• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

高钙碳酸盐岩样品中微量钛ICP-MS测试方法

陈菲菲, 金斌, 杨梦娜, 陈瑜, 冉敬, 徐国栋

陈菲菲,金斌,杨梦娜,等. 高钙碳酸盐岩样品中微量钛ICP-MS测试方法[J]. 岩矿测试,2024,43(4):558−567. DOI: 10.15898/j.ykcs.202402280023
引用本文: 陈菲菲,金斌,杨梦娜,等. 高钙碳酸盐岩样品中微量钛ICP-MS测试方法[J]. 岩矿测试,2024,43(4):558−567. DOI: 10.15898/j.ykcs.202402280023
CHEN Feifei,JIN Bin,YANG Mengna,et al. Determination of Trace Ti in High Calcium Carbonate Rocks by ICP-MS[J]. Rock and Mineral Analysis,2024,43(4):558−567. DOI: 10.15898/j.ykcs.202402280023
Citation: CHEN Feifei,JIN Bin,YANG Mengna,et al. Determination of Trace Ti in High Calcium Carbonate Rocks by ICP-MS[J]. Rock and Mineral Analysis,2024,43(4):558−567. DOI: 10.15898/j.ykcs.202402280023

高钙碳酸盐岩样品中微量钛ICP-MS测试方法

详细信息
    作者简介:

    陈菲菲,硕士,高级工程师,主要从事分析化学及地球化学研究。E-mail:cfffair2008@163.com

    通讯作者:

    冉敬,教授级高级工程师,主要从事岩石矿物分析测试工作。E-mail:27341937@qq.com

  • 中图分类号: P618.88;O657.63

Determination of Trace Ti in High Calcium Carbonate Rocks by ICP-MS

  • 摘要:

    硅酸岩中的主量元素钛(Ti)在碳酸盐岩中含量一般低于3.5mg/g,其中绝大部分低于1mg/g,目前常用于硅酸岩中Ti含量(通常大于0.1%)测试的X射线荧光光谱法已无法满足碳酸盐岩中微量Ti的准确测试要求。本文尝试用电感耦合等离子体质谱测试碳酸盐岩中的Ti含量,讨论分析了Ti的5个测试同位素(46Ti、47 Ti、48 Ti、49 Ti、50 Ti)在碳酸盐岩基体中的受干扰情况,确定了适合的测试同位素48Ti,从而提出碳酸盐岩中微量Ti的ICP-MS测试方法。按照该方法测试并校正5个国家一级标准物质中Ti浓度,测定值与标准值相符,相对标准偏差(RSD,n=10)小于7.3%。在同一实验条件下,测试未知碳酸盐岩样品溶液Ti浓度并加以校正,与国家标准方法二安替比林甲烷光度法及电感耦合等离子体发射光谱法(ICP-OES)测定结果进行方法比对,与两者的相对标准偏差均小于允许限。方法加标回收率为83%~107%。该方法适用于CaO含量范围在31%~56%,Ti含量范围在14~3346μg/g的碳酸盐岩样品的测试,为高钙高镁碳酸盐岩中微量Ti的测试提供了方法参考。

  • 图  1   单标溶液中Ca对Ti各同位素的干扰程度

    △Ti表示Ca在各Ti测试同位素处的贡献值。(a) Ca对46Ti测试值的贡献;(b) Ca对47Ti测试值的贡献;(c) Ca对48Ti测试值的贡献;(d) Ca对49Ti测试值的贡献;(e) Ca对50Ti测试值的贡献。

    Figure  1.   Diagrams of interference degree of Ca on each isotope of Ti in single element standard solutions

    图  2   国家一级标准物质中CaO对Ti各同位素的干扰程度

    △Ti表示国家标准物质中CaO在各Ti测试同位素处的贡献值。(a) CaO对46Ti测试值的贡献;(b) CaO对47Ti测试值的贡献;(c) CaO对48Ti测试值的贡献;(d) CaO对49Ti测试值的贡献;(e) CaO对50Ti测试值的贡献。

    Figure  2.   Interference degree of CaO on each isotope of Ti in first class national standard materials

