地下水典型重金属现场检测实际应用需要,本文作者认为针对污染场地地下水中重金属LIF现场检测技术和设备研发,未来将会聚焦在地下水重金属主控因素识别和抗干扰技术研发、荧光敏感材料合成与LIF检测方法构建、典型重金属传感部件和检测装备集成研制、验证性应用与检测技术标准化等方面。

    地下水环境具有多组分、多界面、多过程和多尺度等复杂的特点,而从复杂地下水中高选择性识别并富集目标离子是精准检测地下水低浓度目标重金属的关键。在构建检测技术之前,应该对重金属在地下水中的地球化学过程及其干扰因子具有清晰的认识。因此,需要深入研究地下水化学组成(阴阳离子、pH、溶解氧、氧化还原电位、有机质等),典型重金属浓度水平,赋存形态,固-液分配规律,同时结合场地的地层和水文地质条件,识别典型重金属在场地尺度上的分布特征,重点识别控制重金属形态分布和迁移转化的水文和环境生物地球化学耦合过程和主控(干扰)因素;然后在此基础上利用分子工程理论设计及开发对目标重金属靶向结合的选择性响应材料,同时针对干扰因子开发选择性屏蔽材料或抗干扰技术,实现重金属选择性响应与材料的有机集成,最后结合仪器或环境补偿技术,建立重金属LIF精准检测抗干扰技术。

    虽然目前已经报道了大量的荧光敏感材料,但由于某些污染场地的地下水中典型重金属污染物存在浓度偏低,且部分金属离子存在形式复杂的特殊性,使得这些已报道的敏感材料仍难以适应实际检测的需求。因此,未来需要考虑以污染场地地下水中低浓度、复杂形态重金属离子的检测为目标,从原子和分子尺度出发精准合成具有荧光响应信号的高灵敏度和高选择性敏感材料,构建对典型重金属离子具有荧光响应信号敏感材料的精准合成方法体系;优选出荧光效率高、稳定性好和特异性强的新型荧光敏感材料,并对其检测性能(稳定性、信号重现性、对金属离子响应的pH范围、响应时间、灵敏度、选择性和抗干扰能力)进行实验室和现场原位评价,进而建立针对污染场地地下水特定场景中识别重金属离子的检测技术和方法,以实现对地下水中重金属离子低浓度检测的目标。此外,为了能集成到地下水LIF检测装置上,荧光探针的适配性或相容性也是未来考虑的一个重要方向。目前这方面仅有一些零星的报道,例如,由于金属有机框架荧光材料粉末难以直接搭载到LIF装置上,汪宝堆等70以混合纤维素过滤膜(MCE)为基底,以金属有机框架材料(MOR-2)和羧甲基纤维素钠(CMC-Na)为活性膜,制备了CMC-MOR薄膜用于地下水中的Cr(Ⅵ)离子检测,最低检测浓度可低至3.08ng/g,这为荧光敏感材料能后续搭载到地下水LIF检测设备中提供了重要支撑。

    为了助推基于LIF技术的重金属检测方法及仪器装备在野外现场的实用化、便携化和市场化,地下水重金属现场原位检测将与材料有机结合,逐渐向高度集成化和智能化的方向发展。检测设备的小型化和集成化能够有效地降低干扰噪声,通过材料的选择和敏感性将宽谱测量转变为窄谱或单一谱测量,增强了检测设备的再生与富集效率,大幅降低检测噪声,有效地降低痕量重金属的检出限,提高现场检测的准确性、稳定性和重现性。未来将会利用研发的选择性响应和新型敏感材料为元件,研究适合复杂地下水环境中典型重金属的LIFs响应信号自适应降噪滤波与高效提取技术,设计原位传感光路、化学修饰和集成的一体化工艺结构,开发水下原位测量重金属的精准响应LIF检测设备。设计多通道并行传感信号处理与分析系统,高度嵌入集成各功能模块单元,实现设备小型化和便携化;并在数据处理方面优化解谱和学习方法,建立典型重金属总量及形态化学计量学检测模型;构建物联网云平台,形成场地采集—传输—管理于一体的原位检测装备与体系。

