Application of Energy Dispersive X-ray Fluorescence Spectroscopy in Analysis of Heavy Metals in Soil: A Review
-
摘要:
伴随着城市化和工业化的进程,重金属通过各种途径进入生态环境并在土壤中大量富集,对土壤环境健康造成潜在风险。近年来随着能量色散X射线荧光光谱技术(ED-XRF)的发展,仪器的检出限明显降低,并能适用于土壤中各类重金属的检测,正逐渐成为测定土壤环境中重金属浓度的有效设备。然而,土壤基质的复杂性和仪器自身的限制会导致利用ED-XRF在测定目标重金属时存在准确度和精密度较低等问题。譬如土壤样品的类型及粒径、仪器和环境中的噪声均会对检测造成一定影响,同时在定量分析模型方法的建立上也存在一定难度,仍不能很好地应用于实验室等数据质量要求较高的环境。本文总结了XRF在土壤重金属检测领域的应用与研究进展,探究了不同土壤样品状态及检测条件对ED-XRF仪器检测精确性的影响,梳理了ED-XRF光谱的主要预处理方法以及定量分析模型的建立过程,分析了ED-XRF在评估土壤重金属有效性上的应用潜力。当前,应用于ED-XRF检测的土壤样品制备程序已经相对成熟,在操作手段上如何减少土壤基体效应的影响,学者们的意见相对统一,即尽量使用干样、低粒径或压片土壤样品,而对检测数据的处理和分析还存在一定优化的空间。因此,目前主流的关注领域是结合不同算法的优点,进行ED-XRF光谱的预处理分析及建立定量分析模型来提高ED-XRF检测的精准度。但当下针对不同类型土壤的ED-XRF检测研究只点明了存在差异的现象,对其中的机理尚缺明晰的探究。未来需要继续探明不同基体效应存在于各类型土壤的原因及其影响大小,优化完善ED-XRF光谱定量分析模型,是ED-XRF定量分析研究的两个重要方向,通过多元回归分析对土壤中重金属有效性进行预测研究亦应是今后重点关注的领域。
Abstract:With the process of urbanization and industrialization, heavy metals enter the ecological environment through various pathways and accumulate in large quantities in the soil, causing potential risks to soil environmental health. In recent years, with the development of energy dispersive X-ray fluorescence spectroscopy (ED-XRF), the detection limit of the instrument has been significantly reduced, and it can be effectively applied to the detection of various heavy metals in soil, and is gradually becoming an effective tool for determining the concentration of heavy metals in the soil environment. However, the complexity of the soil matrix and the limitations of the instrument itself will lead to problems such as low accuracy and precision in the determination of target heavy metals by ED-XRF, such as the type and particle size of soil samples and the noise in the instrument and the environment; there are also certain difficulties in the establishment of quantitative analysis model methods, which are still not well applied to laboratories and other environments with high data quality requirements. In this paper, we summarize the application and research progress of XRF in the field of soil heavy metal detection, explore and analyze the influence of different soil sample states and detection conditions on the detection accuracy of ED-XRF instruments, sort out the main pretreatment methods of ED-XRF spectroscopy and the establishment process of quantitative analysis models, and introduce and analyze the application potential of ED-XRF in evaluating the effectiveness of soil heavy metals. At present, the soil sample preparation procedures applied to ED-XRF detection have been relatively mature, and the opinions of scholars on how to reduce the impact of soil matrix effects on the operation methods are relatively unanimous, that is, to use dry samples, low particle size or pressed soil samples as much as possible, and there is still some room for optimization in the processing and analysis of detection data. Therefore, the current mainstream focus is on combining the advantages of different algorithms for the preprocessing analysis of ED-XRF spectroscopy and the establishment of quantitative analysis models to improve the accuracy of ED-XRF detection. At the same time, ED-XRF detection studies on different types of soils only highlighted the differences in the phenomenon, and did not clearly explore the underlying mechanisms. In the future, it is important to continue to explore the causes and magnitude of different matrix effects in various types of soils, and to optimize and improve the quantitative analysis model of ED-XRF spectroscopy; the prediction of the effectiveness of heavy metals in soil through multiple regression analysis is also a field that scholars should focus on.
