风化壳离子吸附型稀土矿中稀土元素含量测定与赋存形态研究

肖细炼, 郭敏, 邵鑫, 谭娟娟, 王磊, 邱啸飞

肖细炼,郭敏,邵鑫,等. 风化壳离子吸附型稀土矿中稀土元素含量测定与赋存形态研究[J]. 岩矿测试,2024,43(6):866−879. DOI: 10.15898/j.ykcs.202403130042
引用本文: 肖细炼,郭敏,邵鑫,等. 风化壳离子吸附型稀土矿中稀土元素含量测定与赋存形态研究[J]. 岩矿测试,2024,43(6):866−879. DOI: 10.15898/j.ykcs.202403130042
XIAO Xilian,GUO Min,SHAO Xin,et al. Rare Earth Element Contents and Occurrence Forms in Weathering Crust Ion Adsorption Rare Earth Ore[J]. Rock and Mineral Analysis,2024,43(6):866−879. DOI: 10.15898/j.ykcs.202403130042
Citation: XIAO Xilian,GUO Min,SHAO Xin,et al. Rare Earth Element Contents and Occurrence Forms in Weathering Crust Ion Adsorption Rare Earth Ore[J]. Rock and Mineral Analysis,2024,43(6):866−879. DOI: 10.15898/j.ykcs.202403130042

风化壳离子吸附型稀土矿中稀土元素含量测定与赋存形态研究

基金项目: 中国地质调查局花岗岩成岩成矿地质研究中心开放基金项目(PM202302);广东省地质勘查与城市地质专项“广东省重要成矿区稀土资源评价项目”(2024032)
详细信息
    作者简介:

    肖细炼,硕士,高级工程师,主要从事地球化学分析及生态环境分析研究。E-mail:xiaoxilianezhou@126.com

  • 中图分类号: P618.7;O657.63

Rare Earth Element Contents and Occurrence Forms in Weathering Crust Ion Adsorption Rare Earth Ore

  • 摘要:

    风化壳离子吸附型稀土矿床具有稀土元素(REEs)种类齐全、放射性活性低、重稀土含量高,且易开采等特点,是一种极为重要的稀土矿床类型。当前,有关该矿床中稀土元素的测定研究大都只测定了稀土元素全量及离子相分量,且有些方法操作流程较繁琐,对于稀土元素的各种赋存形态分析研究较少。但在研究风化壳离子吸附型稀土矿床的成矿规律时,不仅要分析其稀土元素全量,还需要分析影响该矿床中稀土元素的成矿背景、迁移、富集过程中移动差异性、长期性和可利用性的化学形态,因此,准确测定风化壳离子吸附型稀土矿床中稀土元素全量及各赋存形态含量非常必要。本文以五酸混合消解作为测定风化壳离子吸附型稀土矿样品中稀土元素全量的前处理方法,并将BCR法和Tessier法提取的稀土元素形态结果进行对比,以ICP-MS为检测手段,探讨了样品中稀土元素全量及各赋存形态含量分布情况。结果表明,五酸混合消解能将稀土矿样品中所有稀土元素完全溶出,且操作简便,方法精密度(RSD)为0.82%~5.19%,检出限为0.002~0.027μg/g,各元素测定值与认定值的相对误差为−4.70%~6.65%,∑LREEs/∑HREEs为1.25~16.50,涵盖轻稀土和重稀土富集。BCR法和Tessier法提取的稀土元素各形态结果的相对偏差(RD)为0.79%~8.07%,提取结果基本能相互对应吻合,∑REEs回收率为84.75%~107.13%,∑REEs测定值的相对偏差(RD)为0.62%~21.00%,相对误差(RE)小于40%。相较之下,BCR法前处理流程简单,但是划分的形态没有Tessier法直观、具体,无法获取更详细的各形态数据,在本文实验条件下,Tessier法对于稀土元素形态分析可能具有较好的适应性。风化壳全风化层样品中稀土元素主要以离子吸附态赋存在黏土类矿物表面,因而离子交换态含量最高,随着风化壳剖面深度增加,pH升高,稀土元素更容易与碳酸根或碳酸氢根结合,导致碳酸盐结合态中稀土元素含量增大,Ce元素在该层中极易从Ce3+氧化成Ce4+,以沉淀形式滞留于原地,不同于其他稀土元素分异-富集特征,形成Ce异常;而母岩中的稀土元素主要富集在独立矿物晶格中,残渣态含量最高,各赋存形态下所有稀土元素变化规律基本一致。

    要点

    (1)在经典四酸基础上加入少量硫酸,有利于难溶稀土氟化物的分解,可以实现稀土元素完全溶出。

    (2) BCR法和Tessier法提取的稀土元素形态结果基本能相互对应吻合。

    (3)风化壳中稀土元素全量及各赋存形态的含量差异与风化程度、矿物组成等因素密切相关。

    (4) Ce在风化壳全风化层中极易从Ce3+氧化成Ce4+,以胶态相或矿物相沉淀滞留于原地,形成Ce异常。

    HIGHLIGHTS

    (1) Adding a small amount of sulfuric acid to the classic four-type acid system is beneficial for the decomposition of insoluble rare earth fluorides, which can obtain complete dissolution of REEs.

    (2) REE forms extracted by the BCR method and Tessier method correspond and match each other.

    (3) The differences in the total amount and various REE forms in weathered crust are closely related to factors such as weathering degree and mineral composition.

    (4) Ce element is easily oxidized from Ce3+ to Ce4+ in the fully weathered layer of the weathering crust, and stays in situ in the form of colloidal or mineral phase precipitation, resulting in Ce anomaly.

  • 风化壳淋积型稀土矿床,即离子吸附型稀土矿床,此类矿床轻重稀土元素分配齐全,且可不经矿物分解的形式来分离稀土元素,是中国的优势矿产资源,也是世界上稀缺的矿产资源1-5。风化壳淋积型稀土矿床中稀土元素的赋存状态非常复杂,前人将此类矿床中的稀土元素划分为离子吸附相(含可交换性吸附态、专性吸附态),胶体分散相(含胶体吸附态、凝胶态),独立矿物相(含表生矿物态、残留矿物态),晶格杂质相(含类质同象态、内潜同晶态),这“四相八态”被称为“全相”稀土。目前“离子型”稀土提取工艺基本只能够利用“可交换吸附态”的稀土元素即“离子相”稀土,其他相态的稀土元素尚不能被有效地回收利用6。传统观点认为,风化壳淋积型稀土矿床中,稀土主要以吸附态赋存于风化壳黏土矿物表面,独立矿物相、晶格杂质等其他赋存形式占比较少。但近年来同步辐射研究显示,稀土元素也同时以内层络合物形式存在7-8,而内层络合有可能抑制了矿石中稀土的离子交换率9。稀土元素还可以与有机质形成稳定的有机-稀土络合物10。如何将离子吸附型稀土矿中各种形态的稀土元素有效地溶出,对于提高稀土资源利用率十分重要。

    分析风化壳淋积型稀土矿样品中的稀土元素时,常用的前处理方法有酸溶、碱熔、强电解质交换等方法。对于离子吸附型稀土矿,盐酸-硝酸-氢氟酸-高氯酸-硫酸(五酸)敞开法可在一定条件下代替操作复杂的碱熔法11-12,用于测定样品中的“全相”稀土元素。《离子型稀土矿混合稀土氧化物化学分析方法 十五个稀土元素氧化物配分量的测定》(GB/T 18882.1—2008)中则选择使用50%的盐酸来溶出离子型稀土矿样品中的稀土元素。硫酸铵浸提是目前应用最为普遍的提取离子吸附型稀土矿中稀土元素的方法,也是在离子吸附型稀土矿稀土提取工艺中最常用的前处理方法13-16。上述前处理方法对风化壳淋积型稀土矿样品中稀土元素的溶出机理与结果的差异,尚无相关比较与讨论。

    本文选取混合酸(五酸)消解、盐酸消解、硝酸消解、硫酸铵浸提的前处理方法,对来自中国南岭地区风化壳淋积型稀土矿的多个稀土样品开展了前处理研究,使用电感耦合等离子体质谱(ICP-MS)对处理后的样品进行测定,并探讨了不同前处理方法获得结果的差异,以及稀土元素化学特征和赋存状态之间的关系。以期为进一步研究风化壳淋积型稀土矿中稀土元素提取方法提供新的思路。