    目前,关于地下水重金属检测技术和标准的研究均较少。虽然光谱技术在地下水典型重金属(如As和Cr)检测方面有零星报道71-72,但已有的研究主要停留在实验室阶段,仍存在抗干扰不足和稳定性差等诸多问题,与实际场地地下水检测问需求尚有较大的距离。与地表水不同,地下水处于缺氧环境,且分布于多孔介质中,其化学成分具有高度的时空非均质性。目前零星报道的地下水重金属检测技术仍然为异位检测(取样—分析),对变价金属的测量误差较大。因此,未来针对LIF检测技术的开发,需要考虑地下水重金属元素地球化学行为及环境因子对检测技术的影响机理,选择各个地区典型行业、典型示范场地开展验证性应用,在不断验证性应用中进行反馈与优化;同时,综合运用示范场地详尽的验证分析数据和国家环境监测网的复杂地下水环境数据,通过先进手段,如机器学习,开发自适应环境因子补偿和校正技术,建立标准化LIF检测技术体系,最终实现检测技术标准化。

    迄今为止,激光诱导荧光技术应用于地下水重金属原位检测的研究主要集中在针对汞、镉、砷、铅和铬等典型重金属的有机荧光探针和纳米荧光探针的合成及其对应的传感检测方法构建,这些方法的成功构建表明LIF技术在地下水重金属现场检测中具有巨大的优势。而在针对地下水重金属检测的LIF装备研发方面,其成果虽不如荧光传感检测方法丰富,但部分典型的重金属已经研制出相应的传感器和检测装备,表现出良好的应用前景。

    虽然众多荧光探针已经开始应用到重金属检测中,但LIF应用于地下水中典型重金属检测仍然处于起步阶段,现有的荧光探针大多在实验室环境下进行了初步探究,尚未大规模应用到实际地下水检测中,研发的LIF检测设备也还缺乏足够的抗干扰性或稳定性,难以满足不同场景下复杂地下水的检测。因此,未来针对污染场地地下水中重金属LIF现场检测技术和设备研发,需要聚焦在以下四个方面:地下水重金属主控因素识别和抗干扰技术研发;荧光敏感材料合成与LIF检测方法构建;典型重金属传感部件和检测装备集成研制;验证性应用与检测技术标准化。这些工作的开展,一方面可实现高灵敏、现场或原位检测地下水中痕量重金属离子的浓度、分布及形态;另一方面为地下水中重金属离子检测准备真正实现微型化和集成化提供一定的实验基础、理论依据、核心材料和技术支撑,使得场地地下水典型重金属LIF现场原位检测装备真正从实验室走向应用一线,服务于地下水重金属污染监测预警、风险评估和治理修复工作。

  • 图  1   六种矿物材料的X射线衍射谱图

    a—赤铁矿;b—针铁矿;c—斜方锰矿;d—氧化铝;e—高岭石;f—水铁矿。

    Figure  1.   The XRD patterns of the six minerals

    图  2   六种矿物材料的氮气吸附-脱附等温线

    a—赤铁矿;b—针铁矿;c—斜方锰矿;d—氧化铝;e—高岭石;f—水铁矿。

    Figure  2.   The N2 adsorption-desorption isotherms of the six minerals

    图  3   六种矿物材料吸附(a) Sb(Ⅲ)和(b) Sb(Ⅴ)的吸附动力学

    Figure  3.   The adsorption kinetics of (a) Sb(Ⅲ) and (b) Sb(Ⅴ) on the six minerals

    图  4   六种矿物材料吸附(a) Sb(Ⅲ)和(b) Sb(Ⅴ)的吸附等温线

    Figure  4.   Adsorption isotherms of (a) Sb(Ⅲ) and (b) Sb(Ⅴ) on the six minerals

    图  5   pH值对(a)Sb(Ⅲ)、(b)Sb(Ⅴ)吸附的影响和(c)六种矿物的Zeta电位

    Figure  5.   Effect of pH on the adsorption of (a) Sb(Ⅲ), (b) Sb(Ⅴ) on the minerals and (c) the Zeta potential of the six minerals

