Determination of Trace Ti in High Calcium Carbonate Rocks by ICP-MS
-
摘要:
硅酸岩中的主量元素钛(Ti)在碳酸盐岩中含量一般低于3.5mg/g,其中绝大部分低于1mg/g,目前常用于硅酸岩中Ti含量(通常大于0.1%)测试的X射线荧光光谱法已无法满足碳酸盐岩中微量Ti的准确测试要求。本文尝试用电感耦合等离子体质谱测试碳酸盐岩中的Ti含量,讨论分析了Ti的5个测试同位素(46Ti、47 Ti、48 Ti、49 Ti、50 Ti)在碳酸盐岩基体中的受干扰情况,确定了适合的测试同位素48Ti,从而提出碳酸盐岩中微量Ti的ICP-MS测试方法。按照该方法测试并校正5个国家一级标准物质中Ti浓度,测定值与标准值相符,相对标准偏差(RSD,n=10)小于7.3%。在同一实验条件下,测试未知碳酸盐岩样品溶液Ti浓度并加以校正,与国家标准方法二安替比林甲烷光度法及电感耦合等离子体发射光谱法(ICP-OES)测定结果进行方法比对,与两者的相对标准偏差均小于允许限。方法加标回收率为83%~107%。该方法适用于CaO含量范围在31%~56%,Ti含量范围在14~3346μg/g的碳酸盐岩样品的测试,为高钙高镁碳酸盐岩中微量Ti的测试提供了方法参考。
-
关键词:
- 碳酸盐岩 /
- 电感耦合等离子体质谱法 /
- Ti /
- 同位素选择
Abstract:The content of Ti in carbonate rocks is generally lower than 3.5mg/g, and most of it is below 1mg/g. X-ray fluorescence spectrometry (XRF), which is commonly used to measure Ti content in silicic rocks (usually more than 0.1%), cannot meet the requirements of accurate measurement of trace Ti in carbonate rocks. This paper reports on the attempts to test Ti in carbonate rock by inductively coupled plasma-mass spectrometry (ICP-MS), discusses and analyzes the interference of 5 test isotopes of Ti (46Ti, 47Ti, 48Ti, 49Ti, 50Ti) in carbonate solution matrix, and determines the suitable test isotope 48Ti. Then the ICP-MS method for the determination of trace Ti in carbonate rock is proposed. According to the method, the concentration of Ti in 5 first-class national standard materials was tested and corrected. The measured values were consistent with the certified values, and the relative standard deviation (RSD, n=10) was less than 7.3%. The concentration of Ti in the unknown carbonate sample solution was measured and corrected under the same experimental conditions, and this method was compared with the national standard method of diantipyrine methane spectrophotometry and inductively coupled plasma-optical emission spectrometry (ICP-OES) method, and the relative standard deviation with these two methods were less than the allowable limit. The recoveries were 83%−107%. This method is suitable for the determination of carbonate samples with 31%−56% CaO and 14−3346μg/g Ti, and provides a reference for the determination of trace Ti in carbonate rocks with high calcium and magnesium.
-
-
表 1 碳酸盐岩国家一级标准物质Ti含量测定值与标准值对比
Table 1 Comparison of analytical values and certified values of Ti content in carbonate rock national standard materials
标准物质编号 CaO含量(%) Ti含量(μg/g) GBW07128 41.95 132 GBW07128 41.95 132 GBW07129 55.49 42 GBW07131 30.93 78 GBW07133 53.83 174 GBW07135 43.76 2580 表 2 碳酸盐岩国家一级标准物质Ti含量测定值与标准值对比
Table 2 Comparison of analytical values and certified values of Ti content in carbonate rock national standard materials
国家标准物质编号 Ti含量标准值
(μg/g)Ti含量测定值(μg/g) 46Ti 47Ti 48Ti 49Ti 50Ti GBW07128 132 223 214 474 225 219 GBW07129 42 127 128 492 130 123 GBW07131 78 143 141 314 142 138 GBW07133 174 256 242 544 231 232 GBW07135 2580 2628 2628 3158 2602 2635 表 3 碳酸盐岩中Ti元素的潜在干扰离子
Table 3 Potential interference ions of Ti in carbonate rocks