    稀土元素的测定使用的仪器为NexION 300D电感耦合等离子体质谱仪(美国PerkinElmer公司)。仪器工作条件见表1

    表  1  电感耦合等离子体质谱仪工作条件
    Table  1.  Operating parameters for ICP-MS measurements.
    工作参数 设定值 工作参数 设定值
    ICP功率 1300W 跳峰 1点/质量
    冷却气流速 13.0L/min 停留时间 10ms/点
    辅助气流速 1.2L/min 扫描次数 40次
    雾化气流速 0.9L/min 测量时间 31s
    取样锥孔径 1.0mm 截取锥孔径 0.9mm
    超锥孔径 1.1mm
    下载: 导出CSV 
    | 显示表格

    样品消解实验主要设备:控温鼓风干燥箱;多孔控温电热板;平板电热板;分析天平;30mL带盖聚四氟乙烯坩埚;100mL玻璃烧杯及表面皿;50mL离心管等。

    单元素标准储备液:La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、Sc、Ba浓度均为1000μg/mL (国家有色金属及电子材料分析测试中心)。

    ICP-MS校准标准工作溶液:由标准储备液逐级稀释至20ng/mL。其中STD1为Sc、Y、La、Ce、Pr、Nd、Sm、Eu的混合溶液,各元素浓度均为20ng/mL,介质分别为5%硝酸和5%盐酸;STD2为Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu的混合溶液,各元素浓度均为20ng/mL,介质分别为5%硝酸和5%盐酸。

    干扰校正溶液:Ba、Ce、Pr、Nd单元素溶液,浓度均为1μg/mL,介质分别为5%硝酸和5%盐酸。

    内标溶液:10ng/mL 的Rh、Re混合溶液,介质分别为5%硝酸和5%盐酸。内标溶液于测定时通过三通在线加入。

    硝酸、盐酸、氢氟酸均为BV Ⅲ级;硫酸、高氯酸为优级纯;过氧化氢:MOS级;硫酸铵:分析纯;超纯水:电阻率大于18MΩ•cm。

    实验用样品采集自南岭地区的六个离子吸附型稀土样品,编号分别为L03、L05、L14、L22、L20、L28。按照《岩石和矿石化学分析方法总则及一般规定》(GB/T 14505)的相关规定,加工样品的粒径应小于74μm,于105℃烘箱烘干2h,备用。

    对样品分别开展混合酸(五酸)消解、盐酸消解、硝酸消解、硫酸铵浸提的前处理。其消解流程如下。

    (1)混合酸消解(五酸):称取0.1000g样品置于30mL聚四氟乙烯坩埚中,加入3mL盐酸、2mL硝酸、3mL氢氟酸、1mL高氯酸、1mL 50%硫酸,盖上坩埚盖,把坩埚放在控温电热板上,开启电热板,控制温度为130℃分解样品2h。洗净坩埚盖,将电热板升温至150℃,继续分解样品2h,然后将电热板升温至180℃蒸至高氯酸浓烟冒尽。取下坩埚,冷却至室温,用50%盐酸冲洗坩埚壁,再放在电热板上继续赶酸,直至溶液体积不再变化,重复操作此步骤两次。取下坩埚,加入10mL 50%盐酸,将坩埚放置在电热板上溶解盐类约15min,取下坩埚冷却至室温后,转移至50mL容量瓶中,用水稀释定容,摇匀备用。分取制备的溶液2.50mL,稀释至10.00mL,摇匀,此为混合酸消解样品待测溶液。

    (2)硝酸消解:称取0.3000g样品置于100mL烧杯中,加入20mL 50%硝酸,加热至冒大气泡后,冷却至室温,用水定容至100mL。移取上述溶液10mL用5%硝酸定容至100mL;此为硝酸消解样品待测溶液。

    (3)硝酸+过氧化氢消解:称取0.3000g样品置于100mL烧杯中,加入20mL 50%硝酸和0.5mL过氧化氢,加热至冒大气泡后,冷却至室温,用水定容至100mL。移取上述溶液10mL用5%硝酸定容至100mL;此为硝酸和过氧化氢消解样品待测溶液。

    (4)盐酸+过氧化氢消解:称取0.3000g样品置于100mL烧杯中,加入20mL 50%盐酸和0.5mL过氧化氢,加热至冒大气泡后,冷却至室温,用水定容至100mL。移取上述溶液10mL用5%盐酸定容至100mL;此为盐酸和过氧化氢消解样品待测溶液。

    (5)硫酸铵浸提:称取5.00g样品置于50mL离心管中,加入2.5%硫酸铵溶液40mL,摇匀后静置24h。取1mL上清液,加入5%硝酸9mL,此为硫酸铵浸提取样品待测溶液。

    所有前处理方法的试剂空白与样品消解均同时进行。

    按照ICP-MS操作规程启动仪器,仪器点火后稳定30min以上。用仪器调试液进行仪器参数最佳化调试。按表1中的仪器工作条件测定溶液中的139La、140Ce、141Pr、142Nd、152Sm、153Eu、158Gd、159Tb、164Dy、165Ho、166Er、169Tm、174Yb、175Lu、89Y、45Sc共16种元素,同时测定空白溶液。以常用的干扰系数校正法来消除轻稀土对重稀土的干扰17-21。不同消解方法应选取与之基体相匹配的内标和校准溶液,以降低质谱测定中的基体效应。

    混合酸溶采用离子型稀土矿石国家一级标准物质GBW07160、GBW07161进行质量监控;其他前处理方法通过加标试验对前处理过程进行监控。

    混合酸(五酸)消解法是基于经典四酸消解法的基础之上。通常情况下,酸溶法过程中引入氢氟酸是为了使样品完全分解,特别是硅酸盐结构的分解。但对于稀土样品,引入氢氟酸易生成难溶氟化物,导致稀土结果偏低。引入少量硫酸能有效地提升赶酸过程的温度,同时赶酸过程中溶液不会完全蒸干,既有利于难溶稀土氟化物的分解,也能尽量地避免稀土氟化物的沉淀。对于离子吸附型稀土矿,五酸敞开法可在一定条件下代替操作复杂的碱熔法11,用于测定样品中的稀土元素。本研究中采用GBW07160和GBW07161对五酸消解法进行监控,测定结果均在标准值范围内(表2)。因此,可将混合酸(五酸)消解的结果视为样品中“全相”稀土量。

    表  2  GBW07160和GBW07161采用混合酸(五酸)消解测定结果(n=3)
    Table  2.  Analytical results of GBW07160 and GBW07161 determined by open mixed acid digestion (n=3).
    稀土
    元素
    GBW07160 GBW07161
    五酸消解结果
    (μg/g)
    标准值
    (μg/g)
    五酸消解结果
    (μg/g)
    标准值
    (μg/g)
    Sc 6.22 5.67~6.98 8.29 7.69±0.59
    Y 2383 2386±205 965 976±47
    La 85.3 93.8±8.5 2271 2362±145
    Ce 24.7 28.3±4.1 178 187±8.1
    Pr 33.8 37.2 440 447±24.8
    Nd 170 189±17 1568 1595±86
    Sm 115 129±17 286 285±25.9
    Eu 1.10 1.55±0.26 62.3 64.8±3.63
    Gd 210 234 234 226±26
    Tb 46.4 49.1±5.1 31.6 34.6±2.2
    Dy 315 314±44 182 183±17
    Ho 68.1 65.5±5.4 31.9 35.7±4.0
    Er 207 192±26 90.1 96±9
    Tm 26.8 27.7±3.1 12.3 13.2±1.1
    Yb 184 193±26 78.1 87.8±11
    Lu 24.9 26.7±2.6 11.24 12.0±0.88
    下载: 导出CSV 
    | 显示表格

    硝酸、盐酸消解处理或是硫酸铵浸提法,都只能将离子吸附型稀土样品中部分稀土元素溶出。50%的盐酸或硝酸能够溶出以离子状态吸附于黏土矿物或铁锰氧化物中的稀土元素,以及以氧化物、碳酸盐、磷酸盐等形式存在的稀土元素。但是对于硅酸盐结构中的稀土元素,其溶出效果有限。硫酸铵浸提法则只能溶出离子相稀土。呈离子状态被吸附于高岭土、长石、云母等黏土表面和颗粒间的稀土元素,在遇到化学性质更活泼的阳离子强电解质NH4+时能被其交换解吸而转入溶液。这部分能被离子交换浸出工艺交换出的稀土,即为离子相稀土14