    图  6   高浓度(a) Sb(Ⅲ)和(b) Sb(Ⅴ)在6种矿物上的吸附等温线

    Figure  6.   Adsorption isotherms of high concentrations of (a) Sb(Ⅲ) and (b) Sb(Ⅴ) on the six minerals

    图  7   六种矿物材料吸附Sb(Ⅴ)前后的拉曼光谱谱图

    a—赤铁矿;b—针铁矿;c—斜方锰矿;d—氧化铝;e—高岭石;f—水铁矿。

    Figure  7.   Raman spectra of the six minerals before and after Sb(Ⅴ) adsorption

    图  8   六种矿物材料吸附Sb(Ⅲ)前后的拉曼光谱谱图

    a—赤铁矿;b—针铁矿;c—斜方锰矿;d—氧化铝;e—高岭石;f—水铁矿。

    Figure  8.   Raman spectra of the six minerals before and after Sb(Ⅲ) adsorption

    表  1   Sb(Ⅲ)和Sb(Ⅴ)的吸附动力学拟合参数

    Table  1   Fitting parameters of adsorption kinetics for Sb(Ⅲ) and Sb(Ⅴ)

    矿物材料 Sb(Ⅲ)准一级动力学 Sb(Ⅲ)准二级动力学 Sb(Ⅴ)准一级动力学 Sb(Ⅴ)准二级动力学
    K1
    (h−1)
    qe
    (mg/g)
    R2 K2
    [g/(mg·h)]
    qe
    (mg/g)
    R2 K1
    (h−1)
    qe
    (mg/g)
    R2 K2
    [g/(mg·h)]
    qe
    (mg/g)
    R2
    赤铁矿 2.58 7.35 0.750 0.88 7.45 0.911 1.15 1.05 0.721 1.52 1.13 0.913
    针铁矿 0.53 7.83 0.896 0.12 8.22 0.986 1.75 2.74 0.721 1.05 2.86 0.924
    水铁矿 4.74 33.7 0.645 0.40 34.4 0.957 3.33 24.1 0.946 0.33 24.8 0.999
    斜方锰矿 82.1 7.03 0.716 41.9 7.22 0.940 0.75 4.90 0.832 0.20 5.30 0.921
    氧化铝 6.58 0.71 0.958 15.5 0.73 0.976 4.49 0.59 0.631 16.1 0.61 0.933
    高岭石 6.45 0.08 0.927 132.8 0.08 0.973 0.34 0.09 0.894 9.17 0.06 0.939
    下载: 导出CSV

    表  2   Sb(Ⅲ)和Sb(Ⅴ)的吸附等温线拟合参数

    Table  2   Fitting parameters of adsorption isotherms of Sb(Ⅲ) and Sb(Ⅴ)

    材料 Sb(Ⅲ)-Langmuir Sb(Ⅲ)-Freundlich Sb(Ⅴ)-Langmuir Sb(Ⅴ)-Freundlich
    KL
    (L/mg)
    qm
    (mg/g)
    R2 n KF
    [(mg/g)(mg/L)−1/n]
    R2 KL
    (L/mg)
    qm
    (mg/g)
    R2 n KF
    [(mg/g)(mg/L)−1/n]
    R2
    赤铁矿 0.48 5.13 0.961 2.90 1.90 0.996 0.11 3.70 0.925 2.43 0.70 0.997
    针铁矿 0.21 13.30 0.834 2.22 3.05 0.997 0.14 5.67 0.987 2.79 1.30 0.994
    水铁矿 1.01 101.4 0.980 2.09 45.3 0.979 1.00 55.9 0.789 4.62 31.7 0.987
    斜方锰矿 0.15 16.52 0.964 2.19 3.19 0.993 0.76 7.58 0.950 4.62 3.56 0.995
    氧化铝 0.08 1.66 0.961 1.84 0.20 0.993 0.10 1.69 0.871 2.75 0.36 0.983
    高岭石 0.21 0.27 0.967 2.96 0.08 0.957 0.12 0.51 0.990 2.27 0.09 0.921
    下载: 导出CSV

