• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

柳江盆地髫髻山组凝灰岩地球化学与熔体包裹体水含量特征

赵汇珍, 陈勇, 涂聪, 冯艳伟

赵汇珍,陈勇,涂聪,等. 柳江盆地髫髻山组凝灰岩地球化学与熔体包裹体水含量特征[J]. 岩矿测试,2025,44(1):88−101. DOI: 10.15898/j.ykcs.202404030074
引用本文: 赵汇珍,陈勇,涂聪,等. 柳江盆地髫髻山组凝灰岩地球化学与熔体包裹体水含量特征[J]. 岩矿测试,2025,44(1):88−101. DOI: 10.15898/j.ykcs.202404030074
ZHAO Huizhen,CHEN Yong,TU Cong,et al. Geochemical Characteristics and Water Content of Melt Inclusions in the Tuff of the Tiaojishan Formation, Liujiang Basin[J]. Rock and Mineral Analysis,2025,44(1):88−101. DOI: 10.15898/j.ykcs.202404030074
Citation: ZHAO Huizhen,CHEN Yong,TU Cong,et al. Geochemical Characteristics and Water Content of Melt Inclusions in the Tuff of the Tiaojishan Formation, Liujiang Basin[J]. Rock and Mineral Analysis,2025,44(1):88−101. DOI: 10.15898/j.ykcs.202404030074

柳江盆地髫髻山组凝灰岩地球化学与熔体包裹体水含量特征

基金项目: 国家自然科学基金项目(41873070,42173042)
详细信息
    作者简介:

    赵汇珍,硕士研究生,地质学专业。E-mail:s22010030@s.upc.edu.cn

    通讯作者:

    陈勇,博士,教授,长期从事流体包裹体地球化学与盆地成岩成藏流体相关研究。E-mail:yongchenzy@upc.edu.cn

  • 中图分类号: P575

Geochemical Characteristics and Water Content of Melt Inclusions in the Tuff of the Tiaojishan Formation, Liujiang Basin

  • 摘要:

    水作为岩浆体系中最主要的挥发组分,对岩浆的形成和演化有重要的影响,柳江盆地髫髻山组岩浆岩是燕山期火山活动的重要产物,尽管前人对其地球化学特征进行了大量研究,但关于柳江盆地燕山期岩浆中的水含量仍不清楚。熔体包裹体记录了原始岩浆信息,是获取岩浆水含量特征的最直接样品。本文基于全岩地球化学分析,利用标准样品建立了显微激光拉曼光谱定量熔体包裹体水含量的标定曲线,并对柳江盆地髫髻山组下部流纹质岩屑-晶屑凝灰岩中石英斑晶内的原生熔体包裹体进行了水含量定量分析。结果表明:髫髻山组下部凝灰岩样品具有富Si、Al、大离子亲石元素富集、高场强元素亏损、轻稀土富集、重稀土亏损、负Eu异常、Sr含量低等特点;熔体包裹体中水含量的定量分析结果为0.99%~4.98%,平均水含量为2.62%,与前人统计的酸性岩浆水含量基本一致。地球化学特征和熔体包裹体水含量分析结果共同揭示了研究区髫髻山期早期为富水酸性岩浆。结合髫髻山期样品的熔体包裹体水含量测定结果及其早期的大规模火山喷发背景,本文认为岩浆中高含水量增强了岩浆系统的喷发动力,是诱发研究区髫髻山期早期大规模火山爆发的有利因素之一。

     

    要点

    (1)标定曲线的建立是显微激光拉曼光谱法定量测定熔体包裹体水含量的关键。

    (2)熔体包裹体的水含量与拉曼光谱参数之间具有很好的线性关系,应用少量标样即可建立标定曲线。

    (3)柳江盆地髫髻山组凝灰岩中熔体包裹体平均水含量为2.62%,属于酸性富水岩浆体系。

    HIGHLIGHTS

    (1) The establishment of a calibration curve is crucial for the quantitative determination of water content in melt inclusions using laser Raman spectroscopy.

    (2) The water content of melt inclusions has a strong linear relationship with Raman spectroscopy parameters, allowing a calibration curve to be established with only a few standard samples.

    (3) The average water content of melt inclusions in the tuffaceous rocks from the Tiaojishan Formation in the Liujiang Basin is 2.62%, indicating an acidic, water-enriched magmatic system.

  • 得益于海相页岩层系油气资源的钻完井和压裂技术革新,美国成为世界上最早实现页岩气商业化开采的国家, 其页岩气资源主要来自海相或海陆过渡相地层[1]。美国页岩气的成功商业化为中国页岩油气勘探开发关键技术探索提供了一定经验和借鉴[2]。我国广泛发育有海相、陆相和海陆过渡相三类富有机质页岩[3],页岩气可采资源量排名世界第二,其中陆相页岩气可采资源潜力为7.9×1012m3[4]。然而,与海相富有机质页岩相较,陆相页岩在沉积环境、干酪根类型、有机质成熟度和矿物组分等方面存在较大差异[5-7]。当前,我国海相页岩气储量评估方法与压裂技术基本达成共识,然而关于陆相页岩气(油)的研究在广度与深度上远远不足。鄂尔多斯盆地作为我国中新生代大型内陆坳陷沉积盆地,发育有石炭系、二叠系和三叠系等系列页岩沉积。其中三叠系延长组7段(C7)烃源岩埋藏浅,有机质丰度高,热演化程度低,具有良好的页岩气(油)成藏条件[8-9],有必要对其展开深入研究。