    硝酸消解、硝酸+过氧化氢消解、盐酸+过氧化氢消解法和硫酸铵提取法,在称取样品后加入高浓度标准溶液,随后按1.3节方法处理样品,对前处理流程进行监控。各元素加入量及结果见表3,以样品L14和L28为例,加标回收率在80%~120%之间,满足实验分析要求。

    表  3  加标试验回收率 (n=3)
    Table  3.  Recovery rates of added standard tests (n=3).
    样品
    L04
    硝酸消解 硝酸+双氧水消解 盐酸+双氧水消解 硫酸铵浸提
    加标量
    (μg)
    回收量
    (μg)
    回收率
    (%)
    加标量
    (μg)
    回收量
    (μg)
    回收率
    (%)
    加标量
    (μg)
    回收量
    (μg)
    回收率
    (%)
    加标量
    (μg)
    回收量
    (μg)
    回收率
    (%)
    Sc 6.00 6.48 108 6.00 5.96 99.4 6.00 5.43 90.5 200 215.4 108
    Y 6.00 6.50 108 6.00 5.72 95.3 6.00 6.19 103 200 183.2 91.6
    La 6.00 6.84 114 6.00 6.86 114 6.00 5.99 100 200 212.9 106
    Ce 6.00 6.29 105 6.00 6.53 109 6.00 6.60 110 200 208.1 104
    Pr 6.00 5.75 96 6.00 6.08 101 6.00 7.12 119 200 192.0 96.0
    Nd 6.00 5.66 94 6.00 5.92 98.7 6.00 6.40 107 200 177.9 89.0
    Sm 6.00 6.43 107 6.00 6.57 109 6.00 6.49 108 200 203.4 102
    Eu 6.00 6.14 102 6.00 6.28 105 6.00 6.18 103 200 200.6 100
    Gd 1.50 1.44 96 1.50 1.70 113 1.50 1.61 107 80.0 80.4 100
    Tb 1.50 1.62 108 1.50 1.68 112 1.50 1.63 109 80.0 80.2 100
    Dy 1.50 1.45 96 1.50 1.67 111 1.50 1.64 109 80.0 80.1 100
    Ho 1.50 1.61 108 1.50 1.61 107 1.50 1.57 105 80.0 82.8 103
    Er 1.50 1.62 108 1.50 1.67 111 1.50 1.37 91.6 80.0 84.3 105
    Tm 1.50 1.55 103 1.50 1.57 105 1.50 1.57 104 80.0 80.9 101
    Yb 1.50 1.60 106 1.50 1.63 109 1.50 1.60 106 80.0 77.7 97.1
    Lu 1.50 1.50 100 1.50 1.56 104 1.50 1.58 105 80.0 83.7 105
    样品
    L28
    硝酸消解 硝酸+双氧水消解 盐酸+双氧水消解 硫酸铵浸提
    加标量
    (μg)
    回收量
    (μg)
    回收率
    (%)
    加标量
    (μg)
    回收量
    (μg)
    回收率
    (%)
    加标量
    (μg)
    回收量
    (μg)
    回收率
    (%)
    加标量
    (μg)
    回收量
    (μg)
    回收率
    (%)
    Sc 6.00 6.55 109 6.00 6.55 109 6.00 5.87 97.9 100 106.6 107
    Y 6.00 6.10 102 6.00 6.27 104 6.00 5.92 98.6 100 105.1 105
    La 6.00 6.76 113 6.00 6.88 115 6.00 4.93 82.1 100 107.6 108
    Ce 6.00 6.18 103 6.00 6.56 109 6.00 6.14 102 100 106.8 107
    Pr 6.00 6.16 103 6.00 6.10 102 6.00 6.68 111 100 110.9 111
    Nd 6.00 6.13 102 6.00 6.19 103 6.00 5.04 84.0 100 116.6 117
    Sm 6.00 6.55 109 6.00 6.45 107 6.00 5.95 99.2 100 98.9 98.9
    Eu 6.00 6.35 106 6.00 6.31 105 6.00 6.17 103 100 118.4 118
    Gd 1.50 1.64 109 1.50 1.79 119 1.50 1.75 116 4.00 4.09 102
    Tb 1.50 1.61 108 1.50 1.54 103 1.50 1.56 104 4.00 3.88 96.9
    Dy 1.50 1.44 96.0 1.50 1.70 114 1.50 1.57 104 4.00 4.31 108
    Ho 1.50 1.61 107 1.50 1.57 105 1.50 1.55 103 4.00 4.17 104
    Er 1.50 1.56 104 1.50 1.69 113 1.50 1.46 97.1 4.00 3.92 98.0
    Tm 1.50 1.52 102 1.50 1.49 100 1.50 1.53 102 4.00 4.03 101
    Yb 1.50 1.51 100 1.50 1.56 104 1.50 1.50 100 4.00 3.61 90.3
    Lu 1.50 1.52 102 1.50 1.55 103 1.50 1.52 102 4.00 4.01 100
    下载: 导出CSV 
    | 显示表格

    选取六个离子吸附型稀土矿样品,采用不同前处理方法测得各稀土元素总量见表4。不同前处理方法提取出的稀土量存在较大差异,其中混合酸(五酸)消解结果最高,硝酸消解、硝酸和过氧化氢消解、盐酸和过氧化氢消解结果相近,略低于混合酸(五酸)消解溶出稀土量,硫酸铵浸提溶出稀土量最低。用50%硝酸、盐酸等消解方法溶出的稀土量占混合酸(五酸)消解溶出稀土量(全相稀土)的71.7%~97.5%,硫酸铵浸提溶出的稀土量(离子相稀土)仅占全相稀土量的9.1%~75.5%(表4)。这与混合酸(五酸)消解溶出全相稀土,50%的盐酸或硝酸能溶出离子态以及以氧化物、碳酸盐、磷酸盐等形式存在的稀土,而硫酸铵浸提仅能溶出离子相稀土的原理一致。

    表  4  不同前处理方法测得稀土总量与提取率 (n=3)
    Table  4.  Content and extraction rates of REEs by different pretreatment methods (n=3).
    样品前处理方式 六个离子吸附型稀土样品稀土总量测定结果(μg/g)
    L20 L28 L22 L14 L05 L03
    混合酸 208 344 310 511 771 152
    硝酸 178 275 276 439 752 109
    硝酸+过氧化氢 176 265 272 444 737 113
    盐酸+过氧化氢 175 259 267 419 707 119
    硫酸铵浸提 19.0 106 160 308 581 15.4
    样品前处理方式 六个离子吸附型稀土样品稀土总量提取率(%)
    L20 L28 L22 L14 L05 L03
    硝酸 85.6 79.9 89.0 85.9 97.5 71.7
    硝酸+过氧化氢 84.6 77.0 87.7 86.9 95.6 74.3
    盐酸+过氧化氢 84.1 75.3 86.1 82.0 91.7 78.3
    硫酸铵浸提 9.1 30.8 51.7 60.3 75.5 10.2
    注:提取率为各种方法提取稀土结果与混合酸(五酸)消解结果(全相稀土)相比的百分数。
    下载: 导出CSV 
    | 显示表格

    不同消解方法结果的差异与样品中稀土元素的赋存状态密切相关,混合酸消解能够将样品结构彻底破坏,样品中所有的稀土元素都能被溶出。受原岩化学成分的影响,不同矿区风化壳矿石的化学成分不完全相同,但有许多共同点。稀土元素在风化壳各层发生分异-富集,原岩在风化后仍有一部分稀土以矿物相形式赋存14,离子相的稀土的含量与风化壳各层的风化程度、矿物组成等因素密切相关22-24,风化壳不同部位离子相稀土含量占比不尽相同。盐酸或硝酸能够溶出以离子状态吸附于黏土矿物或铁锰氧化物中的稀土元素,以及碳酸盐、磷酸盐等形式存在的稀土元素。但是,还有部分稀土元素稳定存在于不能被硝酸和盐酸完全溶解的硅酸盐矿物晶格中。而硫酸铵浸提只能将样品中离子相稀土溶出,因此,盐酸和硝酸的消解结果低于全相稀土的量,高于硫酸铵浸提法。

    实验结果(图1)显示,硝酸和盐酸消解处理中,Sc的提取率也远低于稀土元素总量的提取率,硫酸铵浸提则不能将钪(Sc)溶出。这是由于Sc3+的离子半径(0.075nm)明显小于镧系元素离子半径(0.106~0.085nm),却与Mg2+(0.072nm)和Fe3+(0.078nm)具有相似的离子半径,因而能以类质同象的形式替换Mg2+、Fe3+离子进入多种造岩矿物的晶格中25-26。因此,Sc元素几乎不能被NH4+以离子交换的形式置换到溶液中,而存在于造岩矿物晶格中的Sc也只能被硝酸或者盐酸部分溶出。

    图  1  不同样品前处理方法Sc、Ce和稀土总量(∑REE)的提取率
    Figure  1.  Extraction rates of Sc, Ce and ∑REE by different pretreatment methods.