    表  3   Sb(Ⅲ)或Sb(Ⅴ)氧化物和相关矿物的拉曼光谱特征峰位及归属

    Table  3   The characteristic Raman peaks of Sb(Ⅲ) or Sb(Ⅴ) oxides and the minerals and their assignment

    材料 特征峰
    (cm−1)
    归属 材料 特征峰
    (cm−1)
    归属
    Sb2O338-39 190 F2g振动 针铁矿40-41 224 Fe—O拉伸振动
    374 F2g振动 405 Fe—OH 拉伸振动
    452 Ag振动 666 Fe—O拉伸振动
    Sb2O542-43 495 Sb-O伸缩振动 斜方锰矿44-45 575 Mn—O拉伸振动
    635 Sb-O伸缩振动 645 Mn—O对称伸缩振动
    赤铁矿46-47 227 A1g振动 高岭石48-49 189 A1g(ν1)AlO6振动
    293 Eg振动 409 ν2(e)SiO4振动
    413 Eg振动 460 ν2(e)SiO4振动
    499 Eg振动 640 Si-O-Al伸缩振动
    614 Eg振动 717 Si-O-Al伸缩振动
    氧化铝50-51 378 Eg振动 787 OH伸缩振动
    417 A1g振动
    下载: 导出CSV
  • [1]

    Babushok V I, Deglmann P, Krämer R, et al. Influence of antimony-halogen additives on flame propagation[J]. Combustion Science and Technology, 2017, 189(2): 290−311. doi: 10.1080/00102202.2016.1208187

    [2]

    Nishad P A, Bhaskarapillai A. Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies[J]. Chemosphere, 2021, 277: 130252. doi: 10.1016/j.chemosphere.2021.130252

    [3]

    Jia X, Ma L, Liu J, et al. Reduction of antimony mobility from Sb-rich smelting slag by Shewanella oneidensis: Integrated biosorption and precipitation[J]. Journal of Hazardous Materials, 2022, 426: 127385. doi: 10.1016/j.jhazmat.2021.127385

    [4]

    Li J, Zheng B H, He Y, et al. Antimony contamination, consequences and removal techniques: A review[J]. Ecotoxicology and Environmental Safety, 2018, 156: 125−134. doi: 10.1016/j.ecoenv.2018.03.024

    [5]

    Filella M, Belzile N, Chen Y W. Antimony in the environment: A review focused on natural waters: Ⅰ. Occurrence[J]. Earth-Science Reviews, 2002, 57(1−2): 125−176. doi: 10.1016/S0012-8252(01)00070-8

    [6]

    He M, Wang X, Wu F, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, 421: 41−50.

    [7] 牛斯达, 赵立群, 牛向龙, 等. 应用电子探针技术研究桂西南下雷锰矿床锰钾矿的结构特征[J]. 岩矿测试, 2022, 41(2): 239−250. doi: 10.15898/j.cnki.11-2131/td.202109040115

    Niu S D, Zhao L Q, Niu X L, et al. The application of EPMA in the textural characterization of cryptomelane in the Xialei manganese deposit, Southwest Guangxi[J]. Rock and Mineral Analysis, 2022, 41(2): 239−250. doi: 10.15898/j.cnki.11-2131/td.202109040115

    [8]

    Dupont D, Arnout S, Jones P T, et al. Antimony recovery from end-of-life products and industrial process residues: A critical review[J]. Journal of Sustainable Metallurgy, 2016, 2(1): 79−103. doi: 10.1007/s40831-016-0043-y

    [9]