-
金属钨、钼具有优异的物理化学性质,被广泛应用于冶金、船舶、航空航天和国防工业等行业,使得钨钼矿石成为非常重要的战略矿产资源[1]。中国是钨钼资源生产和消费大国,随着工业的蓬勃发展,对钨钼资源的产出和需求与日俱增。钨的主要矿物是白钨矿和黑钨矿,钼的主要矿物为辉钼矿。钨、钼矿石中除了钨、钼外,还含有铜铅锌铁钾钠钙等多种共伴生有益有害元素[2],铜铅锌铁等元素的含量对矿物综合回收利用有重要参考价值,钾钠钙等主量元素的含量在矿物选冶过程中作为有害元素对矿物浮选工艺亦有较大影响[3]。建立一种能够准确、高效地测定钨钼矿石中钨钼及多种伴生元素的分析方法,对于矿床综合评价、矿物有效利用和地质学研究等相关领域具有重要意义[4-5]。
对于钨矿石和钼矿石中钨钼及其共(伴)生元素的测定,已有国家标准分析方法《钨矿石、钼矿石化学分析方法》(GB/T 14352—2010),以光度法测定钨钼,火焰原子吸收法(AAS)测定铜铅锌,化学方法测定铝铁等主量元素。近年来,电感耦合等离子体质谱(ICP-MS)、X射线荧光光谱(XRF)、电感耦合等离子体发射光谱(ICP-OES)等现代仪器设备在钨钼矿石分析测试中被大量应用。AAS法的线性范围窄且基体干扰大。ICP-MS法多用于微量元素、稀土元素和部分低含量主量元素分析[6-8],当样品中钨钼含量较高时,仪器进样系统受到较为严重的污染而影响测定,且对铁、铝等高含量主量元素的测定效果不理想。XRF法应用于主次量元素的同时测定有较好的效果[9-11],但仪器设备较为昂贵。ICP-OES法具有线性范围宽、精密度好、检测下限低等特点[12],在冶金、矿产、化工等诸多行业的分析测试中应用广泛[13-15]。
钨钼矿石分析的常用前处理方式包括酸溶[16-17]和碱熔[18]。酸溶方式操作简便,适用于钨钼矿石中主微量元素的同时测定,但当钨含量较高时易发生钨溶解不完全、测定结果偏低的问题。碱熔方式对钨钼的解离效果较好,常用的熔剂主要有:过氧化钠、碳酸钠、氢氧化钠等[19-21],但这类熔剂会引入大量碱金属元素,不能完成主量元素钾钠的同时测定。
本文在前人工作基础上,从样品处理和钨钼及共(伴)生元素同时测定两个方面出发,尝试利用偏硼酸锂熔融的强解离作用制样,针对钨、钼在酸性溶液易水解问题,在提取液中加入络合剂酒石酸使溶液稳定,样品溶液中除硼锂外不引入其他金属元素,借助ICP-OES完成钾钠等主量元素的同时测定。以基体匹配的方式消除基体干扰,优化ICP-OES工作条件以达到最佳仪器状态,建立了一种ICP-OES同时测定钨钼矿石中钨钼铜铅锌铁铝锰钛钙镁钾钠共13种元素的高效、准确的分析方法。
1. 实验部分
1.1 仪器及工作条件
Optima 8300全谱直读电感耦合等离子体发射光谱仪(美国PerkinElmer公司),SCD检测器,宝石喷嘴十字交叉雾化器(耐高盐),Winlab32操作软件。
仪器工作条件:射频发生器功率1.3kW,冷却气(Ar)流速12L/min,雾化气(Ar)流速0.7L/min,辅助气(Ar)流速0.2L/min,进样速度1.0mL/min,进样时间30s。
高纯氩气:质量分数大于99.999%。
1.2 标准溶液和主要试剂
钨钼铜铅锌铁铝钾钠钙镁钛锰单元素标准储备液:浓度均为1000μg/mL, 购自中国计量科学研究院。
盐酸:优级纯,购自国药集团化学试剂有限公司。
酒石酸:分析纯,购自天津科密欧化学试剂有限公司。
无水偏硼酸锂(含水偏硼酸锂在700℃脱水2h后待用):分析纯,购自天津大茂化学试剂有限公司。
去离子水:电阻率≥18MΩ·cm。
1.3 样品处理方法
以钨钼含量较高的钨矿石成分分析国家一级标准物质GBW07241、钼矿石成分分析国家一级标准物质GBW07238,以及河南洛阳栾川钨钼矿石实际样品(经碎样工序制备成粒度为≤74μm)为实验对象。
称取0.1000g样品于铂坩埚中,加入0.5g无水偏硼酸锂混匀,表面再覆盖一薄层无水偏硼酸锂,置于已升温至1000℃的马弗炉中熔融15min,从马弗炉中取出坩埚冷却,放入已提前加入25mL 20%盐酸-0.25g酒石酸的100mL烧杯中,将烧杯置于超声振荡器中,超声振荡溶解熔块后将溶液转移至100mL容量瓶中定容,随同样品做空白实验。
1.4 标准溶液系列的配制
使用各单元素标准储备溶液逐级稀释配制成钨钼(0、1、5、20、50、100μg/mL),铜铅锌(0、0.1、0.5、2、5、10μg/mL),铝铁钙(0、10、20、50、100、200μg/mL),镁钾钠(0、2、5、10、20、50μg/mL),钛锰(0、1、2、5、10、20μg/mL)混合标准溶液系列。各标准溶液中分别加入25mL的20%盐酸-0.25g酒石酸溶液匹配基体。
2. 结果与讨论
2.1 样品处理方式的选择
如前所述,钨钼矿石分析常用的消解方式包括酸溶法和碱熔法,对钨钼元素的分析,碱熔法更为常用。为考察两类方法对钨钼矿石样品的处理效果,选取钨钼含量较高的钼矿石成分分析国家一级标准物质GBW07238按下列4种方法进行了以下对比实验。
方法1:0.1000g样品+5mL氢氟酸、7.5mL盐酸、2.5mL硝酸、2mL高氯酸,于150℃敞口酸溶,200℃使白烟冒尽,5mL 50%硝酸加热提取,定容至100mL。
方法2:0.1000g样品+0.5g过氧化钠,于700℃熔融10min,50mL 20%盐酸浸取,定容至100mL。
方法3:0.1000g样品+0.5g过氧化钠,于700℃熔融10min,50mL 20%盐酸+0.25g酒石酸浸取,定容至100mL。
方法4:0.1000g样品+0.5g无水偏硼酸锂,于1000℃熔融15min,25mL 20%盐酸+0.25g酒石酸超声振荡浸取,定容至100mL。