    铈(Ce)是地壳中丰度最高的稀土元素,Ce作为变价元素,其含量变化受氧化还原条件等多种因素影响27。自然界中的Ce通常呈Ce3+和Ce4+两种价态,Ce3+极易氧化成Ce4+,以胶态相Ce(OH)4或矿物相方铈矿(CeO2)的形式而滞留于原地28-29。Ce与其他稀土元素不同的富集-分异特性也导致在硫酸铵浸提中,Ce元素的提取率与其他稀土元素提取率、轻稀土总量提取率以及稀土总量提取率之间不存在相关性(图1图2)。

    图  2  不同样品前处理方法轻稀土元素(除Ce外)提取率
    Figure  2.  Extraction rates of LREEs by different pretreatment methods.

    比较不同消解方法中稀土元素的提取率可以发现,离子半径相近的稀土元素,提取率也往往相近(图2图3)。钇(Y)与镧系元素具有很强的化学亲和性,与钬(Ho)也具有相似的离子半径(Y3+ 0.088nm,Ho3+ 0.089nm),因此将Y划为重稀土一组30。从图3也可以发现,在同一种前处理方法中,Y和Ho具有相近的提取率。大部分情况下轻稀土的提取率高于重稀土,轻稀土单元素提取率与轻稀土总量(除Ce以外)提取率(图2)、重稀土单元素提取率与重稀土总量提取率正相关(图3)。

    图  3  不同样品前处理方法重稀土元素提取率
    Figure  3.  Extraction rates of HREEs by different pretreatment methods.

    本文初步讨论了不同前处理方法溶出风化壳淋积型稀土矿中稀土元素的差异及影响因素,能够为进一步研究风化壳淋积型稀土矿中稀土元素提取方法提供参考依据。混合酸(五酸)消解能够提取出风化壳淋积型稀土矿样品中的全相稀土,可用于评价风化壳淋积型稀土矿中稀土总量。硝酸消解、硝酸和过氧化氢消解、盐酸和过氧化氢消解能够溶出离子相稀土,以及以氧化物、碳酸盐、磷酸盐等形式存在的稀土元素,对于硅酸盐结构中的稀土元素,不能完全溶出,因此,该方法适用于评价样品中以离子态、氧化物、碳酸盐、磷酸盐等形式存在稀土元素的含量。硫酸铵浸提则能提取出离子相稀土,可用于评价风化壳淋积型稀土矿中离子态稀土含量。

    稀土元素的提取率,受稀土元素化学特性和赋存状态的影响较大。由于Sc3+的离子半径明显小于其他稀土元素,能以类质同象的形式进入多种造岩矿物的晶格中,从而导致硫酸铵浸提不能将Sc溶出。Ce元素与其他稀土元素不同的富集-分异特性,也使得其在硫酸铵浸提中提取率与其他轻稀土元素不一致。具有相近离子半径的稀土元素,在相同的前处理中往往提取效率也相近。

  • 图  1   BCR法和Tessier法的方法准确度比对

    Figure  1.   Comparison of accuracy of BCR method and Tessier method

    图  2   BCR法和Tessier法提取稀土元素形态结果比对

    Figure  2.   Comparison of REE extraction results between BCR method and Tessier method

    图  3   Tessier法提取稀土元素各形态含量分布

    Figure  3.   The content distribution of various REE forms extracted by Tessier method

    图  4   轻稀土元素(a)和重稀土元素(b)回收率

    Figure  4.   The rate of recovery of LREEs and HREEs

    图  5   不同类型样品L01(a)和L08(b)中稀土元素各形态含量占比

    Figure  5.   The content proportion of various REE forms in different types of samples

    表  1   电感耦合等离子体质谱仪工作条件

    Table  1   Operating parameters for ICP-MS measurements

    工作参数设定值工作参数设定值
    射频功率1300W扫描次数40次
    冷却气(Ar)流速13.0L/min采集方式跳峰,3点/质量
    辅助气(Ar)流速1.0L/min停留时间10ms/点
    雾化器气体(Ar)流速0.85L/min测量时间30s
    采样锥(镍)孔径1.0mm分析室真空度≤5.5×10−7mbar
    截取锥(镍)孔径0.7mm主循环次数3次
    下载: 导出CSV

    表  2   样品野外采集信息

    Table  2   Field sampling information of the samples

    样品编号 矿区 矿体 样品类型 岩性 采样深度(m)
    W02 A区 S1 全风化 中粒黑云母二长花岗岩 8~10
    W04 B区 S15 全风化 粗中粒二云二长花岗岩 6~8
    L01 D区 S3 全风化 中粒二长花岗岩 10~12
    L03 D区 S1 全风化 中粒花岗岩 3.8~5.8
    L05 D区 S3 母岩 中粗粒黑云母二长花岗岩 地表
    L08 D区 S1 母岩 中细粒黑云母二长花岗岩 地表
    下载: 导出CSV

    表  3   方法精密度、检出限和准确度

    Table  3   Precision, detection limit and accuracy tests of the method

    稀土元素 GBW07160 GBW07161 GBW07185 空白
    (μg/g)
    检出限
    (μg/g)
    w0
    (μg/g)
    w
    (μg/g)
    RSD
    (%)
    RE
    (%)
    w0
    (μg/g)
    w
    (μg/g)
    RSD
    (%)
    RE
    (%)
    w0
    (μg/g)
    w
    (μg/g)
    RSD
    (%)
    RE
    (%)
    La 93.8±8.5 92.9 1.81 −0.99 2362±145 2372 1.59 0.43 6.52±0.17 6.45 3.57 −1.12 0.24 0.022
    Ce 28.3±4.1 27.9 3.17 −1.37 187±8 186 2.34 −0.70 13.4±0.7 13.1 3.07 −2.62 0.31 0.025
    Pr (37.2) 36.7 3.58 −1.29 447±25 444 1.75 −0.77 1.58±0.14 1.51 4.59 −4.48 0.033 0.008
    Nd 189±17 191 2.26 1.19 1595±86 1586 1.56 −0.55 6.72±0.40 6.79 2.69 1.02 0.12 0.023
    Sm 129±17 132 1.66 2.26 285±26 288 1.43 1.18 2.14±0.22 2.18 3.86 1.93 0.017 0.008
    Eu 1.55±0.26 1.48 5.04 −4.52 64.8±3.6 66.4 1.76 2.39 0.11±0.03 0.11 5.19 −4.70 0.003 0.003
    Gd (234) 236 1.71 0.96 226±26 228 2.05 1.04 3.01±0.26 3.07 3.58 1.97 0.016 0.008
    Tb 49.1±5.1 47.8 3.29 −2.56 34.6±2.2 33.7 2.89 −2.63 0.61±0.07 0.62 2.84 1.94 0.003 0.003
    Dy 314±44 317 1.16 0.96 183±17 186 1.68 1.76 4.11±0.13 3.98 1.95 −3.22 0.013 0.005
    Ho 65.5±5.4 63.9 2.07 −2.42 35.7±4.0 34.7 2.58 −2.83 0.77±0.07 0.75 3.12 −2.11 0.003 0.004
    Er 192±26 194 1.37 1.27 96.0±8.7 97.9 1.85 1.93 2.32±0.20 2.38 3.07 2.70 0.006 0.004
    Tm 27.7±3.1 27.5 3.47 −0.90 13.2±1.1 12.7 3.04 −3.48 0.33±0.03 0.35 4.89 5.79 0.001 0.002
    Yb 193±26 195 0.82 1.26 87.8±10.5 89.0 2.24 1.31 2.08±0.24 2.15 4.19 3.30 0.007 0.006
    Lu 26.7±2.6 27.1 3.55 1.42 12.0±0.9 12.3 2.88 2.75 0.33±0.03 0.35 5.04 6.65 0.001 0.002
    Y 2386±205 2398 1.69 0.49 976±47 984 1.69 0.86 23.6±0.6 23.7 2.57 0.62 0.077 0.027
    注:括号内的数据为参考值。
    下载: 导出CSV