    页岩孔隙结构是决定储层储集与运移能力的关键,对构建页岩气渗流模型[10]、完善压裂技术[11]具有重要意义。Loucks等[12]研究表明页岩中孔隙类型丰富,包括粒间孔、粒内孔、微裂缝和有机孔等,不同类型孔隙结构成因不同,对页岩气储集能力的贡献亦不相同。Wang等[13]证实页岩矿物基质与有机质分布模式在一定程度上控制和反映页岩的孔隙结构特征。王跃鹏等[14]提出延长组页岩中普遍发育的纹理结构会形成平行层理的孔缝结构,严重时造成井壁坍塌。前人工作表明,研究页岩孔隙结构有必要同时考虑有机质与矿物基质的空间分布特征。研究者围绕鄂尔多斯C7页岩孔隙结构已开展了大量研究工作,但是受测试方法的限制,对其微观结构的认识仍较为薄弱。吴银辉等[15]、杨维磊等[16]、庞铭等[7]、Jiang等[17]通过气体吸附实验、高压压汞实验和核磁共振实验对C7页岩孔隙结构特征展开研究,结果表明C7页岩中3~30nm的孔隙对总孔隙度贡献最大,为构建页岩孔隙模型提供了重要数据参考,但是上述成果对闭孔表征不足且缺乏对孔隙空间结构特征的直观认识。徐红卫等[18]采用扫描电镜对C7页岩孔隙结构特征展开研究,其研究成果表明C7页岩中主要发育纳米级狭缝型黏土矿物层间孔,然而其采用机械抛光制样对页岩表面孔隙结构造成了一定破坏,同时缺乏对页岩不同组分三维空间分布特征的认识。

    目前,油气领域多采用氩离子抛光-扫描电镜方法对页岩孔隙结构进行直观观测[13, 19-20]。该方法有助于快速认识页岩孔隙类型、分布模式及孔径范围等,然而不足以提供精确数据用以构建页岩气三维渗流模型。对页岩三维结构的认识主要是利用微米X射线显微镜(micro X-ray microscope)[13, 21]、纳米X射线显微镜(nano-transmission X-ray microscope, TXM)[21-24]与聚焦离子束-扫描电子显微镜(focused ion beam-scanning electron microscope, FIB-SEM)[25-27]。与TXM和FIB-SEM方法相较,微米X射线显微镜方法的扫描范围大且成本较低,是研究陆相页岩纹理结构特征的重要技术手段。基于此,本文选取鄂尔多斯盆地南缘代表性C7页岩,采用氩离子抛光-扫描电镜与同步辐射微米X射线显微镜方法,对C7页岩的孔隙结构特征进行详细表征,探究陆相页岩孔隙结构特征影响因素,以期为完善陆相页岩气产能评估与压裂技术提供参考。

    C7页岩实验样品采自鄂尔多斯盆地遥科一(YK1)井。YK1井位于陕西省铜川市,构造位置属于鄂尔多斯盆地南缘渭北隆起构造单元(图 1)。长7油层组位于延长组中下部,代表湖盆最大扩张期。该时期随着盆地强烈沉陷,湖盆从长8期开始至长7期达到鼎盛时期,环绕湖盆退积型三角洲广泛发育并在开阔的浅湖-深湖区形成延长组的最主要的生油岩系[16]。岩心观测发现,C7页岩以黑色油页岩、凝灰岩与含油砂岩为主,夹杂碳酸盐岩薄层,如图 2所示。

    图  1  鄂尔多斯盆地遥科1井构造位置示意图
    1—逆冲推覆带;2—古板块碰撞对接带;3—河流。
    Figure  1.  Geotectonic position of Yaoke-1 Well, Ordos Basin
    图  2  遥科1井延长组7段岩性柱状图与岩心样品
    Figure  2.  Lithological column and core sample of Member 7, Yanchang Formation shale from Yaoke-1 Well

    X射线粉晶衍射测试表明,C7页岩样品中的石英与长石平均含量较高(分别为32%和24%),碳酸盐岩和黄铁矿含量相对较低,分别为9%和3%。脆性矿物平均含量大于50%,有利于天然裂隙和人工诱导裂缝的发育。黏土矿物含量为33%,几乎全部由伊蒙混层组成。伊蒙混层中伊利石含量为80%,主要为有序混层矿物(R=1型),表明延长组7段页岩处于成岩阶段中期[28]。实验样品有机碳平均含量为4.79%,属于富有机质页岩,其平均镜质体反射率为0.72%,对应有机质未成熟或低成熟阶段。

    选取新鲜页岩样品薄片(~1cm2),对其进行初步机械抛光后(2400目),放入离子减薄仪(LJB-1A,沈阳华业公司),利用氩离子束轰击预抛光的表面,得到品质较高的平面进行扫描电镜观察。制样过程中,氩离子减薄仪的工作电压为5kV,电流为100μA,抛光时间为10~12h[19, 25]。扫描电镜观测利用Merlin Compact LE0 1530 VP电镜(卡尔·蔡司公司)完成,矿物元素组成定性定量分析使用AZtec X-Max能谱仪(牛津仪器)进行。实验时扫描电镜加速电压为5kV,工作距离为4~6mm;能谱仪的工作电压为15kV,工作距离为8~10mm。

    利用砂纸将C7页岩样品打磨成圆柱形,直径大约5mm。微米X射线显微镜扫描实验在上海同步辐射装置X射线成像及生物医学应用光束线(BL13W1)[29]开展。X射线在磁场强度1.9T、磁周期14cm的十六极摆动器中激发,通过Si(111)双晶单色器进行单色化后穿过样品,然后被带有闪烁体的电荷耦合元件系统接收[11]。本文实验像素尺寸为3.25μm,能量为25keV, 样品到探头的距离为10cm。扫描过程中将样品的一端固定在旋转样品台上。整个实验中样品台共旋转180°,每隔0.2°采集一张投影图像。通过样品台的旋转,采集不同视角的投影图像,利用PITRE (phase-sensitive X-ray image processing and tomography recons-truction)软件进行图像重构[30]。首先,利用5张暗场图像与20张明场图像进行背景强度校正;其次,将采集的投影图像转换成正弦图像并进行归一化处理;最后,利用滤波反投影方法对正弦化图像进行重构[31]

    微米X射线显微镜重构数据利用Avizo软件进行分析。首先,选择页岩代表性体积块1625μm × 1625μm × 1625μm,利用非局部均值滤波算法对所选CT图像进行平滑。其次,依据孔隙、有机质、碳酸盐岩和硅酸盐岩等对X射线的吸收系数差异, 采用阈值分割方法进行图像分割,实现延长7段页岩三维结构的重建与可视化。