4种处理方法的测定结果列于表 1。方法1敞口酸溶-硝酸提取和方法2过氧化钠碱熔-盐酸提取所得钨、钼测定结果偏低,这是由于钨、钼在酸性介质中易产生微溶的钨酸、钼酸沉淀,而ICP-OES的测定需要在酸性介质中进行,因此需采取措施增强溶液稳定性[22]。王蕾等[23]以封闭压力酸溶的方式使钨含量(0.22%)较高的钨矿石样品分解完全,并用氢氟酸-硝酸混合酸为介质使钨形成稳定的易溶解的六价配合物,运用耐氢氟酸进样系统ICP-OES仪器直接测定钨含量取得了较好的效果,封闭酸溶用时20h,需使用耐氢氟酸进样系统,对设备要求较高。方法3过氧化钠碱熔,盐酸-酒石酸提取的测定结果准确。王风等[24]采用过氧化钠碱熔,盐酸-柠檬酸提取测定钼矿石中的钨钼;林学辉等[25]采用过氧化钠碱熔,硝酸-酒石酸提取测定矿石中的高含量钨均取得较好的效果,说明络合剂的加入能够有效增强溶液的稳定性。方法4测定结果准确,说明偏硼酸锂可使钨钼矿分解完全,同时酒石酸能有效络合钨钼,得到稳定的待测溶液,且该方法中熔融-超声浸取过程用时3h左右,溶样效率较高。
表 1 国家标准物质GBW07238采用不同样品分解方式测定结果Table 1. Analytical results of elements in GBW07238 dissoluted with different digestion methods元素 GBW07238中各元素含量 标准值(%) 方法1测定值(%) 方法2测定值(%) 方法3测定值(%) 方法4测定值(%) W 0.36±0.03 0.30 0.31 0.35 0.37 Mo 1.51±0.03 1.42 1.23 1.52 1.53 Cu 0.00936±0.00123 0.0092 0.0097 0.0096 0.0095 Pb 0.00187±0.00032 - - - - Zn 0.00655±0.00112 0.0068 0.0070 0.0070 0.0071 Al2O3 3.46±0.21 3.43 3.48 3.45 3.48 TFe2O3 21.34±0.36 21.17 21.25 21.41 21.31 CaO 31.44±0.36 31.30 31.57 31.49 31.37 MgO 0.86±0.05 0.84 0.87 0.87 0.88 TiO2 0.13±0.01 0.13 0.12 0.13 0.12 MnO 1.40±0.07 1.43 1.37 1.42 1.39 K2O 0.046±0.014 0.045 - - 0.042 Na2O 0.075±0.051 0.076 - - 0.081 注:表中“-”表示无法检出。 门倩妮等[26]和冯晓军等[27]分别以偏硼酸锂熔融作为前处理方式对多金属矿和磷矿石进行多元素分析,取得了很好的效果。偏硼酸锂熔融具有较强的解离作用,对难熔金属和主量元素等有较好的处理效果,其在处理样品过程中除硼、锂外不引入其他金属元素。本文以偏硼酸锂熔融,盐酸-酒石酸超声提取处理样品,偏硼酸锂熔融相较过氧化钠、氢氧化钠等常规碱熔熔剂不引入待测元素钾钠,能够实现钨钼钾钠等元素的同时测定,酒石酸可与钨、钼生成配合物从而获得稳定的样品溶液,此方法适合钨钼矿石样品的多元素同时分析,可同时测定钨钼矿石中的钨钼铜铅锌铁铝钾钠钙镁锰钛。
2.2 ICP-OES分析谱线和观测方式的选择
ICP-OES测定过程中应综合考虑谱线信号强度、共存元素干扰、元素含量等因素选择分析谱线。钨的分析谱线常用:W 207.912nm、W 224.876nm、W 239.708nm。测定结果表明,W 207.912nm和W 224.876nm测定结果均较好,但W 207.912nm易受到Zn 207.908nm谱线的重叠干扰[28],而W 224.876nm相较W 207.912nm共存元素干扰小且强度更高,本文选择W 224.876nm作为钨分析谱线。钼常用分析谱线有:Mo 202.030nm、Mo 203.845nm,两条谱线上机测定结果总体相同,基本没有共存谱线干扰,其中Mo 202.030nm谱线强度更高,选作本方法的分析谱线。针对钨钼矿石中钙含量通常较高的特点,选择低灵敏度的Ca 317.933nm作为分析谱线。钨钼矿石中钾钠含量通常较低,选用高灵敏线K 766.490nm、Na 589.592nm。结合上机测定结果,选择灵敏度高共存元素干扰小的Cu 324.752nm、Pb 220.353、Zn 213.857nm、Al 396.153nm、Fe 238.204nm、Mg 285.213nm、Ti 334.940nm、Mn 257.610nm作为分析谱线。
ICP-OES的观测方式有轴向和径向,轴向观测方式灵敏度高但受基体干扰更强,径向观测方式所受基体干扰小但灵敏度更低[29],故应结合样品中的元素含量和基体干扰程度选择观测方式。本文方法中,钨钼铜铅锌钾钠选择轴向观测,铝铁钙镁钛锰用径向观测。
2.3 偏硼酸锂用量的优化和基体干扰的消除
在偏硼酸锂熔融制样过程中,熔剂用量过低无法使样品消解完全;用量过高会使样品溶液盐度增大,增加溶液黏度,影响雾化效率和中心管状态[30]。因此,固体熔剂的用量应严格控制,既要保证样品分解完全,又要最大程度地降低对测试的影响[31]。为考察熔剂用量的影响,分别以3:1、5:1、7:1、10:1的熔剂试样比以钼矿石成分分析国家一级标准物质GBW07238为实验对象进行试验。当熔剂-试样比为3:1时肉眼可见样品只有部分熔融;当熔剂-试样比为5:1、7:1、10:1时可得到完全透明熔块,测定结果(表 2)准确,可见样品已消解完全。综合考虑控制熔剂用量以降低盐度和节省试剂,本文选择5:1作为方法的熔剂-试样比。