    表  4   稀土元素全量测定结果

    Table  4   Determination results of REEs

    稀土元素 W02
    (μg/g)
    RD
    (%)
    W04
    (μg/g)
    RD
    (%)
    L01
    (μg/g)
    RD
    (%)
    L03
    (μg/g)
    RD
    (%)
    L05
    (μg/g)
    RD
    (%)
    L08
    (μg/g)
    RD
    (%)
    La 584 1.07 477 1.40 455 1.60 260 1.26 71.2 1.43 92.1 1.63
    Ce 222 2.66 123 3.71 237 1.95 118 3.63 94.3 1.38 179 1.06
    Pr 98.4 2.34 96.2 2.08 75.9 4.72 55.4 2.56 16.4 1.83 18.9 3.70
    Nd 326 2.82 354 2.75 253 1.35 171 2.98 55.7 1.26 64.5 1.30
    Sm 56.4 1.56 91.0 1.87 52.6 4.71 21.5 6.98 9.34 3.00 10.6 2.26
    Eu 6.05 4.30 7.41 2.16 5.66 6.71 2.05 5.85 1.22 3.28 1.27 3.15
    Gd 35.4 0.34 58.2 0.45 59.1 2.81 11.4 4.39 7.07 1.41 8.59 2.10
    Tb 4.30 3.72 8.76 1.14 12.9 6.51 1.08 11.11 1.05 7.62 1.21 6.61
    Dy 19.7 1.22 45.3 2.69 80.6 2.70 3.46 4.62 5.64 1.77 6.17 1.62
    Ho 3.38 2.37 7.74 1.29 15.6 4.76 0.63 6.35 1.06 3.77 1.11 5.41
    Er 9.98 3.81 22.4 5.54 40.7 4.86 2.04 7.84 3.00 7.33 2.92 2.74
    Tm 1.39 4.32 3.56 7.30 5.91 3.38 0.27 14.81 0.46 13.04 0.41 9.76
    Yb 10.1 2.97 28.2 1.35 37.6 3.30 1.74 2.30 3.15 3.81 2.64 2.27
    Lu 1.22 8.20 3.39 5.90 4.59 6.54 0.24 8.33 0.39 10.26 0.32 12.50
    Y 83.1 0.91 245 0.85 608 1.43 17.2 5.58 28.7 0.84 29.5 1.02
    ∑REEs 1462 0.79 1571 0.22 1944 0.63 666 0.64 299 0.20 420 1.25
    ∑LREEs 1293 0.91 1149 0.12 1079 2.02 628 0.53 248 0.08 367 1.40
    ∑HREEs 169 0.14 422 1.14 865 1.10 38.0 2.52 50.6 1.58 52.9 0.19
    ∑LREEs/∑HREEs 7.67 2.72 1.25 16.50 4.91 6.93
    下载: 导出CSV

    表  5   BCR法稀土元素分步提取结果(n=2)

    Table  5   Determination results of REE sequential extraction for BCR method

    样品
    编号
    形态
    代号
    La
    (μg/g)
    Ce
    (μg/g)
    Pr
    (μg/g)
    Nd
    (μg/g)
    Sm
    (μg/g)
    Eu
    (μg/g)
    Gd
    (μg/g)
    Tb
    (μg/g)
    Dy
    (μg/g)
    Ho
    (μg/g)
    Er
    (μg/g)
    Tm
    (μg/g)
    Yb
    (μg/g)
    Lu
    (μg/g)
    Y
    (μg/g)
    ∑REEs
    (μg/g)
    RD
    (%)
    REEs
    回收率
    (%)
    W02 F1 510 24.5 75.0 249 41.7 4.01 27.0 3.14 14.0 2.39 7.52 0.90 7.14 0.79 66.2 1033 2.47 85.63
    F2 1.17 10.0 0.31 1.35 0.26 0.02 0.25 0.03 0.17 0.02 0.04 0.01 0.07 0.01 0.25 14.0 3.14
    F3 4.69 34.9 1.69 5.49 1.53 0.12 0.88 0.11 0.54 0.08 0.28 0.05 0.47 0.05 1.99 52.8 5.15
    F4 8.69 125 1.78 6.59 1.48 0.57 1.52 0.16 0.85 0.14 0.52 0.07 0.61 0.08 3.25 151 2.83
    合量 525 194 78.8 262 44.5 4.72 29.7 3.44 15.6 2.63 8.36 1.03 8.29 0.93 71.7 1251 1.95
    W04
    F1 382 10.2 67.6 251 63.9 5.44 40.8 5.17 24.2 4.03 11.7 1.49 12.3 1.47 101 982 2.03 84.88
    F2 0.91 6.48 0.28 1.04 0.29 0.04 0.25 0.03 0.24 0.03 0.08 0.02 0.21 0.02 0.34 10.3 6.21
    F3 3.66 19.0 1.52 5.44 1.91 0.21 1.04 0.14 0.90 0.17 0.38 0.07 0.71 0.08 2.42 37.7 4.56
    F4 30.9 87.0 7.69 27.2 6.77 0.35 6.44 1.68 11.96 2.38 7.69 1.36 10.9 1.22 99.3 303 3.47
    合量 417 123 77.1 285 72.9 6.04 48.5 7.02 37.3 6.61 19.9 2.94 24.1 2.79 203 1333 0.62
    L01 F1 410 5.92 63.3 213 43.6 4.19 47.0 11.0 64.1 11.7 34.6 5.08 29.5 3.69 645 1591 1.72 101.64
    F2 8.15 5.96 2.35 7.51 1.95 0.22 1.95 0.49 3.19 0.67 1.85 0.29 2.11 0.25 13.1 50.0 1.24
    F3 16.0 12.1 4.38 14.1 3.14 0.31 3.29 0.89 5.21 1.24 3.14 0.44 3.35 0.41 30.1 98.0 2.82
    F4 3.66 214 0.96 3.11 0.76 0.31 1.85 0.28 1.49 0.29 1.05 0.19 1.51 0.22 6.98 237 3.00
    合量 438 238 71.0 238 49.5 5.03 54.1 12.7 74.0 13.9 40.6 6.00 36.5 4.57 695 1976 1.64
    L03 F1 201 20.1 43.7 124 14.6 1.38 7.51 0.72 1.89 0.34 1.22 0.11 0.89 0.11 9.88 427 1.98 84.75
    F2 5.48 4.31 1.44 5.48 0.91 0.07 0.69 0.14 0.78 0.15 0.39 0.05 0.39 0.05 3.33 23.7 4.05
    F3 9.77 10.1 2.77 10.2 1.49 0.12 0.89 0.13 0.63 0.10 0.34 0.05 0.41 0.05 3.35 40.4 5.69
    F4 5.44 60.4 1.00 3.21 0.46 0.07 0.66 0.05 0.24 0.05 0.09 0.02 0.10 0.02 0.91 72.7 4.24
    合量 222 94.9 48.9 142.9 17.5 1.64 9.75 1.04 3.54 0.64 2.04 0.23 1.79 0.23 17.5 564 0.71
    L05 F1 23.1 5.55 6.35 22.2 3.28 0.34 2.34 0.34 1.47 0.24 0.68 0.07 0.55 0.05 7.56 74.1 3.81 107.13
    F2 14.1 10.1 3.44 12.0 2.24 0.24 1.54 0.37 1.24 0.26 0.65 0.07 0.66 0.08 6.44 53.4 2.77
    F3 8.00 8.44 2.24 7.34 1.21 0.11 0.79 0.12 0.62 0.13 0.24 0.04 0.31 0.03 3.44 33.1 7.98
    F4 28.1 75.7 6.44 21.2 3.69 0.66 3.04 0.49 2.85 0.58 1.55 0.29 1.77 0.19 12.9 159 4.16
    合量 73.3 99.8 18.5 62.7 10.4 1.35 7.71 1.32 6.18 1.21 3.12 0.47 3.29 0.35 30.3 320 3.32
    L08 F1 8.44 12.3 2.11 5.57 0.55 0.04 0.44 0.05 0.29 0.04 0.09 0.01 0.08 0.01 1.38 31.4 6.94 104.51
    F2 6.44 12.4 1.49 7.14 1.59 0.09 1.35 0.25 1.34 0.19 0.55 0.08 0.49 0.06 7.04 40.5 4.74
    F3 5.49 8.44 1.17 3.74 0.59 0.04 0.41 0.05 0.32 0.05 0.14 0.02 0.16 0.02 2.08 22.7 6.61
    F4 71.4 158.3 14.2 49.7 7.88 1.19 6.25 0.95 4.69 0.88 2.38 0.35 2.24 0.29 23.2 344 1.92
    合量 91.8 191 19.0 66.2 10.6 1.36 8.45 1.30 6.64 1.16 3.16 0.46 2.97 0.38 33.7 439 1.79
    注:回收率为各形态分析步骤合量与稀土元素全量之比百分数。
    下载: 导出CSV