    Chen L, Ren B, Deng X, et al. Potential toxic heavy metals in village rainwater runoff of antimony mining area, China: Distribution, pollution sources, and risk assessment[J]. Science of the Total Environment, 2024(920): 170702. doi: https://doi.org/10.1016/j.scitotenv.2024.170702

    [10] 孟郁苗, 胡瑞忠, 高剑峰, 等. 锑的地球化学行为以及锑同位素研究进展[J]. 岩矿测试, 2016, 35(4): 339−348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002

    Meng Y M, Hu R Z, Gao J F, et al. Research progress on Sb geochemistry and Sb isotopes[J]. Rock and Mineral Analysis, 2016, 35(4): 339−348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002

    [11]

    Su X, Wang X, Zhou Z, et al. Can antimony contamination in soil undermine the ecological contributions of earthworms?[J]. Science of the Total Environment, 2023, 904: 166305. doi: 10.1016/j.scitotenv.2023.166305

    [12]

    Vidya C S N, Shetty R, Vaculíková M, et al. Antimony toxicity in soils and plants, and mechanisms of its alleviation[J]. Environmental and Experimental Botany, 2022, 202: 104996. doi: 10.1016/j.envexpbot.2022.104996

    [13]

    Herath I, Vithanage M, Bundschuh J. Antimony as a global dilemma: Geochemistry, mobility, fate and transport[J]. Environmental Pollution, 2017, 223: 545−559. doi: 10.1016/j.envpol.2017.01.057

    [14]

    Caplette J N, Wilson S C, Mestrot A. Antimony release and volatilization from organic-rich and iron-rich submerged soils[J]. Journal of Hazardous Materials, 2024, 470: 134230. doi: 10.1016/j.jhazmat.2024.134230

    [15]

    Chen L, Han Y, Li W, et al. Removal of Sb(Ⅴ) from wastewater via siliceous ferrihydrite: Interactions among ferrihydrite, coprecipitated Si, and adsorbed Sb(Ⅴ)[J]. Chemosphere, 2022, 291: 133043. doi: 10.1016/j.chemosphere.2021.133043

    [16]

    Kumar R, Jing C, Yan L. A critical review on arsenic and antimony adsorption and transformation on mineral facets[J/OL]. Journal of Environmental Sciences (2024-02-01). https://doi.org/10.1016/j.jes.2024.01.016

    [17]

    Zhou W, Zhou J, Feng X, et al. Antimony isotope fractionation revealed from EXAFS during adsorption on Fe(oxyhydr) oxides[J]. Environmental Science & Technology, 2023, 57(25): 9353−9361. doi: 10.1021/acs.est.3c01906

    [18]

    Hei E, He M, Zhang E, et al. Risk assessment of antimony-arsenic contaminated soil remediated using zero-valent iron at different pH values combined with freeze-thaw cycles[J]. Environmental Monitoring and Assessment, 2024, 196(5): 1−17. doi: 10.1007/s10661-024-12601-6

    [19]

    Peng L, Wang N, Xiao T, et al. A critical review on adsorptive removal of antimony from waters: Adsorbent species, interface behavior and interaction mechanism[J]. Chemosphere, 2023: 138529.

    [20]

    Sun Q, Liu C, Alves M E, et al. The oxidation and sorption mechanism of Sb on δ-MnO2[J]. Chemical Engineering Journal, 2018, 342: 429−437. doi: 10.1016/j.cej.2018.02.091

    [21]

    Nie J, Yao Z, Shao P, et al. Revisiting the adsorption of antimony on manganese dioxide: The overlooked dissolution of manganese[J]. Chemical Engineering Journal, 2022, 429: 132468. doi: 10.1016/j.cej.2021.132468

    [22]

    Wu Y, Sun G, Huang J H, et al. Antimony isotopic fractionation during intensive chemical weathering of basalt in the tropics[J]. Geochimica et Cosmochimica Acta, 2024, 367: 29−40. doi: 10.1016/j.gca.2023.12.029

    [23]

    Zhou W, Zhou A, Wen B, et al. Antimony isotope fractionation during adsorption on aluminum oxides[J]. Journal of Hazardous Materials, 2022, 429: 128317. doi: 10.1016/j.jhazmat.2022.128317