    本文在参考Loucks等[12]页岩孔隙分类方案基础上,依据孔隙成因与其赋存特征将C7页岩气储集空间划分为无机孔、有机孔和微裂缝三类,如表 1所示。

    表  1  遥科1井延长7段页岩孔隙类型及其特征
    Table  1.  Pore types and characteristics of C7 Member shale from Yaoke-1 Well
    孔隙类型 孔隙示意图 孔隙形态 孔径范围 分布特征
    无机孔 粒间孔 三角形或狭缝形 30nm~1μm 发育在脆性矿物周缘及粉砂级黏土矿物碎屑之间,普遍发育,连通性较好
    黏土矿物层间孔 平直狭缝状 长1~3μm,孔宽数十纳米 分布于黏土矿物层间,不甚发育
    溶蚀孔 凹坑状 50~300nm 多见于石英、长石等矿物内部,彼此孤立
    晶内孔、生物孔、晶间孔等 圆形、椭圆形或方形等 百纳米~数十微米 与矿物相关,如生物遗体被黄铁矿充填,彼此孤立; 或形成于矿物晶间
    有机质与有机孔 致密有机质 连续且不规则状 N/A 有机质最主要的赋存方式,即粒间孔被有机质完全充填,且有机质内部无孔隙发育
    集合体形式 N/A 与黄铁矿呈现出包裹关系,与微晶之间残余少许孔缝
    有机质分散状,发育锯齿状孔隙 数百纳米至数微米 致密有机质与基质矿物接触面之间发育孔隙,较为普遍
    有机孔 狭缝状、三角状 50~300nm 受控于黏土矿物层间孔结构,有机孔最主要的存在形式
    凹坑状或椭圆状 30~200nm 受生烃作用控制,发育较少
    微裂缝 狭缝状 长数微米,宽几百纳米 发育于脆性矿物的边缘或机械不稳定部位,较平直,延伸长
    注:N/A表示not applicable(不适用)。
    下载: 导出CSV 
    | 显示表格

    C7页岩中无机孔广泛发育,包括粒间孔、黏土矿物层间孔和溶蚀孔等。粒间孔主要发育在脆性矿物周缘和黏土碎屑之间。脆性矿物周缘孔以狭缝形为主,孔长约1μm,孔宽约100nm (图 3a),在C7页岩中普遍发育;粉砂级黏土岩屑彼此连接,形成原生粒间孔,是C7页岩中发育最多的孔隙类型,以三角形为主,孔径集中于30~250nm,连通性较好(图 3b)。黏土矿物层间孔发育在黏土矿物层间,以平直狭缝状为主,孔长1~3μm,孔宽数十纳米(图 3c),发育较少。溶蚀孔是烃源岩生烃过程中产生大量有机酸将矿物溶解所形成的次生孔隙。C7页岩中溶蚀孔数量较少且孤立存在,以凹坑状为主,孔径50~300nm(图 3d)。

    图  3  遥科1井延长7段页岩中无机孔和微裂缝发育特征
    a—狭缝状矿物周缘孔; b—原生粒间孔, 以三角形为主; c—黏土矿物层间孔, 呈平直狭缝状; d—凹坑状溶蚀孔, 连通性差; e—黄铁矿晶内孔, 呈圆形; f—图 3e中十字标记区域能谱图; g—生物孔; h—锐钛矿晶间孔; i—图 3h中十字标记区域能谱图; j, k, l—微裂缝。
    Figure  3.  Mineral matrix pores and micro fractures developing in C7 Member shale from Yaoke-1 Well

    C7页岩中同时发育黄铁矿晶内孔和锐钛矿晶间孔等特殊的孔隙类型。黄铁矿晶内孔见图 3e。能谱图(图 3f)表明图 3e中十字标记区域元素组成主要为Fe、S、O、Si。该类孔隙基本呈圆形,黄铁矿质孔隙壁厚3~5μm,孔径数十微米,孔隙部分或全部被矿物碎屑或有机质充填,彼此之间并无连通性。锐钛矿晶间孔如图 3h图 3i所示,孔径集中于数百纳米,连通性较好。此前在海相沉积威远九老洞组页岩[19]、辽河凹陷沙河街组页岩[32]中均观测到该类型孔隙,表明锐钛矿晶间孔的主要形成机理并非受控于沉积环境。C7页岩中亦发育少许生物孔,如图 3g所示,孔径30~50nm,推测为生物遗体被矿物质充填所形成。

    微裂缝在C7页岩中较为发育,以构造裂缝为主。构造裂缝一般沿机械不稳定面发育,如脆性矿物与片状黏土矿物的外部或颗粒之间(图 3j3k),或沿黏土矿物层理发育(图 3l),较平直,延伸尺度较大,长数微米,宽度几百纳米。普遍发育的微裂缝是沟通各类微观孔隙的桥梁,为页岩气运移提供了重要的渗流通道。

    C7页岩中有机孔发育较少,依据发育形态和成因可分成两类。第一类有机孔发育在离散状有机质内部,其形成受控于有机质生烃作用,发育极少,呈椭圆状或凹坑状(图 4a)等,孔径30~200nm。另外一类有机孔与有机黏土矿物共生,是C7页岩中有机孔最主要的存在形式。该类有机孔具有继承性结构,受黏土矿物层间孔的形貌控制,以狭缝状或层状为主,如图 4b4c所示。黏土矿物强烈的吸附能力促使有机质在烃源岩中富集,与黏土矿物以结合态存在。在有机质生烃过程中,黏土矿物降低了生烃反应活化能,同时为其提供了电子(OH-)和质子(H+)来源。类似结构在四川盆地页岩气勘探有利储层龙马溪组海相页岩中发现较多[6],不仅佐证了黏土矿物的催化生烃作用,而且说明陆相页岩有机孔的形成机理与海相页岩具有一定相似性。

    图  4  遥科1井延长7段页岩中有机孔和有机质的赋存特征
    a, b, c—有机孔, 主要发育在有机质之间; d, e, f, g, h, i—有机质赋存特征。
    Figure  4.  Organic pores and organic matter in C7 Member shale from Yaoke-1 Well

    C7页岩中存在大量致密有机质,大小数百纳米至数微米,形态复杂,主要受控于无机孔缝的形状。图 4d中有机质彼此连接,填充于不规则状矿物碎屑粒间孔中,与粒间孔边缘完全接触;图 4e中条带状有机质充填于粒间孔中,彼此孤立存在,单个有机质长达数十微米;图 4f中条带状有机质则充填于黏土矿物层间,取向与黏土矿物一致,宽50~200nm。部分有机质与黄铁矿共生,表现为包裹关系,如图 4g所示,黄铁矿晶间孔几乎完全被有机质充填,仅在有机质与微晶之间残余少许孔缝。致密有机质与矿物基质接触面之间发育部分孔隙,该类孔隙往往与有机质取向一致,呈锯齿状、平直状和三角状等,孔径集中于数微米,如图 4h图 4i所示。