Ti的测试同位素 Ti自然丰度
(%)潜在干扰离子 46Ti 7.93 46Ca+、32S14N+、30Si16O+、28Si18O+、92Zr2+、92Mo2+ 47Ti 7.28 46CaH+、31P16O+、12C35Cl+、15N16O2、94Zr2+、94Mo2+、7Li40Ar+、11B36Ar+ 48Ti 73.94 48Ca+、36Ar12C+、96Zr2+、96Mo2+、96Ru2+、32S16O+ 49Ti 5.51 48CaH+、98Mo2+、98Ru2+、33S16O+、31P18O+ 50Ti 5.34 50Cr+、50V+、14N36Ar+、11B36Ar+、100Ru2+、100Mo2+、34S16O+ 表 4 方法准确度
Table 4 Accuracy of the method
标准物质编号 Ti含量标准值
(μg/g)Ti含量校正值
(μg/g)相对误差
(%)允许限
(%)GBW07128 132 145 10.0 12.1 GBW07129 42 38.7 7.86 14.9 GBW07131 78 85.7 9.84 13.3 GBW07133 174 193 11.1 11.5 GBW07135 2580 2725 5.60 6.64 表 5 加标回收率
Table 5 Recovery of standard addition
标准物质编号 试样Ti含量测得量
(μg)Ti加标量
(μg)加标试样Ti含量测得量
(μg)回收率
(%)回收率允许限
(%)GBW07128 145.0 100 228.0 83.0 10~110 GBW07129 46 50 99.4 107.0 GBW07131 86 50 133.0 94.6 表 6 方法精密度
Table 6 Precision of the method
标准物质编号 Ti含量分次测定值
(μg/g)Ti含量平均值
(μg/g)RSD
(%)GBW07129 38.7 42.3 36.2 40.9 45 41 7.3 40.6 45.7 42.5 38 40 GBW07133 174 165 178 166 165 170 3.8 183 170 166 164 165 GBW07135 2725 2561 2560 2559 2559 2613 3.3 2559 2788 2536 2684 2602 表 7 不同方法测定Ti含量结果比对
Table 7 Comparison of Ti content determined by different methods
样品编号 本文方法Ti含量
测定值(μg/g)二安替比林甲烷光度法 ICP-OES法 测定值
(μg/g)相对偏差
(%)允许限
(%)测定值
(μg/g)相对偏差
(%)允许限
(%)1 14.7 16 6.6 25.0 12.4 17.4 18.0 2 30.0 32 4.8 22.2 25.2 17.6 22.6 3 125 143 13.7 17.1 123 1.16 12.3 4 254 277 8.6 15.1 246 3.28 10.8 5 3346 3301 1.4 8.9 3270 2.30 6.27 6 756 764 1.1 12.2 723 4.41 8.70 7 535 544 1.6 13.1 548 2.36 9.27 8 1481 1501 1.4 10.6 1530 3.28 7.49 9 14.0 18 22.9 24.8 16.3 15.3 17.7 10 1051 1068 1.6 11.4 965 8.46 11.5 注:相对偏差=$\left(\left|X_{\text {测 }}-\bar{X}\right| / \bar{X}\right) \times 100 \% $;其中$X_{\text {测 }} $为本方法测定值,$ \bar{X} $为本方法测定值与二安替比林甲烷光度法或ICP-OES法测定值的平均值; 允许限=$C \times\left(14.37 \bar{X}^{-0.1263}-7.659\right) $,其中C=1,$ \bar{X} $为本方法测定值与二安替比林甲烷光度法或ICP-OES法测定值的平均值。 -
[1] Wang H J. New approach to the thermal properties of carbonate rocks in geothermal reservoirs: Molecular dynamics calculation and case studies[J]. Renewable Energy, 2022, 198: 861−871. doi: 10.1016/j.renene.2022.08.062
[2] Wang H M, Zhou Q, Sheng J C, et al. Effect of long-term infiltration on porosity-permeability evolution in carbonate rocks: An online NMR coupling penetration test[J]. Journal of Hydrology, 2023, 129029(617): 1−14. doi: 10.1016/j.jhydrol.2022.129029
[3] Zhang S Y, Shao M, Wang T, et al. Geochemistry of lacustrine carbonate rocks in Southwestern Qaidam: Implications of silicate weathering and carbon burial triggered by the uplift of the Tibetan Plateau[J]. International Journal of Coal Geology, 2023, 104167(265): 1−15. doi: 10.1016/j.coal.2022.104167
[4] 史冀忠, 牛亚卓, 许伟, 等. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680−693. doi: 10.13278/j.cnki.jjuese.20200091 Shi J Z, Niu Y Z, Xu W, et al. Geochemical characteristics and sedimentary environment of carboniferous Baishan Formation carbonate in Shibanquanxi of Yingen—Ejin Banner Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3): 680−693. doi: 10.13278/j.cnki.jjuese.20200091