    [24]

    Xi J, He M, Lin C. Adsorption of antimony(Ⅲ) and antimony(V) on bentonite: Kinetics, thermodynamics and anion competition[J]. Microchemical Journal, 2011, 97(1): 85−91. doi: 10.1016/j.microc.2010.05.017

    [25]

    Dousova B, Lhotka M, Filip J, et al. Removal of arsenate and antimonate by acid-treated Fe-rich clays[J]. Journal of Hazardous Materials, 2018, 357: 440−448. doi: 10.1016/j.jhazmat.2018.06.028

    [26]

    Zhang Y, Ding C, Gong D, et al. A review of the environmental chemical behavior, detection and treatment of antimony[J]. Environmental Technology & Innovation, 2021, 24: 102026. doi: 10.1016/j.eti.2021.102026

    [27]

    Tang H, Hassan M U, Nawaz M, et al. A review on sources of soil antimony pollution and recent progress on remediation of antimony polluted soils[J]. Ecotoxicology and Environmental Safety, 2023, 266: 115583. doi: 10.1016/j.ecoenv.2023.115583

    [28]

    Schwertmann U, Cornell R M. Iron oxides in the laboratory: Preparation and characterization[M]. John Wiley & Sons, 2008.

    [29]

    Balboni E, Smith K F, Moreau L M, et al. Transformation of ferrihydrite to goethite and the fate of plutonium[J]. ACS Earth and Space Chemistry, 2020, 4(11): 1993−2006. doi: 10.1021/acsearthspacechem.0c00195

    [30] 崔婷, 叶欣, 朱霞萍, 等. 土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究[J]. 岩矿测试, 2023, 42(1): 167−176. doi: 10.15898/j.cnki.11-2131/td.202111250187

    Cui T, Ye X, Zhu X P, et al. Determination of various forms of iron and manganese oxides and the main controlling factors of absorption of Sb(Ⅲ) in soil[J]. Rock and Mineral Analysis, 2023, 42(1): 167−176. doi: 10.15898/j.cnki.11-2131/td.202111250187

    [31]

    Wang X, He M, Lin C, et al. Antimony(Ⅲ) oxidation and antimony(V) adsorption reactions on synthetic manganite[J]. Geochemistry, 2012, 72: 41−47. doi: 10.1016/j.chemer.2012.02.002

    [32]

    Sukul P, Lamshöft M, Zühlke S, et al. Sorption and desorption of sulfadiazine in soil and soil-manure systems[J]. Chemosphere, 2008, 73(8): 1344−1350. doi: 10.1016/j.chemosphere.2008.06.066

    [33]

    Wu T, Liu C, Cui P, et al. Kinetics of coupled sorption and abiotic oxidation of antimony(Ⅲ) in soils[J]. Geoderma, 2023, 434: 116486. doi: 10.1016/j.geoderma.2023.116486

    [34]

    Liu X, Wang Y, Xiang H, et al. Unveiling the crucial role of iron mineral phase transformation in antimony(V) elimination from natural water[J]. Eco-Environment & Health, 2023, 2(3): 176−83. doi: 10.1016/j.eehl.2023.07.006

    [35]

    Mukhopadhyay R, Sarkar B, Barman A, et al. Arsenic adsorption on modified clay minerals in contaminated soil and water: Impact of pH and competitive anions[J]. Clean-Soil, Air, Water, 2021, 49(4): 2000259. doi: 10.1002/clen.202000259

    [36]

    Li Y, Liu J, Wang Y, et al. Contribution of components in natural soil to Cd and Pb competitive adsorption: Semi-quantitative to quantitative analysis[J]. Journal of Hazardous Materials, 2023, 441: 129883. doi: 10.1016/j.jhazmat.2022.129883

    [37]

    Yan L, Chan T, Jing C. Mechanistic study for antimony adsorption and precipitation on hematite facets[J]. Environmental Science & Technology, 2022, 56(5): 3138−3146. doi: 10.1021/acs.est.1c07801

    [38] 随志磊. 极端条件下几种稀土盐和氧化锑的相变和发光研究[D]. 合肥: 中国科学技术大学, 2017: 10−50.