    C7页岩微米X射线重构图像如图 5a所示。图像中灰度值由白(255)到黑(0)代表物质的密度由大到小。结合扫描电镜数据判断,白色部分主要为黄铁矿,灰白色部分主要是钙质或铝铁质矿物;黑色部分代表低密度物质,理论上包括微孔隙、微裂缝和有机质。以下将低密度物质界定为有机质,主要原因如下:扫描电镜观测证实C7页岩中主要发育纳米孔,本文微米X射线扫描实验(分辨率3.25μm)不足以识别;从重构图像中可以看出,低密度物质大小集中于亚微米至微米,主要呈带状或星点状等,与扫描电镜下有机质的形貌大小一致;剖面线(图 5b)经过低密度物质时,灰度值均在90左右(孔隙灰度值接近0)。

    图  5  基于X射线重构图像的物质识别
    a—页岩微米X射线重构图像:有机质(黑色),黄铁矿(白色);b—L1、L2为a图中剖面线所示物质的灰度值剖面图。纵坐标:灰度值。
    Figure  5.  Segmentations based on X-ray microscopy images

    经过物相分割,通过三维数值模拟得到C7页岩三维结构,如图 6所示。有机质、钙质(包括铝铁质)矿物和黄铁矿分别以红色,绿色以及黄色标记,空白区域代表硅铝质矿物(石英和长石等)。图 6表明C7页岩中,有机质与钙质、铝铁质矿物排列有序,在微米尺度上具有明显的纹层结构,黄铁矿则以无序状分散在矿物基质中。

    图  6  延长7段页岩三维重构图像
    Figure  6.  Three dimensional reconstructions of C7 Member shale

    图 6b展示了C7页岩有机质三维空间分布特征。有机质体积含量为3.4%,整体呈纹层结构。大部分有机质体积较小,均匀地分散于矿物基质中;少数有机质体积较大,取向与纹层一致,如图 7a所示。图 7a图 6b中部分有机质的放大图,从图中能够看出该有机质颗粒长约700μm,宽约80μm,呈不完全连续分布。钙质和铝铁质矿物的三维空间结构如图 6c所示,其体积百分数达7.5%,同样具有纹层结构,取向与有机质分布模式一致。与有机质的均匀分布不同,钙质与铝铁质矿物在某些纹层内出现富集。此外,少量铝铁质矿物呈球状,体积较大, 如图 7b所示,随机分布于矿物基质中。黄铁矿体积含量较低,约0.7%,在三维空间中随机分布,如图 6d所示。黄铁矿颗粒大小集中于10~20μm,相对均匀地分散于矿物基质中;少数黄铁矿聚集在一起,形成团块儿状集合体。部分黄铁矿可能充填于生物遗体中,其三维结构放大图如图 7c所示。从图中可以看出,该类孔呈不封闭的球状,孔径约45μm。

    图  7  延长7段页岩中不同物相三维结构的放大图
    a—有机质; b—铝铁质矿物; c—黄铁矿晶内孔。
    Figure  7.  Enlarged images showing three dimensional structures of different phases in C7 Member shale

    扫描电镜观测结果表明C7页岩中无机孔和微裂缝最为发育。无机孔以发育在黏土碎屑颗粒之间的原生粒间孔为主,黏土矿物层间孔和脆性矿物周缘孔等海相页岩中普遍发育的孔隙类型发现较少。一方面,页岩中大量存在的碎屑状黏土矿物为孔隙发育提供了物质基础,是控制主要孔隙类型发育的重要因素之一;另一方面受成岩作用控制,原生层间孔和脆性矿物周缘孔难以保存[33]。与四川盆地广泛发育的海相页岩相较,C7页岩中有机孔鲜有发育[5-7]。有机孔的形成、形貌及大小主要与有机质含量、类型和热成熟度密切相关。鄂尔多斯盆地三叠系C7页岩热演化程度较低,大部分处于低成熟阶段,因此不具备大量发育有机孔的条件。有机质主要呈致密态,不均匀地充填于无机孔与微裂缝中,在一定程度上进一步降低了孔隙度。

    扫描电镜测试表明C7页岩中介孔数量占绝对优势,对孔隙体积贡献最大,提供了主要的储集空间。黏土矿物颗粒细小,分选好,是介孔大量发育的关键因素。鄂尔多斯盆地长7期深湖细粒沉积背景导致原始的粒间孔隙相对较小[34-35];强烈的压实作用使颗粒间紧密接触,同时胶结作用使大的粒间孔隙消失,残留了小尺度的粒间孔隙[36]。C7页岩中亦发育少量宏孔,孔径主体数百纳米,主要以粒间孔和微裂缝形态存在。脆性矿物含量较高是宏孔发育的重要原因。但是细粒黏土矿物与有机质的充填作用,在一定程度上导致宏孔数量降低。

    本文利用微米X射线显微镜证实C7页岩在微米尺度上具有明显的纹层结构,有机质纹层发育且连续性强,表明C7页岩具有较强塑性。李丽慧等[37]通过三轴压裂实验证实该类结构中,压裂缝以沿纹层扩展为主且易再次闭合,从而降低了储层的可压裂性。不过,随着有机质成熟度的增加,该结构沿层理方向易于形成相互连接的孔隙网络,从而有利于页岩气的横向运移[38]。扫描电镜测试表明各纹层中的微米级微构造裂缝发育较多,王跃鹏等[14]认为该类裂缝可能是由于水进入页岩内部发生水化作用,导致黏土矿物沉淀而形成的。该结构意味着水力压裂开采技术容易破坏C7页岩结构的完整性,引发井壁坍塌等严重问题。