    表  6   Tessier法稀土元素分步提取结果(n=2)

    Table  6   Determination results of REE sequential extraction for Tessier method

    样品
    编号
    形态
    代号
    La
    (μg/g)
    Ce
    (μg/g)
    Pr
    (μg/g)
    Nd
    (μg/g)
    Sm
    (μg/g)
    Eu
    (μg/g)
    Gd
    (μg/g)
    Tb
    (μg/g)
    Dy
    (μg/g)
    Ho
    (μg/g)
    Er
    (μg/g)
    Tm
    (μg/g)
    Yb
    (μg/g)
    Lu
    (μg/g)
    Y
    (μg/g)
    ∑REEs
    (μg/g)
    RD
    (%)
    ∑REEs
    回收率
    (%)
    W02 T1 16.9 0.23 2.95 10.4 2.37 0.22 1.70 0.23 1.09 0.18 0.50 0.07 0.42 0.05 5.18 42.5 4.28 90.45
    T2 467 17.3 52.6 163 18.9 1.74 15.4 1.39 4.72 0.85 2.56 0.23 1.27 0.15 34.6 782 1.21
    T3 55.1 8.92 24.6 92.0 25.2 2.60 13.5 2.00 10.0 1.69 5.08 0.78 6.13 0.73 33.0 281 2.69
    T4 3.19 4.80 1.15 3.95 1.04 0.10 0.58 0.08 0.45 0.08 0.24 0.04 0.36 0.04 1.45 17.6 3.18
    T5 1.12 9.82 0.35 1.26 0.28 0.02 0.21 0.03 0.13 0.02 0.07 0.01 0.09 0.01 0.27 13.7 3.21
    T6 1.62 30.1 0.51 1.75 0.40 0.04 0.40 0.04 0.17 0.03 0.09 0.01 0.14 0.02 0.32 35.6 4.15
    T7 8.54 123 1.91 6.44 1.44 0.47 1.55 0.19 0.96 0.16 0.47 0.08 0.68 0.09 3.06 149 2.89
    合量 553 194 84.1 279 49.6 5.19 33.3 3.96 17.5 3.01 9.01 1.22 9.09 1.09 77.9 1321 1.94
    W04
    T1 25.6 0.76 4.00 13.5 2.50 0.24 1.88 0.24 1.14 0.20 0.54 0.07 0.44 0.05 5.73 56.9 3.23 89.70
    T2 348 3.47 46.5 162 28.3 2.28 21.5 2.26 8.74 1.50 4.10 0.45 2.67 0.33 59.2 691 2.41
    T3 42.6 7.87 23.3 94.6 37.6 3.33 19.9 3.31 16.8 2.57 7.45 1.29 10.9 1.29 43.8 317 1.71
    T4 2.31 2.73 1.01 3.93 1.45 0.13 0.78 0.14 0.72 0.11 0.34 0.06 0.59 0.07 1.95 16.3 2.21
    T5 0.87 6.63 0.30 1.18 0.38 0.04 0.26 0.04 0.21 0.03 0.10 0.02 0.17 0.02 0.37 10.6 5.09
    T6 1.21 15.4 0.37 1.39 0.40 0.04 0.32 0.04 0.21 0.03 0.10 0.02 0.17 0.02 0.41 20.1 4.18
    T7 30.0 84.6 7.59 27.0 6.95 0.32 6.64 1.61 11.7 2.40 7.56 1.31 10.6 1.30 97.3 297 1.58
    合量 451 121 83.1 304 77.6 6.38 51.3 7.64 39.5 6.84 20.2 3.22 25.5 3.08 209 1409 1.49
    L01 T1 0.04 0.02 0.01 0.03 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.07 0.21 8.60 102.68
    T2 334 3.19 36.2 113 16.1 1.58 21.76 3.82 21.6 4.55 11.0 1.21 5.55 0.71 314 888 0.80
    T3 85.2 2.96 29.9 107 28.7 3.08 29.59 7.42 48.3 9.18 24.7 3.78 25.3 3.10 328 736 0.86
    T4 11.9 1.85 3.36 11.41 2.81 0.30 2.72 0.70 4.64 0.89 2.44 0.40 2.88 0.35 27.2 73.9 2.03
    T5 7.98 5.76 2.12 7.36 1.72 0.19 1.82 0.46 3.11 0.62 1.67 0.26 1.90 0.23 12.7 47.9 3.80
    T6 3.38 9.28 0.88 3.09 0.70 0.07 0.72 0.16 1.05 0.20 0.55 0.09 0.66 0.08 4.63 25.5 2.81
    T7 3.54 203 0.89 2.90 0.73 0.27 1.67 0.21 1.40 0.29 0.95 0.18 1.36 0.17 6.72 224 2.10
    合量 446 226 73.4 245 50.8 5.49 58.3 12.8 80.1 15.7 41.3 5.92 37.7 4.64 693 1996 0.64
    L03 T1 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 11.27 87.67
    T2 168 14.0 28.6 56.4 4.88 0.41 3.39 0.28 0.67 0.12 0.41 0.03 0.14 0.02 4.06 281 3.37
    T3 35.4 8.71 15.8 70.1 10.9 1.02 4.44 0.55 1.34 0.27 0.85 0.12 0.86 0.11 6.16 157 2.94
    T4 5.72 1.80 1.87 6.47 0.99 0.09 0.42 0.05 0.24 0.04 0.13 0.02 0.13 0.01 1.04 19.0 5.89
    T5 5.79 4.54 1.65 5.78 0.96 0.10 0.75 0.15 0.85 0.16 0.43 0.06 0.45 0.05 3.43 25.2 4.22
    T6 4.21 9.49 1.10 3.88 0.63 0.06 0.53 0.09 0.52 0.09 0.28 0.04 0.29 0.04 2.54 23.8 2.77
    T7 5.73 64.3 1.04 3.40 0.60 0.09 0.73 0.07 0.28 0.05 0.13 0.02 0.15 0.02 0.95 77.6 3.92
    合量 225 103 50.1 146 19.0 1.77 10.3 1.19 3.90 0.73 2.23 0.29 2.02 0.25 18.2 584 3.42
    L05 T1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 21.00 103.85
    T2 5.32 0.38 0.81 2.55 0.28 0.02 0.24 0.02 0.09 0.01 0.04 0.00 0.01 0.00 0.64 10.4 4.04
    T3 17.7 5.21 5.31 18.4 2.98 0.28 1.92 0.26 1.20 0.21 0.56 0.07 0.48 0.06 6.71 61.4 3.13
    T4 5.23 2.30 1.34 4.65 0.77 0.07 0.47 0.07 0.35 0.06 0.16 0.02 0.15 0.02 1.97 17.6 2.84
    T5 13.3 9.67 3.35 11.5 2.13 0.22 1.58 0.26 1.30 0.23 0.59 0.09 0.59 0.07 6.32 51.2 3.59
    T6 2.88 6.27 0.79 2.83 0.53 0.05 0.39 0.06 0.34 0.06 0.17 0.03 0.19 0.02 1.66 16.3 3.19
    T7 26.9 73.1 6.23 20.3 3.52 0.62 2.88 0.45 2.62 0.52 1.48 0.24 1.69 0.21 12.7 153 3.29
    合量 71.3 96.9 17.8 60.2 10.2 1.26 7.48 1.12 5.90 1.09 3.00 0.45 3.11 0.38 30.0 310 1.79
    L08 T1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.10 102.96
    T2 1.23 0.09 0.21 0.72 0.06 0.01 0.07 0.01 0.03 0.00 0.01 0.00 0.00 0.00 0.21 2.65 8.30
    T3 7.06 11.2 1.50 4.72 0.56 0.04 0.45 0.05 0.22 0.04 0.10 0.01 0.09 0.01 1.11 27.2 3.99
    T4 1.07 1.63 0.24 0.69 0.09 0.01 0.07 0.01 0.04 0.01 0.03 0.00 0.02 0.00 0.22 4.13 7.28
    T5 6.52 12.8 1.84 7.37 1.74 0.10 1.39 0.23 1.29 0.23 0.59 0.08 0.54 0.07 7.15 41.9 2.96
    T6 4.49 7.06 0.98 3.30 0.55 0.04 0.40 0.06 0.31 0.05 0.14 0.02 0.13 0.02 1.99 19.5 3.59
    T7 69.7 157 13.9 47.5 7.74 1.14 6.09 0.89 4.52 0.82 2.20 0.31 2.03 0.23 22.7 337 2.03
    合量 90.1 190 18.7 64.3 10.7 1.34 8.47 1.25 6.41 1.15 3.07 0.42 2.81 0.33 33.4 432 2.40
    注:回收率为各形态分析步骤合量与稀土元素全量之比百分数。
    下载: 导出CSV
  • [1] 王倩. 土壤稀土形态分析方法与地球化学应用研究[D]. 北京: 中国地质大学(北京), 2014.