    Sui Z L. Studies on phase transitions and photo-luminescence of several rare earth sands and antimony trioxide in extreme conditions[D]. Hefei: University of Science and Technology of China, 2017: 10−50.

    [39]

    Pereira A L J, Gracia L, Santamaría-Pérez D, et al. Structural and vibrational study of cubic Sb2O3 under high pressure[J]. Physical Review B, 2012, 85(17): 174108. doi: 10.1103/PhysRevB.85.174108

    [40]

    Abrashev M V, Ivanov V G, Stefanov B S, et al. Raman spectroscopy of alpha-FeOOH (goethite) near antiferromagnetic to paramagnetic phase transition[J]. Journal of Applied Physics, 2020, 127(20): 205108.

    [41]

    de Faria D L A, Lopes F N. Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them?[J]. Vibrational Spectroscopy, 2007, 45(2): 117−121. doi: 10.1016/j.vibspec.2007.07.003

    [42]

    Chistyakova N, Antonova A, Elizarov I, et al. Mössbauer, nuclear forward scattering, and Raman spectroscopic approaches in the investigation of bioinduced transformations of mixed-valence antimony oxide[J]. The Journal of Physical Chemistry A, 2021, 125(1): 139−145. doi: 10.1021/acs.jpca.0c08865

    [43]

    Frost R L, Bahfenne S. Raman spectroscopic study of the antimonate mineral brizziite NaSbO3[J]. Radiation Effects and Defects in Solids, 2010, 165(3): 206−210. doi: 10.1080/10420150903513046

    [44]

    Zahn D R T. Vibrational spectroscopy of bulk and supported manganese oxides[J]. Physical Chemistry Chemical Physics, 1999, 1(1): 185−190. doi: 10.1039/A807821A

    [45]

    Julien C, Massot M, Rangan S, et al. Study of structural defects in γ-MnO2 by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2002, 33(4): 223−228. doi: 10.1002/jrs.838

    [46]

    Shim S H, Duffy T S. Raman spectroscopy of Fe2O3 to 62GPa[J]. American Mineralogist, 2002, 87(2−3): 318−326. doi: 10.2138/am-2002-2-314

    [47]

    Marshall C P, Dufresne W J B. Resonance Raman and polarized Raman scattering of single-crystal hematite[J]. Journal of Raman Spectroscopy, 2022, 53(5): 947−955. doi: 10.1002/jrs.6309

    [48]

    Basu A, Mookherjee M, Clapp S, et al. High-pressure Raman scattering and X-ray diffraction study of kaolinite, Al2Si2O5(OH)4[J]. Applied Clay Science, 2023, 245: 107144.

    [49]

    Frost R L, Fredericks P M, Kloprogge J T, et al. Raman spectroscopy of kaolinites using different excitation wavelengths[J]. Journal of Raman Spectroscopy, 2001, 32(8): 657−663. doi: 10.1002/jrs.722

    [50]

    Delbé K, de Sousa C, Grizet F, et al. Determination of the pressure dependence of Raman mode for an alumina-glass pair in hertzian contact[J]. Materials, 2022, 15(23): 8645. doi: 10.3390/ma15238645

    [51]

    Misra A, Bist H D, Navati M S, et al. Thin film of aluminum oxide through pulsed laser deposition: A micro-Raman study[J]. Materials Science and Engineering B, 2001, 79(1): 49−54. doi: 10.1016/S0921-5107(00)00554-7

图(8)  /  表(3)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  22
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-20
  • 修回日期:  2024-07-03
  • 录用日期:  2024-07-10
  • 网络出版日期:  2024-08-08
  • 发布日期:  2024-08-06
  • 刊出日期:  2025-01-30

目录

/

返回文章
返回