    本文利用氩离子抛光-扫描电镜和微米X射线显微镜方法,对鄂尔多斯陆相延长7段页岩孔隙结构特征进行研究。测试结果表明:①受黏土碎屑和成岩作用控制,延长7段页岩中主要发育纳米级粒间孔与微米级微裂缝,是页岩气的主要储运空间。有机质主要呈致密状,有机孔发育较少,一般与有机黏土矿物共存。②延长7段页岩在微米尺度上具有明显的纹层结构,有机质纹层发育且连续性强,不利于储层压裂。同时,大量存在的黏土矿物与微裂缝在水力压裂时容易引发井壁坍塌等严重问题。

    微米X射线显微镜技术是深入研究陆相页岩纹层三维结构特征的有效方法,与氩离子抛光-扫描电镜技术结合,有利于实现页岩孔隙结构特征的多尺度多维度综合表征。本文研究成果可为后期页岩气水平井结构设计、提高井壁稳定性提供改进思路。

  • 图  1   研究区地质简图

    (a)研究区大地构造位置,据郑亚东等27修编;(b)研究区地质简图,据吴孔友等26修编。

    Figure  1.   Geological diagrams of the research area (Figure a is modified after Zheng, et al27; Figure b is modified after Wu, et al [26)

    图  2   不同水含量人工合成流纹质玻璃的拉曼光谱

    红色实线为5.27% H2O人工合成标准样品的拉曼谱图;橙色实线为4.09% H2O人工合成标准样品的拉曼谱图;绿色实线为2.26% H2O人工合成标准样品的拉曼谱图;蓝色实线为1.48% H2O人工合成标准样品的拉曼谱图。LF-250cm−1~700cm−1为低波段谱带;HF-850cm−1~1300cm−1为高波段谱带;WF-3000cm−1~3800cm−1为总水谱带。

    Figure  2.   Raman spectra of artificially synthesized rhyolitic glasses with different water content

    图  3   含水流纹质玻璃水含量标定曲线

    Figure  3.   Calibration curve for total water content in hydrous rhyolitic glasses

    图  4   髫髻山组凝灰岩岩石地球化学特征

    (a)火山岩TAS图解;(b)微量元素原始地幔标准化蛛网图;(c)球粒陨石标准化稀土元素配分模式图;(d) Ta/Yb-Th/Yb图解(火山岩TAS图解据Irvine 等 [36;标准化所用原始地幔数据和球粒陨石数据引自Sun等37;Ta/Yb-Th/Yb图解据Pearce38)。

    Figure  4.   Lithogeochemical characteristics of the tuff of the Tiaojishan Formation

    图  5   熔体包裹体镜下照片及熔体包裹体显微激光拉曼光谱图

    a为玻璃质+结晶质熔体包裹体;b、d、g、h为玻璃质+气泡熔体包裹体;c、e、f为玻璃质熔体包裹体;i为熔体包裹体MI-1减基线后的拉曼光谱图。

    Figure  5.   Microscopic photos showing characteristics of the melt inclusions and Raman spectrum of the melt inclusions

    表  1   不同水含量人工合成含水硅酸盐玻璃标准样品的积分面积等参数测量结果

    Table  1   Measurement results of integrated area and other parameters of artificially synthesized water-containing silicate glasses standard samples with different water content

    人工合成含水玻璃
    标准样品编号
    ALF AWF AWF/ALF*
    (Tu等19测量值)
    AWF/ALF
    (转换值或实测值)
    CH2O
    (%)
    RH-1(Tu等,2023) / / 1.0700 0.3726 0.33
    RH-2(Tu等,2023) / / 1.3300 0.4631 0.41
    RH-3(Tu等,2023) / / 1.8400 0.6407 0.58
    RH-4(Tu等,2023) / / 3.2600 1.1351 1.48
    RH-5(Tu等,2023) / / 4.9400 1.7201 2.26
    RH-6(Tu等,2023) / / 6.3100 2.1971 3.01
    RH-7(Tu等,2023) / / 8.5100 2.9632 4.09
    RH-8(Tu等,2023) / / 11.7800 4.1018 5.27
    RH-9(Tu等,2023) / / 14.3000 4.9793 6.35
    RH-10(Tu等,2023) / / 15.4400 5.3762 6.84
    RH-11(Tu等,2023) / / 21.3100 7.4201 9.05
    标准样品1 292.6424 1264.846 / 4.3222 5.27
    标准样品2 244.9186 776.2908 / 3.1696 4.09
    标准样品3 229.9241 374.9651 / 1.6308 2.26
    标准样品4 189.5898 250.3734 / 1.3206 1.48
    注:RH-1至RH-11为Tu等19测试样品;标样1至标样4为本文中的实际测试样品,分别对应Tu等19的样品RH-8、RH-7、RH-5、RH-4。“/”代表本文未使用的数据。
    下载: 导出CSV

    表  2   髫髻山组凝灰岩全岩主量元素测试结果

    Table  2   Analytical results of major elements in tuff of the Tiaojishan Formation

    凝灰岩样品
    编号
    Na2O
    (%)
    MgO
    (%)
    Al2O3
    (%)
    SiO2
    (%)
    P2O5
    (%)
    K2O
    (%)
    CaO
    (%)
    TiO2
    (%)
    MnO
    (%)
    Fe2O3
    (%)
    烧失量
    (%)
    Na2O+K2O
    (%)
    主量元素含量
    合计(%)
    TJS-11.451.2913.0275.180.032.601.100.140.042.283.384.04100.48
    TJS-21.670.6512.6177.140.022.580.140.140.031.063.044.2499.07
    注:为确保测试结果的可靠性,实验数据取同一样品两次测试结果的平均值。
    下载: 导出CSV

    表  3   髫髻山组凝灰岩全岩微量元素测试结果

    Table  3   Analytical results of trace elements in tuff of the Tiaojishan Formation