表 2 国家标准物质GBW07238在不同熔剂-试样比条件下的测定结果Table 2. Analytical results of elements in GBW07238 dissoluted with different flux and sample ratio元素 标准值(%) GBW07238各元素测定值(%) 剂样比3:1 剂样比5:1 剂样比7:1 剂样比10:1 W 0.36±0.03 0.19 0.37 0.34 0.35 Mo 1.51±0.03 0.86 1.53 1.48 1.46 Cu 0.00936±0.00123 0.0061 0.0095 0.0091 0.0097 Pb 0.00187±0.00032 - - - - Zn 0.00655±0.00112 0.0038 0.0071 0.0061 0.0068 Al2O3 3.46±0.21 2.08 3.48 3.43 3.41 TFe2O3 21.34±0.36 13.56 21.31 21.25 21.37 CaO 31.44±0.36 17.69 31.37 31.29 31.31 MgO 0.86±0.05 0.48 0.88 0.85 0.85 TiO2 0.13±0.01 0.071 0.12 0.13 0.12 MnO 1.40±0.07 0.082 1.39 1.41 1.37 K2O 0.046±0.014 0.028 0.042 0.042 0.044 Na2O 0.075±0.051 0.043 0.081 0.082 0.074 曹磊等[32]以ICP-OES测定土壤中的主次量元素,提出基体干扰对测定结果有很大影响,尤其是高含量元素受干扰更为明显, 以标准物质与样品共同消解作为工作曲线可有效消除基体干扰。陈忠颖等[33]以基体加入方式匹配基体,测定高纯铁中多种元素取得了很好的测试效果,标准溶液进行基体匹配亦是一种比较简便、高效的消除基体效应方式。本文样品溶液的基体主要是偏硼酸锂和酒石酸,在ICP-OES测定过程中会产生一定的盐基体效应,分析元素的信号强度受到较大影响,雾化效率更低,针对这种情况,在标准溶液中加入与样品溶液等量的偏硼酸锂和盐酸-酒石酸,提取液测定结果准确,有效消除了基体效应。
2.4 仪器条件的优化
王雪平等[34]讨论了ICP-OES发生器功率对元素激发强度的影响,提出功率过高会使背景强度增大引起信噪比降低,功率过低会使原子蒸发和解离效果减弱[35]。本实验保持其他仪器参数不变,分别以1100W、1200W、1300W、1400W、1500W的功率对同一份样品溶液进行测定,对比测定结果可知,随着发生器功率的增大,元素信号强度明显增强,当功率为1300W时激发强度达到较高水平。考虑发生器功率过高会带来信噪比降低、降低矩管寿命等影响,选择1300W作为发生器功率。
偏硼酸锂熔融制样的溶液由于盐分的大量引入需使用高盐雾化器进行测样,高盐雾化器相较石英雾化器雾化效果降低,因此提高雾化效率以维持较高的信号强度非常重要。严子心等[36]提出雾化气流速过低不能使溶液雾化完全,雾化气流速过高会使气溶胶在发生器中停留时间变短从而引起信号强度变低。固定其他仪器条件,仅改变雾化气流速进行测定,当雾化气流速为0.7L/min时信号强度达到最高,说明雾化效率同样已达最高,因此选择0.7L/min作为雾化气流速。
进样速度过小无法使雾化效率最大化,过大则会加大溶液和泵管的损耗且会增加高盐溶液堵塞雾化器的风险[37]。保持其他仪器条件不变,仅改变进样速度进行测定,当进样速度为1.0mL/min时信号增强程度开始放缓,因此选择进样速度为1.0mL/min。
2.5 分析方法评价
2.5.1 标准曲线和方法检出限
以元素质量浓度为横坐标、信号强度值为纵坐标,测定1.4节标准溶液,绘制标准曲线,各元素标准曲线相关系数大于0.9990(表 3),满足分析要求。
表 3 各元素的分析谱线、标准曲线与方法检出限Table 3. Spectral line, calibration curve and detection limit of elements元素 测定波长
(nm)线性范围
(μg/mL)相关系数 方法检出限
(μg/g)W 224.876 1.0~100.0 0.9996 2.71 Mo 202.030 1.0~100.0 0.9998 4.67 Cu 324.752 0.1~10.0 0.9992 4.11 Pb 220.353 0.1~10.0 0.9991 7.27 Zn 213.857 0.1~10.0 0.9995 0.90 Al 396.153 10.0~200.0 0.9991 27.1 Fe 238.204 10.0~200.0 0.9996 38.9 Ca 317.933 10.0~200.0 0.9991 46.2 Mg 285.213 2.0~50.0 0.9992 19.6 Ti 334.940 1.0~20.0 0.9999 2.32 Mn 257.610 1.0~20.0 1.0000 1.34 K 766.490 2.0~50.0 0.9995 31.2 Na 589.592 2.0~50.0 0.9992 43.8 在仪器最佳条件下连续测定全流程空白溶液11次,以3倍标准偏差计算方法各元素检出限为1.34~46.2μg/g(表 3)。姜云军等[38]以氢氧化钠碱熔ICP-OES法测定钨钼矿石中的钨钼,方法检出限为11~15μg/g;王小强等[39]以过氧化钠碱熔ICP-OES法测定多金属矿中的主次量元素,方法检出限为7~995μg/g。碱熔法相较酸溶法引入的盐类较多,基体效应更大,所以检出限水平更高。本文方法的检出限与姜云军等[38]碱熔方法的检出限基本处于同一水平,略优于王小强等[39]方法,能够满足钨钼矿石分析测试的需求。
2.5.2 方法准确度和精密度
以钨矿石成分分析国家一级标准物质GBW07241、钼矿石成分分析国家一级标准物质GBW07238为验证样品, 按照实验方法分别平行测定10份样品,计算方法相对误差和相对标准偏差(RSD)。方法各元素测定相对误差(主量元素以氧化物计)为0.14%~8.70%,RSD(主量元素以氧化物计)为1.4%~7.6%(表 4)。张世龙等[40]以氢氧化钠-过氧化钠混合熔剂碱熔ICP-OES测定钨矿石中的铝铁钨钼,该方法的相对误差为2.42%~6.67%,RSD为0.5%~5.1%。经比较,本文与前人方法基本处于用一水平,符合钨钼矿石分析的技术参数要求。