[5] 张连凯, 季宏兵, 刘秀明, 等. 热带地区碳酸盐岩上覆红色风化壳的成因机理及元素演化[J]. 中国地质, 2021, 48(2): 651−660. doi: 10.12029/gc20210221 Zhang L K, Ji H B, Liu X M, et al. Genetic mechanism and elemental evolution of weathering laterite crust overlying carbonate rocks in tropical areas[J]. Geology in China, 2021, 48(2): 651−660. doi: 10.12029/gc20210221
[6] Chen W, Ying Y C, Bai T, et al. In situ major and trace element analysis of magnetite from carbonatite-related complexes: Implications for petrogenesis and ore genesis[J]. Ore Geology Reviews, 2019, 107: 30−40. doi: 10.1016/j.oregeorev.2019.01.029
[7] Levitskiy V I, Reznitsky L Z, Levitskiy I V. Geochemistry of carbonate rocks in the early Precambrian and Phanerozoic metamorphic complexes of East Siberia, North-West Russia, and Pamirs[J]. Geochemistry International, 2019, 57(4): 438−455. doi: 10.1134/S0016702919040074
[8] Carlos R P J, Rafael C S, Eduardo C S N, et al. Influence of carbonate rocks on soil properties in the humid tropical climate of Atlantic forest, Rio de Janeiro–Brazil[J]. Journal of South American Earth Sciences, 2021, 103582(112): 1−11. doi: 10.1016/j.jsames.2021.103582
[9] Wang Y J, Zhu W G, Zhong H, et al. Using trace elements of magnetite to constrain the origin of the Pingchuan hydrothermal low-Ti magnetite deposit in the Panxi area, SW China[J]. Acta Geochimica, 2019, 38(3): 376−390. doi: 10.1007/s11631-019-00332-2
[10] 《岩石矿物分析》编委会. 岩石矿物分析(第四版)[M]. 北京: 地质出版社, 2011: 105−115 (第二分册), 742−750(第一分册), 753−762(第二分册). The Editorial Committee of "Rock and Mineral Analysis".Rock and mineral analysis (The fourth edition)[M]. Beijing: Geological Publishing House, 2011: 105−115 (Vol.Ⅱ), 742−750(Vol.Ⅰ), 753−762(Vol.Ⅱ).
[11] 祁巍, 高延强, 宋苗, 等. 熔融制样-X射线荧光光谱法测定钛铁中钛磷硅锰铝[J]. 冶金分析, 2022, 42(3): 66−71. doi: 10.13228/j.boyuan.issn1000-7571.011534 Qi W, Gao Y Q, Song M, et al. Determination of titanium, phosphorus, silicon, manganese and aluminum in ferrotitanium by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2022, 42(3): 66−71. doi: 10.13228/j.boyuan.issn1000-7571.011534
[12] 张延新, 李京, 刘斌, 等. 熔融制样-X射线荧光光谱法测定高碳铬铁中铬硅磷钛[J]. 冶金分析, 2022, 42(12): 77−82. doi: 10.13228/j.boyuan.issn1000-7571.011494 Zhang Y X, Li J, Liu B, et al. Determination of chromium, silicon, phosphorus and titanium in high-carbon ferrochrome by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2022, 42(12): 77−82. doi: 10.13228/j.boyuan.issn1000-7571.011494
[13] 陈静, 高志军, 陈冲科, 等. X射线荧光光谱法分析地质样品的应用技巧[J]. 岩矿测试, 2015, 34(1): 91−98. doi: 10.15898/j.cnki.11-2131/td.2015.01.014 Chen J, Gao Z J, Chen C K, et al. Application skills on determination of geological sample by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 91−98. doi: 10.15898/j.cnki.11-2131/td.2015.01.014
[14] 朱立军, 李景阳. 碳酸盐岩风化成土作用及其环境效应[M]. 北京: 地质出版社, 2004. Zhu L J, Li J Y. Weathering and environmental effects of carbonate rocks[M]. Beijing: Geological Publishing House, 2004.