    Wang Q. Study on the speciation of REE in soil and its application in geochemistry[D]. Beijing: China University of Geosciences (Beijing), 2014.

    [2] 黄健. 广东仁居风化壳离子吸附型稀土矿床中稀土元素的富集分异机制研究[D]. 北京: 中国科学院大学, 2021.

    Huang J. REE enrichment and fractionation mechanism of the Renju ion adsorption type REE deposit in Guangdong Province [D]. Beijing: University of Chinese Academy of Sciences, 2021.

    [3] 林卓玲, 黄光庆. 土壤稀土元素的迁移-富集机制及其生态效应[J]. 地球环境学报, 2023, 14(5): 521−538. doi: 10.7515/JEE221024

    Lin Z L, Huang G Q. Migration enrichment mechanism and ecological effects of rare elements in soil[J]. Journal of Earth Environment, 2023, 14(5): 521−538. doi: 10.7515/JEE221024

    [4] 宋旭东, 樊小伟, 陈文, 等. 电感耦合等离子体质谱法测定离子吸附型稀土矿中全相稀土总量[J]. 冶金分析, 2018, 38(6): 19−24. doi: 10.13228/j.boyuan.issn1000-7571.010305

    Song X D, Fan X W, Chen W, et al. Determination of total-phase rare earth content in ion-adsorption rare earth ore by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(6): 19−24. doi: 10.13228/j.boyuan.issn1000-7571.010305

    [5] 朱云, 郭琳, 于汀汀, 等. 提取风化壳淋积型稀土矿中稀土元素的前处理方法探讨[J]. 岩矿测试, 2023, 42(5): 877−887. doi: 10.15898/j.ykcs.202308070130

    Zhu Y, Guo L, Yu T T, et al. Discussion on pretreatment method for extracting rare earth elements from weathered crust elution-deposited rare earth ores[J]. Rock and Mineral Analysis, 2023, 42(5): 877−887. doi: 10.15898/j.ykcs.202308070130

    [6] 王臻, 肖仪武, 冯凯. 离子吸附型稀土矿成矿特点及元素赋存形式[J]. 有色金属(选矿部分), 2021(6): 43−51. doi: 10.3969/j.issn.1671-9492.2021.06.006

    Wang Z, Xiao Y W, Feng K. Metallogenic characteristics and occurrence of REE in ion adsorption type rare earth deposits[J]. Nonferrous Metals (Mineral Processing Section), 2021(6): 43−51. doi: 10.3969/j.issn.1671-9492.2021.06.006

    [7]

    Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844−851. doi: 10.1021/ac50043a017

    [8]

    Quevauviller P, Rauret G, Griepink B. Single and sequential extraction in sediments and soils[J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1/2/3/4): 231−235. doi: 10.1080/03067319308027629

    [9]

    Shuman L. Fractionation method for soil microelements[J]. Soil Science, 1985, 140(1): 11−22. doi: 10.1097/00010694-198507000-00003

    [10]

    Gibson M J, Farmer J G. Multi-step sequential chemical extraction of heavy metals from urban soils[J]. Environmental Pollution, 1986, 11(2): 117−135. doi: 10.1016/0143-148x(86)90039-x

    [11]

    Miller W P, Martens D C, Zelazny L W. Effect of sequence in extraction of trace metals from soils[J]. Soil Science of America Journal, 1986, 50(3): 598−601. doi: 10.2136/sssaj1986.03615995005000030011x

    [12] 李娜, 夏瑜, 何绪文, 等. 基于Tessier法的土壤中不同形态镉的转化及其影响因素研究进展[J]. 土壤通报, 2021, 52(6): 1505−1512. doi: 10.19336/j.cnki.trtb.2020111101

    Li N, Xia Y, He X W, et al. Research progress of Cd form transformation and the effective environmental factors in soil based on Tessier analysis[J]. Chinese Journal of Soil Science, 2021, 52(6): 1505−1512. doi: 10.19336/j.cnki.trtb.2020111101

    [13] 杨华, 王艳丽, 李利荣. 涡旋提取-改进BCR法测定土壤中重金属的化学形态[J]. 中国无机分析化学, 2023, 13(6): 598−603. doi: 10.3969/j.issn.2095-1035.2023.06.013

    Yang H, Wang Y L, Li L R. Determination of chemical morphology of heavy metals in soil by vortex extraction and improved BCR method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(6): 598−603. doi: 10.3969/j.issn.2095-1035.2023.06.013

    [14] 余璨. BCR多级连续提取法在拉萨河流域表层沉积物重金属形态分析研究中的应用[D]. 拉萨: 西藏大学, 2019.

    Yu C. Application of BCR sequential extraction procedure on heavy metal speciation in surface sediments of the Lhasa River Catchments[D]. Lhasa: Tibet University, 2019.

    [15] 陈莉薇, 陈海英, 武君, 等. 利用Tessier五步法和改进BCR法分析铜尾矿中Cu、Pb、Zn赋存形态的对比研究[J]. 安全与环境学报, 2020, 20(2): 735−740. doi: 10.13637/j.issn.1009-6094.2019.0661

    Chen L W, Chen H Y, Wu J, et al. Comparative study on speciation of Cu, Pb and Zn from mining tailings via Tessier 5-step sequential extraction and improved BCR method[J]. Journal of Safety and Environment, 2020, 20(2): 735−740. doi: 10.13637/j.issn.1009-6094.2019.0661

    [16] 李默挺, 陶红, 孙燕, 等. 改进的BCR连续提取法-电感耦合等离子体质谱法分析水泥基底泥固化材料中重金属形态[J]. 理化检验(化学分册), 2019, 55(4): 401−407.

    Li M T, Tao H, Sun Y, et al. ICP-MS determination of combination states of heavy metal elements in solidified materials of cement-based sediment with separation by modified BCR successive extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(4): 401−407.

    [17] 张安丰, 杨博为, 王永鑫, 等. 动能歧视(KED)-电感耦合等离子体质谱(ICP-MS)法测定贵州沉积型稀土矿中16中稀土元素[J]. 中国无机分析化学, 2024, 14(5): 575−585. doi: 10.3969/j.issn.2095-1035.2024.05.009

    Zhang A F, Yang B W, Wang Y X, et al. Determination of 16 rare elements in sedimentary rare earth ores in Guizhou Province by inductively coupled plasma mass spectrometry with kinetic energy discrimination (KED)[J]. Chinese Journal of inorganic Analytical Chemistry, 2024, 14(5): 575−585. doi: 10.3969/j.issn.2095-1035.2024.05.009

    [18] 张民, 何显川, 谭伟, 等. 云南临沧花岗岩离子吸附型稀土矿床地球化学特征及其成因讨论[J]. 中国地质, 2022, 49(1): 201−214. doi: 10.12029/gc20220112

    Zhang M, He X C, Tan W, et al. Geochemical characteristics and genesis of ion-adsorption type REE deposit in the Lincang granite, Yunnan[J]. Geology in China, 2022, 49(1): 201−214. doi: 10.12029/gc20220112

    [19] 高国华, 颜鋆, 赖安邦, 等. 离子吸附型稀土矿抗坏血酸强化-还原浸取过程[J]. 中国有色金属学报, 2019, 29(6): 1289−1297. doi: 10.19476/j.ysxb.1004.0609.2019.06.18

    Gao G H, Yan J, Lai A B, et al. Intensification-reduction leaching process of ion-adsorption type rare earths ore with ascorbic acid[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(6): 1289−1297. doi: 10.19476/j.ysxb.1004.0609.2019.06.18

    [20] 周华娇. 离子吸附型稀土浸取特征评价与浸取剂选择[D]. 南昌: 南昌大学, 2022.