    表  1   碳酸盐岩国家一级标准物质Ti含量测定值与标准值对比

    Table  1   Comparison of analytical values and certified values of Ti content in carbonate rock national standard materials

    标准物质编号 CaO含量(%) Ti含量(μg/g)
    GBW07128 41.95 132
    GBW07128 41.95 132
    GBW07129 55.49 42
    GBW07131 30.93 78
    GBW07133 53.83 174
    GBW07135 43.76 2580
    下载: 导出CSV

    表  2   碳酸盐岩国家一级标准物质Ti含量测定值与标准值对比

    Table  2   Comparison of analytical values and certified values of Ti content in carbonate rock national standard materials

    国家标准物质编号 Ti含量标准值
    (μg/g)
    Ti含量测定值(μg/g)
    46Ti 47Ti 48Ti 49Ti 50Ti
    GBW07128 132 223 214 474 225 219
    GBW07129 42 127 128 492 130 123
    GBW07131 78 143 141 314 142 138
    GBW07133 174 256 242 544 231 232
    GBW07135 2580 2628 2628 3158 2602 2635
    下载: 导出CSV

    表  3   碳酸盐岩中Ti元素的潜在干扰离子

    Table  3   Potential interference ions of Ti in carbonate rocks

    Ti的测试同位素 Ti自然丰度
    (%)
    潜在干扰离子
    46Ti 7.93 46Ca+32S14N+30Si16O+28Si18O+92Zr2+92Mo2+
    47Ti 7.28 46CaH+31P16O+12C35Cl+15N16O294Zr2+94Mo2+7Li40Ar+11B36Ar+
    48Ti 73.94 48Ca+36Ar12C+96Zr2+96Mo2+96Ru2+32S16O+
    49Ti 5.51 48CaH+98Mo2+98Ru2+33S16O+31P18O+
    50Ti 5.34 50Cr+50V+14N36Ar+11B36Ar+100Ru2+100Mo2+34S16O+
    下载: 导出CSV

    表  4   方法准确度

    Table  4   Accuracy of the method

    标准物质编号 Ti含量标准值
    (μg/g)
    Ti含量校正值
    (μg/g)
    相对误差
    (%)
    允许限
    (%)
    GBW07128 132 145 10.0 12.1
    GBW07129 42 38.7 7.86 14.9
    GBW07131 78 85.7 9.84 13.3
    GBW07133 174 193 11.1 11.5
    GBW07135 2580 2725 5.60 6.64
    下载: 导出CSV

    表  5   加标回收率

    Table  5   Recovery of standard addition

    标准物质编号 试样Ti含量测得量
    (μg)
    Ti加标量
    (μg)
    加标试样Ti含量测得量
    (μg)
    回收率
    (%)
    回收率允许限
    (%)
    GBW07128 145.0 100 228.0 83.0 10~110
    GBW07129 46 50 99.4 107.0
    GBW07131 86 50 133.0 94.6
    下载: 导出CSV

    表  6   方法精密度

    Table  6   Precision of the method

    标准物质编号
    Ti含量分次测定值
    (μg/g)
    Ti含量平均值
    (μg/g)
    RSD
    (%)
    GBW07129 38.7 42.3 36.2 40.9 45 41 7.3
    40.6 45.7 42.5 38 40
    GBW07133 174 165 178 166 165 170 3.8
    183 170 166 164 165
    GBW07135 2725 2561 2560 2559 2559 2613 3.3
    2559 2788 2536 2684 2602
    下载: 导出CSV