[15] 兰叶芳, 任传建, 李小彩, 等. 黔西北毕节地区中二叠统碳酸盐岩岩石学、地球化学特征及意义[J]. 地球学报, 2022, 43(3): 309−324. doi: 10.3975/cagsb.2022.030301 Lan Y F, Ren C J, Li X C, et al. Petrological and geochemical characteristics and their significance of middle Permian carbonate rocks in Bijie area, Northwestern Guizhou[J]. Acta Geoscientica Sinica, 2022, 43(3): 309−324. doi: 10.3975/cagsb.2022.030301
[16] Lorraine T, Matthijs A S, Jamie C, et al. Rapid, paced metamorphism of blueschists (Syros, Greece) from laser-based zoned[J]. Chemical Geology, 2022, 121003(607): 1−14. doi: 10.1016/j.chemgeo.2022.121003
[17] Salma I R V, Musthafa M M, Abdurahman K M, et al. Trace elemental fingerprinting of Ayurvedic medicine—Triphala Churna using XRF and ICPMS[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323: 1405−1412. doi: 10.1007/s10967-019-06909-8
[18] Zhang W, Hu Z C, Liu Y S, et al. In situ calcium isotopic ratio determination in calcium carbonate materials and calcium phosphate materials using laser ablation-multiple collectorinductively coupled plasma mass spectrometry[J]. Chemical Geology, 2019, 522: 16−25. doi: 10.1016/j.chemgeo.2019.04.027
[19] Alejandro S G, Juan M M G, Jose M T L, et al. ICP-MS multielemental determination of metals potentially released from dental implants and articular prostheses in human biological fluids[J]. Analytical and Bioanalytical Chemistry, 2005, 382: 1001−1009. doi: 10.1007/s00216-005-3165-9
[20] Yang K L, Jiang S J, Hwang T J. Determination of titanium and vanadium in water samples by inductively coupled plasma mass spectrometry with on-line preconcentration[J]. Journal of Analytical Atomic Spectrometry, 1996, 11: 139−143. doi: 10.1039/ja9961100139
[21] Feng S C, Wu J F, Chen G. Determination of picomolar titanium in seawater by isotope dilution multicollector inductively coupled plasma mass spectrometer after Mg(OH)2 coprecipitation[J]. Analytical Chemistry, 2021, 93: 13118−13125. doi: 10.1021/acs.analchem.0c04381
[22] Yu L J, Koirtyohann S R, Melvin L R, et al. Simultaneous determination of aluminium, titanium and vanadium in serum by electrothermal vaporization-inductively coupled plasma mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 1997, 12: 69−74. doi: 10.1039/A604797A
[23] Fu L, Xie H L, Huang J H, et al. Determination of ultra-trace levels of titanium in human serum using inductively coupled plasma tandem mass spectrometry based on O2/H2 reaction gas[J]. Analytica Chimica Acta, 2021, 1165(338564): 1−7. doi: 10.1016/j.aca.2021.338564
[24] Martin L, Anronin K, Oto M. Non-spectral interferences in single-particle ICP-MS analysis: An underestimated phenomenon[J]. Talanta, 2019, 202: 565−571. doi: 10.1016/j.talanta.2019.04.073
[25] 张楠, 郑智慷, 王家松, 等. 常压密闭微波消解-电感耦合等离子体质谱法测定磷矿石中的稀土元素[J]. 岩矿测试, 2024, 43(2): 366−374. doi: 10.15898/j.ykcs.202301110004 Zhang N, Zheng Z K, Wang J S, et al. Determination of 15 rare earth elements in phosphate ores by inductively coupled plasma-mass spectrometry with atmospheric pressure closed microwave digestion[J]. Rock and Mineral Analysis, 2024, 43(2): 366−374. doi: 10.15898/j.ykcs.202301110004
[26] Bussweiler Y, Giuliani A, Greig A, et al. Trace element analysis of high-Mg olivine by LA-ICP-MS-characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites[J]. Chemical Geology, 2019, 524: 136−157. doi: 10.1016/j.chemgeo.2019.06.019
[27] Zhang W, Hu Z C, Günther D, et al. Direct lead isotope analysis in Hg-rich sulfides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration[J]. Analytica Chimica Acta, 2016, 948: 9−18. doi: 10.1016/j.aca.2016.10.040
[28] 陈菲菲, 冉敬, 徐国栋, 等. 碳酸盐岩样品中镍和钪的电感耦合等离子体质谱分析与干扰校正方法[J]. 岩矿测试, 2021, 40(2): 187−195. doi: 10.15898/j.cnki.11-2131/td.202005310079 Chen F F, Ran J, Xu G D, et al. Inductively coupled plasma-mass spectrometric analysis of nickel and scandium in carbonate rock samples and interference correction methods[J]. Rock and Mineral Analysis, 2021, 40(2): 187−195. doi: 10.15898/j.cnki.11-2131/td.202005310079
[29] Sarmiento-González A, Encinar J R, Marchante-Gayón J M, et al. Titanium levels in the organs and blood of rate with a titanium implant, in the absence of wear, as determined by double-focusing ICP-MS[J]. Analytical & Bioanalytical Chemistry, 2009, 393: 335−343. doi: 10.1007/s00216-008-2449-2
[30] 李冰, 杨红霞. 电感耦合等离子体质谱原理和应用[M]. 北京: 地质出版社, 2005. Li B,Yang H X. Principle and Application of Inductively Coupled Plasma Mass Spectrometry[M]. Beijing: Geological Publishing House,2005.