表 4 钨矿石和钼矿石标准物质测定结果Table 4. Analytical results of tungsten ore and molybdenum ore certified references元素 GBW07241(钨矿石) GBW07238(钼矿石) 标准值
(%)测定值
(%)相对误差
(%)RSD
(%)标准值
(%)测定值
(%)相对误差
(%)RSD
(%)W 0.22±0.02 0.23 4.50 1.8 0.36±0.03 0.37 2.80 3.2 Mo 0.098±0.006 0.104 6.10 6.8 1.51±0.03 1.53 1.30 2.0 Cu 0.096±0.004 0.098 2.10 1.4 0.00936±0.00123 0.0095 1.50 5.4 Pb 0.00812±0.00031 0.0087 7.10 7.6 0.00187±0.00032 - - - Zn 0.103±0.008 0.100 2.90 2.6 0.00655±0.00112 0.0071 8.4 4.8 Al2O3 11.15±0.18 11.22 0.63 1.8 3.46±0.21 3.48 0.58 2.2 TFe2O3 5.60±0.07 5.58 0.36 1.5 21.34±0.36 21.31 0.14 1.4 CaO 4.17±0.08 4.15 0.48 1.7 31.44±0.36 31.37 0.22 1.4 MgO 0.14±0.01 0.13 7.10 2.8 0.86±0.05 0.88 2.30 1.7 TiO2 0.044±0.006 0.042 4.50 2.2 0.13±0.01 0.12 7.70 2.1 MnO 0.090±0.006 0.087 3.30 2.1 1.40±0.07 1.39 0.71 1.5 K2O 1.58±0.07 1.54 2.50 3.9 0.046±0.014 0.042 8.70 3.5 Na2O 0.12±0.01 0.11 8.30 3.4 0.075±0.051 0.081 8.00 4.1 2.5.3 实际样品分析
分别采用光度法测定钨钼、AAS法测定铜铅锌、敞口酸溶ICP-OES法测定钾钠铝铁等元素以及本文方法,对取自河南洛阳栾川钨钼矿石实际样品(经碎样工序制成粒度为≤74μm)进行测定。对比测定结果可知,不同方法测定结果的相对误差在0.24%~4.65%(表 5),说明本文方法能够准确测定钨钼矿石,相较传统方法也更加高效。
表 5 方法结果对比Table 5. Comparison of different methods元素 相关分析方法 测定值(%) 本文方法测定值(%) 与相关方法的相对误差(%) W 光度法 0.93 0.94 0.53 Mo 光度法 0.67 0.65 1.52 Cu AAS 0.091 0.084 4.00 Pb AAS 0.034 0.037 4.23 Zn AAS 0.045 0.041 4.65 Al2O3 ICP-OES 9.73 9.66 0.36 TFe2O3 ICP-OES 8.41 8.45 0.24 CaO ICP-OES 15.21 15.30 0.29 MgO ICP-OES 2.36 2.41 1.05 TiO2 ICP-OES 0.17 0.16 3.03 MnO ICP-OES 1.15 1.14 0.44 K2O ICP-OES 0.75 0.73 1.35 Na2O ICP-OES 0.42 0.44 2.33 3. 结论
建立了一种偏硼酸锂熔融,盐酸-酒石酸超声浸取,ICP-OES同时测定钨钼矿中钨钼铜铅锌铝铁钙镁钛锰钾钠的方法,利用偏硼酸锂熔融的强解离作用使样品分解完全,酒石酸络合抑制钨钼在酸性介质中的水解,相较常规碱熔熔剂,溶液中除硼锂外不引入其他金属元素,可同时完成钨钼钾钠等多元素的同时测定,确定以剂样比5:1熔样能够获得较好效果,以基体匹配方式消除基体干扰,在发生器功率1300W、雾化气流速0.7L/min、进样速度1.0mL/min条件下,仪器达到最佳工作状态。实验中偏硼酸锂熔块超声浸取可考虑熔块骤冷淬裂以缩短处理时间,在以后的工作中可进一步优化。
本方法测定结果与传统方法基本一致,能够准确地分析钨钼矿石样品中钨钼铜铅锌铝铁钙镁钛锰钾钠,且相较传统方法的效率更高,能够为钨钼矿石评价及综合利用提供技术支撑。
-
表 1 光谱预处理方法对比
Table 1 Comparison of spectral preprocessing methods
光谱
预处理
方法使用算法 特点与效果 参考文献 噪声扣除 切比雪夫滤波器 切比雪夫滤波器使用和编程快速简单,使用谱窗宽度作为唯一的参数来控制噪声数据的平滑度,可作为LSP等方法的替代 López-Camacho等[71] 最佳波束形成-傅里叶变换 将X射线光谱视为角度序列,对谱线进行相应的逆傅里叶变换得到自相关函数,并构建自相关矩阵,根据矩阵重新估计空间谱,重新估计得到的谱图较原始谱图更加平滑 Wu等[72] 小波变换-S-G滤波器 该方法能有效地剔除含噪光谱信号中的噪声信息,同时提高了光谱的平滑度 杨帆等[73] 小波变换阈值法 与傅里叶变换法和移动平均法进行对比,其标准曲线的效果更好,且提高了模型的稳定性与准确度 李芳[74] 双树复小波变换 通过双树结构消除丢失的数据,计算阈值并使用阈值函数对噪声信号进行滤波处理,然后对滤波处理后的小波系数进行逆变换重构信号。较离散小波变换去噪信噪比更高,均方根误差更小 黄素真等[75] 微分非线性消除平滑 能显著提高能量分辨率和噪声分辨性能,并与原始值相比测试误差减低近50% Lu等[76] 背景扣除 傅里叶变换法 经本底扣除后,XRF野外测定含量与实验室分析结果的平均误差仅为−11.0%,相较线性本底扣除法降低14.9% 王卓等[77] 复小波变换 复小波变换方法比实小波变换方法能更有效地进行背景推断,从而大大提高了谱图测量的有效性和精度 Hu等[78] 双树复小波变换 该方法具有平滑、无振荡、能有效地保持信号不变等优点,仿真和实验结果均表明该方法能有效地去除XRF光谱中的本底 Zhao等[79] 非线性迭代削峰法