    凝灰岩样品
    编号
    Li
    (μg/g)
    Be
    (μg/g)
    B
    (μg/g)
    Sc
    (μg/g)
    V
    (μg/g)
    Cr
    (μg/g)
    Co
    (μg/g)
    Ni
    (μg/g)
    Cu
    (μg/g)
    Zn
    (μg/g)
    Ga
    (μg/g)
    Ge
    (μg/g)
    As
    (μg/g)
    Rb
    (μg/g)
    Sr
    (μg/g)
    TJS-1 29.75 4.72 17.15 3.84 6.09 7.14 1.26 3.90 2.57 36.30 19.25 1.68 0.41 76.35 139.50
    TJS-2 10.46 3.78 15.55 4.89 6.59 4.43 0.72 1.69 2.39 18.56 17.55 0.80 0.47 74.13 97.87
    凝灰岩样品
    编号
    Y
    (μg/g)
    Zr
    (μg/g)
    Nb
    (μg/g)
    Mo
    (μg/g)
    Cd
    (μg/g)
    Cs
    (μg/g)
    Ba
    (μg/g)
    La
    (μg/g)
    Ce
    (μg/g)
    Pr
    (μg/g)
    Nd
    (μg/g)
    Sm
    (μg/g)
    Eu
    (μg/g)
    Gd
    (μg/g)
    Tb
    (μg/g)
    TJS-1 16.75 112.50 26.30 2.24 0.09 1.39 451.50 32.45 63.90 7.16 23.90 4.84 0.31 4.04 0.61
    TJS-2 13.50 100.77 27.64 1.80 0.04 0.99 386.05 24.29 52.86 5.53 17.92 3.56 0.24 2.80 0.45
    凝灰岩样品
    编号
    Dy
    (μg/g)
    Ho
    (μg/g)
    Er
    (μg/g)
    Tm
    (μg/g)
    Yb
    (μg/g)
    Lu
    (μg/g)
    Hf
    (μg/g)
    Ta
    (μg/g)
    W
    (μg/g)
    Tl
    (μg/g)
    Pb
    (μg/g)
    Bi
    (μg/g)
    Th
    (μg/g)
    U
    (μg/g)
    TJS-1 2.95 0.63 1.65 0.27 1.91 0.31 3.97 2.02 0.51 0.63 24.40 0.16 22.40 6.35
    TJS-2 2.45 0.50 1.44 0.25 1.70 0.27 3.68 2.04 0.70 0.60 20.70 0.10 21.60 5.50
    注:为确保测试结果的可靠性,实验数据取同一样品两次测试结果的平均值。
    下载: 导出CSV

    表  4   髫髻山组凝灰岩中熔体包裹体LF、WF积分面积及水含量计算结果

    Table  4   Integrated areas of LF and WF, and water content of the melt inclusions in tuff of the Tiaojishan Formation

    包裹体样品编号 熔体包裹体类型 ALF AWF AWF/ALF 峰位(cm−1) CH2Ot (%)
    MI-1 玻璃质 120.2732 203.0257 1.6880 3631 2.13
    MI-2 玻璃质 119.9589 208.9559 1.7419 3631 2.19
    MI-3 玻璃质 297.2329 233.0028 0.7839 3643 0.99
    MI-4 玻璃质 198.5294 276.1755 1.3911 3636 1.75
    MI-5 玻璃质 180.3690 306.9109 1.7016 3631 2.14
    MI-6 玻璃质+气泡 78.6287 288.6345 3.6709 3636 4.63
    MI-7 玻璃质+气泡 222.9093 237.9510 1.0675 3637 1.35
    MI-8 玻璃质+气泡 526.2989 1446.2396 2.7479 3541 3.46
    MI-9 玻璃质+结晶质 186.4130 737.1156 3.9542 3568 4.98
    下载: 导出CSV
  • [1] 李福春, 朱金初, 金章东. 岩浆中主要挥发份含量——熔融包裹体和淬火玻璃证据[J]. 地质地球化学, 2000, 28(2): 8−13.

    Li F C, Zhu J C, Jin Z D. Contents of main volatiles in magma: Evidence from melt inclusions and quenched glasses[J]. Geology Geochemistry, 2000, 28(2): 8−13.

    [2] 李霓, 孙嘉祥. 火山岩中熔体包裹体研究进展[J]. 矿物岩石地球化学通报, 2018, 37(3): 414−423. doi: 10.19658/j.issn.1007-2802.2018.37.091

    Li N, Sun J X. A review on research progress of melt inclusion in volcanic rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(3): 414−423. doi: 10.19658/j.issn.1007-2802.2018.37.091

    [3]

    Forte P, Castro J M. H2O-content and temperature limit the explosive potential of rhyolite magma during Plinian eruptions[J]. Earth and Planetary Science Letters, 2019, 506: 157−167. doi: 10.1016/j.jpgl.2018.10.041

    [4]

    Roedder E. Origin and significance of magmatic inclusions[J]. Bulletin de Mineralogie, 1979, 102(5): 487−510. doi: 10.3406/bulmi.1979.7299

    [5]

    Roedder E. Fluid inclusions[M]//Ribhe P H, ed. Reviews in mineralogy (Vol. 12). Washington DC: Mineralogical Society of America, 1984.

    [6] 王蝶, 卢焕章, 单强. 岩浆熔体包裹体研究进展[J]. 岩石学报, 2017, 33(2): 653−666.

    Wang D, Lu H Z, Shan Q. Advances on melt inclusion studies[J]. Acta Petrologica Sinica, 2017, 33(2): 653−666.

    [7]

    Bennett E N, Jenner F E, Millet M A, et al. Deep roots for mid-ocean-ridge volcanoes revealed by plagioclase-hosted melt inclusions[J]. Nature, 2019, 572(7768): 235−239. doi: 10.1038/s41586-019-1448-0

    [8]

    Metrich N, Wallace P J. Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 363−402. doi: 10.2138/rmg.2008.69.10

    [9]

    Esposito R, Hunter J, Schiffbauer J D, et al. An assessment of the reliability of melt inclusions as recorders of the pre-eruptive volatile content of magmas[J]. American Mineralogist, 2014, 99(5−6): 976−998. doi: 10.2138/am.2014.4574

    [10] 丁一, 刘吉强, 宗统, 等. 熔体包裹体挥发份应用的研究进展[J]. 岩石矿物学杂志, 2019, 38(6): 897−913. doi: 10.3969/j.issn.1000-6524.2019.06.018

    Ding Y, Liu J Q, Zong T, et al. A review on the application of volatiles in melt inclusions[J]. Acta Petrologica Sinica, 2019, 38(6): 897−913. doi: 10.3969/j.issn.1000-6524.2019.06.018

    [11] 高晓英, 涂聪, 孟子岳. 激光拉曼光谱仪定量测定硅酸盐熔体包裹体中水含量及其地质应用[J]. 地球科学, 2022, 47(10): 3616−3632.