    表  7   不同方法测定Ti含量结果比对

    Table  7   Comparison of Ti content determined by different methods

    样品编号 本文方法Ti含量
    测定值(μg/g)
    二安替比林甲烷光度法 ICP-OES法
    测定值
    (μg/g)
    相对偏差
    (%)
    允许限
    (%)
    测定值
    (μg/g)
    相对偏差
    (%)
    允许限
    (%)
    1 14.7 16 6.6 25.0 12.4 17.4 18.0
    2 30.0 32 4.8 22.2 25.2 17.6 22.6
    3 125 143 13.7 17.1 123 1.16 12.3
    4 254 277 8.6 15.1 246 3.28 10.8
    5 3346 3301 1.4 8.9 3270 2.30 6.27
    6 756 764 1.1 12.2 723 4.41 8.70
    7 535 544 1.6 13.1 548 2.36 9.27
    8 1481 1501 1.4 10.6 1530 3.28 7.49
    9 14.0 18 22.9 24.8 16.3 15.3 17.7
    10 1051 1068 1.6 11.4 965 8.46 11.5
    注:相对偏差=$\left(\left|X_{\text {测 }}-\bar{X}\right| / \bar{X}\right) \times 100 \% $;其中$X_{\text {测 }} $为本方法测定值,$ \bar{X} $为本方法测定值与二安替比林甲烷光度法或ICP-OES法测定值的平均值; 允许限=$C \times\left(14.37 \bar{X}^{-0.1263}-7.659\right) $,其中C=1,$ \bar{X} $为本方法测定值与二安替比林甲烷光度法或ICP-OES法测定值的平均值。
    下载: 导出CSV
  • [1]

    Wang H J. New approach to the thermal properties of carbonate rocks in geothermal reservoirs: Molecular dynamics calculation and case studies[J]. Renewable Energy, 2022, 198: 861−871. doi: 10.1016/j.renene.2022.08.062

    [2]

    Wang H M, Zhou Q, Sheng J C, et al. Effect of long-term infiltration on porosity-permeability evolution in carbonate rocks: An online NMR coupling penetration test[J]. Journal of Hydrology, 2023, 129029(617): 1−14. doi: 10.1016/j.jhydrol.2022.129029

    [3]

    Zhang S Y, Shao M, Wang T, et al. Geochemistry of lacustrine carbonate rocks in Southwestern Qaidam: Implications of silicate weathering and carbon burial triggered by the uplift of the Tibetan Plateau[J]. International Journal of Coal Geology, 2023, 104167(265): 1−15. doi: 10.1016/j.coal.2022.104167

    [4] 史冀忠, 牛亚卓, 许伟, 等. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680−693. doi: 10.13278/j.cnki.jjuese.20200091

    Shi J Z, Niu Y Z, Xu W, et al. Geochemical characteristics and sedimentary environment of carboniferous Baishan Formation carbonate in Shibanquanxi of Yingen—Ejin Banner Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3): 680−693. doi: 10.13278/j.cnki.jjuese.20200091

    [5] 张连凯, 季宏兵, 刘秀明, 等. 热带地区碳酸盐岩上覆红色风化壳的成因机理及元素演化[J]. 中国地质, 2021, 48(2): 651−660. doi: 10.12029/gc20210221

    Zhang L K, Ji H B, Liu X M, et al. Genetic mechanism and elemental evolution of weathering laterite crust overlying carbonate rocks in tropical areas[J]. Geology in China, 2021, 48(2): 651−660. doi: 10.12029/gc20210221

    [6]

    Chen W, Ying Y C, Bai T, et al. In situ major and trace element analysis of magnetite from carbonatite-related complexes: Implications for petrogenesis and ore genesis[J]. Ore Geology Reviews, 2019, 107: 30−40. doi: 10.1016/j.oregeorev.2019.01.029

    [7]

    Levitskiy V I, Reznitsky L Z, Levitskiy I V. Geochemistry of carbonate rocks in the early Precambrian and Phanerozoic metamorphic complexes of East Siberia, North-West Russia, and Pamirs[J]. Geochemistry International, 2019, 57(4): 438−455. doi: 10.1134/S0016702919040074

    [8]

    Carlos R P J, Rafael C S, Eduardo C S N, et al. Influence of carbonate rocks on soil properties in the humid tropical climate of Atlantic forest, Rio de Janeiro–Brazil[J]. Journal of South American Earth Sciences, 2021, 103582(112): 1−11. doi: 10.1016/j.jsames.2021.103582

    [9]

    Wang Y J, Zhu W G, Zhong H, et al. Using trace elements of magnetite to constrain the origin of the Pingchuan hydrothermal low-Ti magnetite deposit in the Panxi area, SW China[J]. Acta Geochimica, 2019, 38(3): 376−390. doi: 10.1007/s11631-019-00332-2

    [10] 《岩石矿物分析》编委会. 岩石矿物分析(第四版)[M]. 北京: 地质出版社, 2011: 105−115 (第二分册), 742−750(第一分册), 753−762(第二分册).