(SNIP)算法简单,且具有自适应于峰值区域宽度的裁剪窗口,较以往的算法能更准确地去除背景 Morháč[80] 蒙特卡罗模拟
(MCNP)根据检测几何结构和实际测量条件,建立蒙特卡罗仿真计算系统模拟计算得到能量沉积谱和模拟谱,通过消除能量沉积谱中特征峰得到连续背景谱,视为真实背景值,在实际检测中效果较好 Jia等[81] 生成对抗网络模型
(GNN)与原始光谱进行线性拟合对比显示,样品光谱信号的基线得到较好地校正 王欣然[82] 表 2 X射线荧光光谱建模方法比较
Table 2 Comparison of modeling methods for X-ray fluorescence spectroscopy
目标元素 定量分析模型 模型应用效果 参考文献 Pb、Zn、Cu、Cr PLS 用PLS建立模型可以较好地预测不同类型土壤中Pb、Zn、Cu、Cr含量 钱原铬[52] As、Pb DBN-RF 降低了光谱数据中的冗余,既保留DBN强大的特征提取能力,又提高了模型的预测能力, 较常用模型R2值至少提高0.0557 刘峥莹[83] Pb CARS-PLS 预测决定系数R2达到0.9955,具有较好的预测能力 江晓宇等[84] Cd、Hg PLSR 模型较为稳健,具有良好的预测能力 王清亚[57] Cr、Cu、Zn、As、Pb PSO、SVM 模型训练集和测试集的决定系数R2分别在0.99和0.90以上,预测准确度显著提高 程惠珠等[85] Cr、Cu、Zn、As、Pb SVM
LM-BP-ANN
MLR三种模型分析的决定系数R2均高于0.95,模型的拟合度高,准确度好,可以对土壤样品中5种重金属含量实现较好的预测 李芳[74] Pb PLS 与传统的一元线性回归和多元线性回归分析相比,PLS回归分析能明显提高模型预测的准确度 黄启厅等[86] Cr、Zn、As、Pb、Cd CNN 预测模型的决定系数R2达到0.9583,效果优于其他预测模型,预测效果良好 杨慧[87] 稀土元素 PLSR、OLSR 偏最小二乘回归相比最小二乘回归的预测精度要好 Kirsanov等[88] -
[1] 杨正标, 何青青, 王珂, 等. 便携式XRF在污染地块土壤金属元素调查中的应用[J]. 环境监控与预警, 2023, 15(1): 23−26, 51. doi: 10.3969/j.issn.1674-6732.2023.01.004 Yang Z B, He Q Q, Wang K, et al. Application of portable XRF in investigation of metal elements in contaminated soil[J]. Environmental Monitoring and Early Warning, 2023, 15(1): 23−26, 51. doi: 10.3969/j.issn.1674-6732.2023.01.004
[2] 姚真真, 李玲, 张志扬, 等. 我国土壤元素分析方法标准体系现状研究[J]. 农产品质量与安全, 2019(5): 69−74. doi: 10.3969/j.issn.1674-8255.2019.05.014 Yao Z Z, Li L, Zhang Z Y, et al. Research on the status quo of standard system of soil element analysis methods in China[J]. Quality and Safety of Agricultural Products, 2019(5): 69−74. doi: 10.3969/j.issn.1674-8255.2019.05.014
[3] 李冰, 周剑雄, 詹秀春. 无机多元素现代仪器分析技术[J]. 地质学报, 2011, 85(11): 1878−1916. doi: 11-1951/P.20111025.0834.003 Li B, Zhou J X, Zhan X C. Modern instrumental analysis techniques for inorganic multi-element[J]. Acta Geologica Sinica, 2011, 85(11): 1878−1916. doi: 11-1951/P.20111025.0834.003
[4] 王晨希. XRF、ICP-OES及FAAS测定土壤样品中重金属元素对比研究[J]. 绿色科技, 2021, 23(6): 23−24. doi: 10.3969/j.issn.1674-9944.2021.06.007 Wang C X. Comparative study on the determination of heavy metal elements in soil samples by XRF, ICP-OES and FAAS[J]. Green Science and Technology, 2021, 23(6): 23−24. doi: 10.3969/j.issn.1674-9944.2021.06.007
[5] Brown G, Kanaris-Sotiriou R. The determination of sulphur in soils X-ray fluorescence analysis[J]. Annales Agronomiques, 1967, 18(6): 653. doi: 10.1039/an9699400782