    Zhou H J. Evaluation of ion-adsorption rare earths leaching characterization and the selection of leaching reagents[D]. Nanchang: Nanchang University, 2022.

    [21] 王学峰, 许春雪, 顾雪, 等. 典型稀土矿区周边土壤中稀土元素含量及赋存形态研究[J]. 岩矿测试, 2019, 38(3): 137−146. doi: 10.15898/j.cnki.11-2131/td.201807180085

    Wang X F, Xu C X, Gu X, et al. Concentration and fractionation of rare earth elements in soils surrounding rare earth ore area[J]. Rock and Mineral Analysis, 2019, 38(3): 137−146. doi: 10.15898/j.cnki.11-2131/td.201807180085

    [22] 高晶晶, 刘季花, 李先国, 等. 富钴结壳中稀土元素化学相态分析方法及其应用[J]. 分析化学, 2015, 43(12): 1895−1900. doi: 10.11895/j.issn.0253-3820.150418

    Gao J J, Liu J H, Li X G, et al. Chemical phase analysis of rare earth elements in cobalt-rich crusts and its application[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12): 1895−1900. doi: 10.11895/j.issn.0253-3820.150418

    [23] 王彪, 黄庆, 何良伦, 等. 黔西北麻乍地区沉积型稀土矿中稀土元素赋存状态研究[J]. 矿物学报, 2023, 43(12): 789−798. doi: 10.16461/j.cnki.1000-4734.2023.43.087

    Wang B, Huang Q, He L L, et al. The occurrence state of rare earth elements in sedimentary rare earth deposits in Mazha area, Northwest Guizhou[J]. Acta Mineralogica Sinica, 2023, 43(12): 789−798. doi: 10.16461/j.cnki.1000-4734.2023.43.087

    [24] 夏传波, 成学海, 姜云, 等. 密闭酸溶-电感耦合等离子体发射光谱/质谱法测定花岗伟晶岩中32种微量元素[J]. 岩矿测试, 2024, 43(2): 247−258. doi: 10.15898/j.ykcs.202307310105

    Xia C B, Cheng X H, Jiang Y, et al. Determination of 32 trace elements in granite pegmatite by inductively coupled plasma-optical emission spectrometry and mass spectrometry with closed acid dissolution[J]. Rock and Mineral Analysis, 2024, 43(2): 247−258. doi: 10.15898/j.ykcs.202307310105

    [25] 苏春风. 电感耦合等离子体质谱(ICP-MS)法测定稀土矿中16种稀土元素含量[J]. 中国无机分析化学, 2020, 10(6): 28−32. doi: 10.3969/j.issn.2095-1035.2020.06.007

    Su C F. Determination of 16 rare earth elements in rare earth ores by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(6): 28−32. doi: 10.3969/j.issn.2095-1035.2020.06.007

    [26] 黄健, 谭伟, 梁晓亮, 等. 富稀土矿物的风化特征及其对稀土成矿过程的影响——以广东仁居离子吸附型稀土矿床为例[J]. 地球化学, 2022, 51(6): 684−695. doi: 10.19700/j.0379-1726.2022.06.007

    Huang J, Tan W, Liang X L, et al. Weathering characters of REE-bearing accessory minerals and their effects on REE mineralization in Renju Regolith-hosted REE deposits in Guangdong Province[J]. Geochimica, 2022, 51(6): 684−695. doi: 10.19700/j.0379-1726.2022.06.007

    [27] 梁晓亮, 谭伟, 马灵涯, 等. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1): 29−41. doi: 10.13745/j.esf.sf.2021.8.8

    Liang X L, Tan W, Ma L Y, et al. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits[J]. Earth Science Frontiers, 2022, 29(1): 29−41. doi: 10.13745/j.esf.sf.2021.8.8

    [28]

    Li Y H M, Zhou M F, Williams-Jones A E. The genesis of regolith-hosted heavy rare earth element deposits: Insights from the world-class Zudong deposit in Jiangxi Province, South China[J]. Economic Geology, 2019, 114(3): 541−568. doi: 10.5382/econgeo.4642

    [29] 张怡斐. 市政污泥热处理过程中主要污染物的迁移转化[D]. 上海: 上海交通大学, 2011.

    Zhang Y F. Migratory behavior of major contaminant in the thermal treatment process of sludge[D]. Shanghai: Shanghai Jiao Tong University, 2011.

    [30]

    Han R S, Liu C Q, Emmanuel J M C, et al. REE geochemistry of altered tectonites in the Huize base-metal district, Yunnan, China[J]. Geochemistry: Exploration, Environment, Analysis, 2012, 12: 127−146. doi: 10.1144/1467-7873/10-mindep-053

    [31] 罗武平, 李光来, 李成详, 等. 江西相山下家岭稀土矿风化壳剖面地球化学特征[J]. 矿物学报, 2019, 39(3): 237−246. doi: 10.16461/j.cnki.1000-4734.2019.39.057

    Luo W P, Li G L, Li C X, et al. Geochemical characteristics of the weathered crust profile in the Xiajialing REE deposit of the Xiangshan area, Jiangxi Province, China[J]. Acta Mineralogica Sinica, 2019, 39(3): 237−246. doi: 10.16461/j.cnki.1000-4734.2019.39.057

    [32]

    Williams-Jones A E, Vasyukova O V. The economic geology of scandium, the runt of the rare earth element litter[J]. Economic Geology, 2018, 113(4): 973−988. doi: 10.5382/econgeo.2018.4579

    [33] 王长兵, 倪光清, 瞿亮, 等. 花岗岩风化壳中Ce地球化学特征及其找矿意义——以滇西岔河离子吸附型稀土矿床为例[J]. 矿床地质, 2021, 10(5): 1013−1028. doi: 10.16111/j.0258-7106.2021.05.008

    Wang C B, Ni G Q, Qu L, et al. Ce geochemical characteristics of granite weathering crust and its prospecting significance: A case study of Chahe ion adsorption rare earth deposit in Western Yunnan[J]. Mineral Deposits, 2021, 10(5): 1013−1028. doi: 10.16111/j.0258-7106.2021.05.008

  • 期刊类型引用(8)

    1. 王鹏亮,刘双,张钰,钟顺清. 改性凹凸棒石对汞吸附及土壤汞钝化性能影响. 环境保护科学. 2025(01): 96-106 . 百度学术
    2. 陶玲,米成成,王丽,王艺蓉,王彤玉,任珺. 凹凸棒石组配硫酸锌对土壤Cd的钝化效果及生态风险评价. 环境科学研究. 2022(01): 211-218 . 百度学术
    3. 陶玲,仝云龙,余方可,杨万辉,王艺蓉,王丽,任珺. 碱改性凹凸棒石对土壤中镉化学形态及环境风险的影响. 岩矿测试. 2022(01): 109-119 . 本站查看
    4. 练建军,邬洪艳,叶天然,孔巧平,徐晴,吴朝阳,陈波,牛司平. 改性凹凸棒负载硫化亚铁的制备及其对水中Mo(Ⅵ)的吸附机制. 环境科学. 2022(12): 5647-5656 . 百度学术
    5. 端爱玲,杨树俊,韩张雄,张树雄,王思远,李敏. 矿区土壤重金属污染化学修复及强化方法研究进展. 矿产综合利用. 2022(06): 104-109 . 百度学术
    6. 宿俊杰,刘永兵,王鹤立,郭威,王嘉良,王宏鹏,张原浩. 面向碱性农地镉污染土壤钝化的凹凸棒改性特征及效果研究. 岩矿测试. 2022(06): 1029-1039 . 本站查看
    7. 胡佳晨. 凹凸棒石对重金属污染农田土壤钝化修复效果研究. 广东化工. 2021(11): 117-119 . 百度学术
    8. 王卓群,邱少芬,孙瑞莲. 有机改性天然矿物钝化土壤重金属研究进展. 环境科学与技术. 2021(11): 101-108 . 百度学术

    其他类型引用(12)

图(5)  /  表(6)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  34
  • PDF下载量:  35
  • 被引次数: 20
出版历程
  • 收稿日期:  2024-03-12
  • 修回日期:  2024-06-02
  • 录用日期:  2024-10-18
  • 网络出版日期:  2024-11-12
  • 发布日期:  2024-11-12
  • 刊出日期:  2024-12-30

目录

/

返回文章
返回