    Gao X Y, Tu C, Meng Z Y. Geological application of Raman spectroscopy to quantify trace water concentrations in silicate glasses[J]. Earth Science, 2022, 47(10): 3616−3632.

    [12] 王玉琪, 丁兴, 邸健, 等. 激光拉曼快速标定花岗质玻璃的水含量[J]. 地球化学, 2023, 52(2): 250−260. doi: 10.19700/j.0379-1726.2023.02.010

    Wang Y Q, Ding X, Di J, et al. Rapid analysis of water content in granitic glass using in situ Raman spectroscopy[J]. Geochimica, 2023, 52(2): 250−260. doi: 10.19700/j.0379-1726.2023.02.010

    [13] 孟庆国, 刘昌岭, 李承峰, 等. X射线粉晶衍射-拉曼光谱法研究含甲烷双组分水合物结构及谱学特征[J]. 岩矿测试, 2021, 40(1): 85−94. doi: 10.15898/j.cnki.11-2131/td.202005290077

    Meng Q G, Liu C L, Li C F, et al. Study on the structure and spectroscopic characteristics of methane-containing binary hydrates using X-ray powder diffraction-Raman spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 85−94. doi: 10.15898/j.cnki.11-2131/td.202005290077

    [14] 杨春梅, 黄梓芸, 覃静雯, 等. 应用钻石观测仪-红外光谱仪-激光诱导击穿光谱仪鉴定无机材料充填翡翠[J]. 岩矿测试, 2022, 41(2): 281−290. doi: 10.15898/j.cnki.11-2131/td.202109170123

    Yang C M, Huang Z Y, Qin J W, et al. Identification of inorganic material-filled jadeite using diamond observation instrument-infrared spectrometer-laser-induced breakdown spectrometer[J]. Rock and Mineral Analysis, 2022, 41(2): 281−290. doi: 10.15898/j.cnki.11-2131/td.202109170123

    [15] 范晨子, 孙冬阳, 赵令浩, 等. 激光剥蚀电感耦合等离子体质谱法微区原位定量分析锂铍矿物化学成分[J]. 岩矿测试, 2024, 43(1): 87−100. doi: 10.15898/j.ykcs.202305310072

    Fan C Z, Sun D Y, Zhao L H, et al. Micro-area in-situ quantitative analysis of chemical composition of lithium-beryllium minerals using laser ablation inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2024, 43(1): 87−100. doi: 10.15898/j.ykcs.202305310072

    [16]

    Thomas R. Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy[J]. American Mineralogist, 2000, 85(5−6): 868−872. doi: 10.2138/am-2000-5-631

    [17]

    Chabiron A, Pironon J, Massare D. Characterization of water in synthetic rhyolitic glasses and natural melt inclusions by Raman spectroscopy[J]. Contributions to Mineralogy and Petrology, 2004, 146: 485−492. doi: 10.1007/s00410-003-0510-x

    [18] 陈勇. 流体包裹体激光拉曼光谱分析方法及应用[M]. 北京: 中国石油大学出版社, 2015.

    Chen Y. Raman spectroscopy for fluid inclusion analysis and applications[M]. Beijing: China University of Petroleum Press, 2015.

    [19]

    Tu C, Meng Z Y, Gao X Y, et al. Quantification of water content and speciation in synthetic rhyolitic glasses: Optimising the analytical method of confocal Raman spectrometry[J]. Geostandards and Geoanalytical Research, 2023, 47(3): 549−567. doi: 10.1111/ggr.12490

    [20] 赵越, 徐刚, 张拴宏, 等. 燕山运动与东亚构造体制的转变[J]. 地学前缘, 2004, 11(3): 319−328. doi: 10.3321/j.issn:1005-2321.2004.03.030

    Zhao Y, Xu G, Zhang S H, et al. Yanshan movement and conversion of tectonic regimes in East Asia[J]. Earth Science Frontiers, 2004, 11(3): 319−328. doi: 10.3321/j.issn:1005-2321.2004.03.030

    [21] 李伍平, 赵越, 李献华, 等. 燕山造山带中—晚侏罗世髫髻山期(蓝旗期)火山岩的成因及其动力学意义[J]. 岩石学报, 2007, 23(3): 557−564.

    Li W P, Zhao Y, Li X H, et al. Genesis and dynamic significance of the middle-late Jurassic Tiaojishan (Lanqi) volcanic rocks in the Yanshan orogenic belt[J]. Acta Petrologica Sinica, 2007, 23(3): 557−564.

    [22] 段超, 毛景文, 谢桂青, 等. 太行山北段木吉村髫髻山组安山岩锆石 U-Pb 年龄和 Hf 同位素特征及其对区域成岩成矿规律的指示[J]. 地质学报, 2016, 90(2): 250−266.

    Duan C, Mao J W, Xie G Q, et al. Zircon U-Pb age and Hf isotopic characteristics of the Tiaojishan Formation andesite in Mujicun, Northern Taihang Mountains, and its implications for regional magmatism and metallogeny[J]. Acta Geologica Sinica, 2016, 90(2): 250−266.

    [23] 于海飞, 张志诚, 帅歌伟, 等. 北京十三陵—西山髫髻山组火山岩年龄及其地质意义[J]. 地质论评, 2016, 62(4): 807−826. doi: 10.16509/j.georeview.2016.04.003

    Yu H F, Zhang Z C, Shuai G W, et al. Age and geological significance of the Tiaojishan Formation volcanic rocks in the Shisanling—Xishan area, Beijing[J]. Geological Review, 2016, 62(4): 807−826. doi: 10.16509/j.georeview.2016.04.003

    [24] 李斌, 陈井胜, 刘淼, 等. 辽西髫髻山组的形成时代及地球化学特征[J]. 地质论评, 2019, 65(S1): 2. doi: 10.16509/j.georeview.2019.s1.029

    Li B, Chen J S, Liu M, et al. Formation age and geochemical characteristics of the Tiaojishan Formation in Western Liaoning[J]. Geological Review, 2019, 65(S1): 2. doi: 10.16509/j.georeview.2019.s1.029

    [25] 赵瑞鹏, 陈亮, 刘道宏, 等. 河北秦皇岛石门寨中生代火山岩的地球化学特征和锆石LA-ICP-MS U-Pb年龄[J]. 地质论评, 2019, 65(4): 929−947. doi: 10.16509/j.georeview.2019.04.010

    Zhao R P, Chen L, Liu D H, et al. Geochemical characteristics and zircon LA-ICP-MS U-Pb age of Mesozoic volcanic rocks in Shimen Village, Qinhuangdao, Hebei[J]. Geological Review, 2019, 65(4): 929−947. doi: 10.16509/j.georeview.2019.04.010

    [26] 吴孔友, 冀国盛. 秦皇岛地区地质认识实习指导书[M]. 北京: 中国石油大学出版社, 2007.