    The Editorial Committee of "Rock and Mineral Analysis".Rock and mineral analysis (The fourth edition)[M]. Beijing: Geological Publishing House, 2011: 105−115 (Vol.Ⅱ), 742−750(Vol.Ⅰ), 753−762(Vol.Ⅱ).

    [11] 祁巍, 高延强, 宋苗, 等. 熔融制样-X射线荧光光谱法测定钛铁中钛磷硅锰铝[J]. 冶金分析, 2022, 42(3): 66−71. doi: 10.13228/j.boyuan.issn1000-7571.011534

    Qi W, Gao Y Q, Song M, et al. Determination of titanium, phosphorus, silicon, manganese and aluminum in ferrotitanium by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2022, 42(3): 66−71. doi: 10.13228/j.boyuan.issn1000-7571.011534

    [12] 张延新, 李京, 刘斌, 等. 熔融制样-X射线荧光光谱法测定高碳铬铁中铬硅磷钛[J]. 冶金分析, 2022, 42(12): 77−82. doi: 10.13228/j.boyuan.issn1000-7571.011494

    Zhang Y X, Li J, Liu B, et al. Determination of chromium, silicon, phosphorus and titanium in high-carbon ferrochrome by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2022, 42(12): 77−82. doi: 10.13228/j.boyuan.issn1000-7571.011494

    [13] 陈静, 高志军, 陈冲科, 等. X射线荧光光谱法分析地质样品的应用技巧[J]. 岩矿测试, 2015, 34(1): 91−98. doi: 10.15898/j.cnki.11-2131/td.2015.01.014

    Chen J, Gao Z J, Chen C K, et al. Application skills on determination of geological sample by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 91−98. doi: 10.15898/j.cnki.11-2131/td.2015.01.014

    [14] 朱立军, 李景阳. 碳酸盐岩风化成土作用及其环境效应[M]. 北京: 地质出版社, 2004.

    Zhu L J, Li J Y. Weathering and environmental effects of carbonate rocks[M]. Beijing: Geological Publishing House, 2004.

    [15] 兰叶芳, 任传建, 李小彩, 等. 黔西北毕节地区中二叠统碳酸盐岩岩石学、地球化学特征及意义[J]. 地球学报, 2022, 43(3): 309−324. doi: 10.3975/cagsb.2022.030301

    Lan Y F, Ren C J, Li X C, et al. Petrological and geochemical characteristics and their significance of middle Permian carbonate rocks in Bijie area, Northwestern Guizhou[J]. Acta Geoscientica Sinica, 2022, 43(3): 309−324. doi: 10.3975/cagsb.2022.030301

    [16]

    Lorraine T, Matthijs A S, Jamie C, et al. Rapid, paced metamorphism of blueschists (Syros, Greece) from laser-based zoned[J]. Chemical Geology, 2022, 121003(607): 1−14. doi: 10.1016/j.chemgeo.2022.121003

    [17]

    Salma I R V, Musthafa M M, Abdurahman K M, et al. Trace elemental fingerprinting of Ayurvedic medicine—Triphala Churna using XRF and ICPMS[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323: 1405−1412. doi: 10.1007/s10967-019-06909-8

    [18]

    Zhang W, Hu Z C, Liu Y S, et al. In situ calcium isotopic ratio determination in calcium carbonate materials and calcium phosphate materials using laser ablation-multiple collectorinductively coupled plasma mass spectrometry[J]. Chemical Geology, 2019, 522: 16−25. doi: 10.1016/j.chemgeo.2019.04.027

    [19]

    Alejandro S G, Juan M M G, Jose M T L, et al. ICP-MS multielemental determination of metals potentially released from dental implants and articular prostheses in human biological fluids[J]. Analytical and Bioanalytical Chemistry, 2005, 382: 1001−1009. doi: 10.1007/s00216-005-3165-9