[6] Brumme M, Heckel J, Irmer K. Influence of polarization of exciting X-radiation on sensitivity of energy dispersive X-ray fluorescence trace analysis at rocks and soils[J]. Isotopenpraxis Isotopes in Environmental and Health Studies, 1990, 26(7): 341−342. doi: 10.1080/10256019008624324
[7] Kubala-Kukuś A, Banaś D, Braziewicz J, et al. X-ray spectrometry and X-ray microtomography techniques for soil and geological samples analysis[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, 364: 85−92. doi: 10.1016/j.nimb.2015.07.136
[8] Chuparina E V, Gunicheva T N. Nondestructive X-ray fluorescence determination of some elements in plant materials[J]. Journal of Analytical Chemistry, 2003, 58(9): 856−861. doi: 10.1023/A:1025689202055
[9] 吉昂. X射线荧光光谱三十年[J]. 岩矿测试, 2012, 31(3): 383−398. doi: 10.3969/j.issn.0254-5357.2012.03.002 Ji A. Thirty years of X-ray fluorescence spectroscopy[J]. Rock and Mineral Analysis, 2012, 31(3): 383−398. doi: 10.3969/j.issn.0254-5357.2012.03.002
[10] 赖裕瑈. 基于SDD探测器X荧光仪的应用探讨[D]. 南昌: 东华理工大学, 2015. Lai Y R. Application of X-ray fluorescence instrument based on SDD detector[D]. Nanchang: East China University of Technology, 2015.
[11] 程大伟, 刘明博, 沈学静, 等. 双曲面弯晶X射线分析仪器及应用进展[J]. 冶金分析, 2022, 42(1): 10−17. doi: 10.13228/j.boyuan.issn1000-7571.011498 Cheng D W, Liu M B, Shen X J. Hyperboloid bent crystal X-ray analysis instrument and application progress[J]. Metallurgical Analysis, 2022, 42(1): 10−17. doi: 10.13228/j.boyuan.issn1000-7571.011498
[12] 张勤, 樊守忠, 潘宴山, 等. X射线荧光光谱法测定化探样品中主、次和痕量组分[J]. 理化检验(化学分册), 2005, 41(8): 547−552. doi: 10.3321/j.issn:1001-4020.2005.08.003 Zhang Q, Fan S Z, Pan Y S. Determination of primary, secondary and trace components in geochemical samples by X-ray fluorescence spectroscopy[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2005, 41(8): 547−552. doi: 10.3321/j.issn:1001-4020.2005.08.003
[13] 何姣姣, 江荣风, 王雁峰, 等. X射线荧光光谱法在测定土壤及植物、矿质养分方面的应用[J]. 中国土壤与肥料, 2020(1): 1−7. doi: 10.11838/sfsc.1673-6257.19047 He J J, Jiang R F, Wang Y F. Application of X-ray fluorescence spectroscopy in the determination of mineral nutrients in soil and plants[J]. China Soil and Fertilizer, 2020(1): 1−7. doi: 10.11838/sfsc.1673-6257.19047
[14] 张杰. 土壤重金属XRF光谱重叠峰解析及含量反演模型研究[D]. 秦皇岛: 燕山大学, 2021. Zhang J. Study on analysis of overlapping peaks of soil heavy metal XRF spectra and content inversion model[D]. Qinhuangdao: Yanshan University, 2021.
[15] 林照彬. 便携式XRF土壤重金属分析仪快速检测与国标方法比对研究[J]. 皮革制作与环保科技, 2021, 2(10): 34−35, 37. Lin Z B. Comparison of portable XRF soil heavy metal analyzer with national standard method[J]. Leather Making and Environmental Technology, 2021, 2(10): 34−35, 37.