    Wu K Y, Ji G S. Field guide for geological understanding practice in the Qinhuangdao area[M]. Beijing: China University of Petroleum Press, 2007.

    [27] 郑亚东, Davis G A, 王琮, 等. 燕山带中生代主要构造事件与板块构造背景问题[J]. 地质学报, 2000, 74(4): 289−302. doi: 10.3321/j.issn:0001-5717.2000.04.001

    Zheng Y D, Davis G A, Wang C, et al. Major Mesozoic tectonic events and plate tectonic background of the Yanshan belt[J]. Acta Geologica Sinica, 2000, 74(4): 289−302. doi: 10.3321/j.issn:0001-5717.2000.04.001

    [28]

    Mysen B O, Virgo D, Scarfe C M. Relations between the anionic structure and viscosity of silicate melts—A Raman spectroscopic study[J]. American Mineralogist, 1980, 65(7−8): 690−710.

    [29]

    Sharma S K, Mammone J F, Nicol M F. Raman investigation of ring configurations in vitreous silica[J]. Nature, 1981, 292(5819): 140−141. doi: 10.1038/292140a0

    [30]

    McMillan P. Structural studies of silicate glasses and melts—Applications and limitations of Raman spectroscopy[J]. American Mineralogist, 1984, 69(7−8): 622−644.

    [31]

    Matson D W, Sharma S K, Philpotts J A. Raman spectra of some tectosilicates and of glasses along the orthoclase-anorthite and nepheline-anorthite joins[J]. American Mineralogist, 1986, 71(5−6): 694−704.

    [32]

    Mysen B O, Virgo D, Seifert F A. The structure of silicate melts: Implications for chemical and physical properties of natural magma[J]. Reviews of Geophysics, 1982, 20(3): 353−383. doi: 10.1029/RG020i003p00353

    [33]

    McMillan P F, Remmele R L. Hydroxyl sites in SiO2 glass: A note on infrared and Raman spectra[J]. American Mineralogist, 1986, 71(5−6): 772−778.

    [34]

    Mysen B O, Holtz F, Pichavant M, et al. Solution mechanisms of phosphorus in quenched hydrous and anhydrous granitic glass as a function of peraluminosity[J]. Geochimica et Cosmochimica Acta, 1997, 61(18): 3913−3926. doi: 10.1016/S0016-7037(97)00193-2

    [35]

    Long D A. Raman spectroscopy[M]. New York: McGraw-Hill, 1977.

    [36]

    Irving A J, Frey F A. Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and megacryst genesis[J]. Geochimica et Cosmochimica Acta, 1984, 48(6): 1201−1221. doi: 10.1016/0016-7037(84)90056-5

    [37]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society Special Publications, 1989, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19

    [38]

    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[M]//Thorpe R S. Orogenic andesites and related rocks. John Wiley & Sons, 1982: 528−548.

    [39]

    McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3−4): 223−253. doi: 10.1016/0009-2541(94)00140-4

    [40] 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1346−1356.

    Zhu R X, Xu Y G. The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Science China Earth Sciences, 2019, 49(9): 1346−1356.

    [41] 牛俊杰. 下地壳埃达克质岩浆房的发现: 来自角闪石循环晶的证据[D].北京: 中国地质大学(北京), 2020.

    Niu J J. The hidden Adakitic magma reservoir in the lower crust revealed by amphibole antecrysts[D]. Beijing: China University of Geosciences (Beijing), 2020.

    [42] 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004.

    Lu H Z, Fan H R, Ni P, et al. Fluid inclusions[M]. Beijing: Science Press, 2004.

    [43] 李霓, 樊祺诚, 孙谦, 等. 熔体包裹体对长白山天池火山千年大喷发的指示意义[J]. 岩石学报, 2008, 24(11): 2604−2614.

    Li N, Fan Q C, Sun Q, et al. The implication of melt inclusion for the millennium eruption of Changbaishan Tianchi volcano[J]. Acta Petrologica Sinica, 2008, 24(11): 2604−2614.

    [44] 张道涵, 魏俊浩, 付乐兵, 等. 熔体包裹体的形成、改造和分析方法及其矿床学应用[J]. 地球科学, 2017, 42(6): 990−1007.

    Zhang D H, Wei J H, Fu L B, et al. Formation, modification and analytical techniques of melt inclusion, and their applications in economic geology[J]. Earth Science, 2017, 42(6): 990−1007.

    [45]

    Bowen N L. The evolution of the igneous rocks[M]. Princeton: Princeton University Press, 1928.

    [46]

    Hartung E, Weber G, Caricchi L. The role of H2O on the extraction of melt from crystallising magmas[J]. Earth and Planetary Science Letters, 2019, 508: 85−96. doi: 10.1016/j.jpgl.2018.12.010

    [47]

    Cerpa N G, Wada I, Wilson C R. Effects of fluid influx, fluid viscosity, and fluid density on fluid migration in the mantle wedge and their implications for hydrous melting[J]. Geosphere, 2019, 15(1): 1−23. doi: 10.1130/ges01660.1

    [48]

    Rasmussen D J, Plank T A, Roman D C, et al. Magmatic water content controls the pre-eruptive depth of arc magmas[J]. Science, 2022, 375(6585): 1169−1172. doi: 10.1126/science.abm5174

图(5)  /  表(4)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  13
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-02
  • 修回日期:  2024-07-30
  • 录用日期:  2024-08-06
  • 网络出版日期:  2024-09-07
  • 发布日期:  2024-09-04
  • 刊出日期:  2025-01-30

目录

/

返回文章
返回