    [20]

    Yang K L, Jiang S J, Hwang T J. Determination of titanium and vanadium in water samples by inductively coupled plasma mass spectrometry with on-line preconcentration[J]. Journal of Analytical Atomic Spectrometry, 1996, 11: 139−143. doi: 10.1039/ja9961100139

    [21]

    Feng S C, Wu J F, Chen G. Determination of picomolar titanium in seawater by isotope dilution multicollector inductively coupled plasma mass spectrometer after Mg(OH)2 coprecipitation[J]. Analytical Chemistry, 2021, 93: 13118−13125. doi: 10.1021/acs.analchem.0c04381

    [22]

    Yu L J, Koirtyohann S R, Melvin L R, et al. Simultaneous determination of aluminium, titanium and vanadium in serum by electrothermal vaporization-inductively coupled plasma mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 1997, 12: 69−74. doi: 10.1039/A604797A

    [23]

    Fu L, Xie H L, Huang J H, et al. Determination of ultra-trace levels of titanium in human serum using inductively coupled plasma tandem mass spectrometry based on O2/H2 reaction gas[J]. Analytica Chimica Acta, 2021, 1165(338564): 1−7. doi: 10.1016/j.aca.2021.338564

    [24]

    Martin L, Anronin K, Oto M. Non-spectral interferences in single-particle ICP-MS analysis: An underestimated phenomenon[J]. Talanta, 2019, 202: 565−571. doi: 10.1016/j.talanta.2019.04.073

    [25] 张楠, 郑智慷, 王家松, 等. 常压密闭微波消解-电感耦合等离子体质谱法测定磷矿石中的稀土元素[J]. 岩矿测试, 2024, 43(2): 366−374. doi: 10.15898/j.ykcs.202301110004

    Zhang N, Zheng Z K, Wang J S, et al. Determination of 15 rare earth elements in phosphate ores by inductively coupled plasma-mass spectrometry with atmospheric pressure closed microwave digestion[J]. Rock and Mineral Analysis, 2024, 43(2): 366−374. doi: 10.15898/j.ykcs.202301110004

    [26]

    Bussweiler Y, Giuliani A, Greig A, et al. Trace element analysis of high-Mg olivine by LA-ICP-MS-characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites[J]. Chemical Geology, 2019, 524: 136−157. doi: 10.1016/j.chemgeo.2019.06.019

    [27]

    Zhang W, Hu Z C, Günther D, et al. Direct lead isotope analysis in Hg-rich sulfides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration[J]. Analytica Chimica Acta, 2016, 948: 9−18. doi: 10.1016/j.aca.2016.10.040

    [28] 陈菲菲, 冉敬, 徐国栋, 等. 碳酸盐岩样品中镍和钪的电感耦合等离子体质谱分析与干扰校正方法[J]. 岩矿测试, 2021, 40(2): 187−195. doi: 10.15898/j.cnki.11-2131/td.202005310079

    Chen F F, Ran J, Xu G D, et al. Inductively coupled plasma-mass spectrometric analysis of nickel and scandium in carbonate rock samples and interference correction methods[J]. Rock and Mineral Analysis, 2021, 40(2): 187−195. doi: 10.15898/j.cnki.11-2131/td.202005310079

    [29]

    Sarmiento-González A, Encinar J R, Marchante-Gayón J M, et al. Titanium levels in the organs and blood of rate with a titanium implant, in the absence of wear, as determined by double-focusing ICP-MS[J]. Analytical & Bioanalytical Chemistry, 2009, 393: 335−343. doi: 10.1007/s00216-008-2449-2

    [30] 李冰, 杨红霞. 电感耦合等离子体质谱原理和应用[M]. 北京: 地质出版社, 2005.

    Li B,Yang H X. Principle and Application of Inductively Coupled Plasma Mass Spectrometry[M]. Beijing: Geological Publishing House,2005.

图(2)  /  表(7)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  32
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-27
  • 修回日期:  2024-05-23
  • 录用日期:  2024-06-19
  • 网络出版日期:  2024-08-08

目录

    /

    返回文章
    返回