[16] dos Anjos M, Lopes R, de Jesus E, et al. Quantitative analysis of metals in soil using X-ray fluorescence[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2000, 55(7): 1189−1194. doi: 10.1016/S0584-8547(0)00165-8
[17] Jang M. Application of portable X-ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites[J]. Environmental Geochemistry and Health, 2010, 32(3): 207−216. doi: 10.1007/s10653-009-9276-z
[18] Wan M, Hu W, Qu M, et al. Application of arc emission spectrometry and portable X-ray fluorescence spectrometry to rapid risk assessment of heavy metals in agricultural soils[J]. Ecological Indicators, 2019, 101: 583−594. doi: 10.1016/j.ecolind.2019.01.069
[19] 韩平, 王纪华, 陆安祥, 等. 便携式X射线荧光光谱分析仪测定土壤中重金属[J]. 光谱学与光谱分析, 2012, 32(3): 826−829. doi: 10.3964/j.issn.1000-0593(2012)03-0826-04 Han P, Wang J H, Lu A X, et al. Determination of heavy metals in soil by portable X-ray fluorescence spectrometer[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 826−829. doi: 10.3964/j.issn.1000-0593(2012)03-0826-04
[20] Radu T, Gallagher S, Byrne B, et al. Portable X-ray fluorescence as a rapid technique for surveying elemental distributions in soil[J]. Spectroscopy Letters, 2013, 46(7): 516−526. doi: 10.1080/00387010.2013.763829
[21] Paulette L, Man T, Weindorf D C, et al. Rapid assessment of soil and contaminant variability via portable X-ray fluorescence spectroscopy: Copşa Mică, Romania[J]. Geoderma, 2015, 243–244: 130–140.
[22] Peinado F M, Ruano S M, González M G B, et al. A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF)[J]. Geoderma, 2010, 159(1–2): 76−82. doi: 10.1016/j.geoderma.2010.06.019
[23] 焦思. 基于PXRF的土壤重金属污染空间异质性分析[D]. 南京: 南京林业大学, 2021. Jiao S. Spatial heterogeneity analysis of soil heavy metal pollution based on PXRF[D]. Nanjing: Nanjing Forestry University, 2021.
[24] Qu M, Chen J, Huang B. Resampling with in situ field portable X-ray fluorescence spectrometry (FPXRF) to reduce the uncertainty in delineating the remediation area of soil heavy metals[J]. Environmental Pollution, 2021, 271: 116310. doi: 10.1016/j.envpol.2020.116310
[25] 彭洪柳. 粤北某铅锌冶炼厂周边农田镉铅污染风险与修复技术初探[D]. 芜湖: 安徽师范大学, 2019. Peng H L. A preliminary study on cadmium and lead pollution risk and remediation technology in farmland around a lead-zinc smelter in Northern Guangdong[D]. Wuhu: Anhui Normal University, 2019.
[26] 孟蕾, 韩平, 王世芳, 等. X射线荧光光谱在土壤重金属检测中的应用进展[J]. 食品与机械, 2017, 33(8): 210−213. doi: 10.13652/j.issn.1003-5788.2017.08.045 Meng L, Han P, Wang S F, et al. Application progress of X-ray fluorescence spectroscopy in the detection of heavy metals in soil[J]. Food & Machinery, 2017, 33(8): 210−213. doi: 10.13652/j.issn.1003-5788.2017.08.045
[27] 武天云, Schoenau J J, 李凤民, 等. 土壤有机质概念和分组技术研究进展[J]. 应用生态学报, 2004, 15(4): 717−722. doi: 10.3321/j.issn:1001-9332.2004.04.036 Wu T Y, Schoenau J J, Li F M, et al. Research progress on soil organic matter concept and grouping technology[J]. Chinese Journal of Applied Ecology, 2004, 15(4): 717−722. doi: 10.3321/j.issn:1001-9332.2004.04.036
[28] Marguí E, Queralt I, Hidalgo M. Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material[J]. TrAC Trends in Analytical Chemistry, 2009, 28(3): 362−372. doi: 10.1016/j.trac.2008.11.011
[29] Shand C A, Wendler R. Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter[J]. Journal of Geochemical Exploration, 2014, 143: 31−42. doi: 10.1016/j.gexplo.2014.03.005
[30] 彭洪柳, 杨周生, 赵婕, 等. 高精度便携式X射线荧光光谱仪在污染农田土壤重金属速测中的应用研究[J]. 农业环境科学学报, 2018, 37(7): 1386−1395. doi: 10.11654/jaes.2018-0568 Peng H L, Yang Z S, Zhao J, et al. Application of high-precision portable X-ray fluorescence spectrometer in the rapid detection of heavy metals in polluted farmland soil[J]. Journal of Agro-Environment Science, 2018, 37(7): 1386−1395. doi: 10.11654/jaes.2018-0568
[31] 陈曾思澈, 徐亚, 雷国元, 等. PXRF土壤重金属检测的影响因素、模式与校正方法[J]. 中国环境科学, 2020, 40(2): 708−715. doi: 10.3969/j.issn.1000-6923.2020.02.030 Chenzeng S C, Xu Y, Lei G Y, et al. Influencing factors, modes and correction methods for soil heavy metal detection by PXRF[J]. China Environmental Science, 2020, 40(2): 708−715. doi: 10.3969/j.issn.1000-6923.2020.02.030
[32] Costa Y T, Ribeiro B T, Curi N, et al. Organic matter removal on oxide determination in Oxisols via portable X-ray fluorescence[J]. Communications in Soil Science and Plant Analysis, 2019, 50(6): 673−681. doi: 10.1080/00103624.2019.1589479
[33] Ravansari R, Lemke L D. Portable X-ray fluorescence trace metal measurement in organic rich soils: pXRF response as a function of organic matter fraction[J]. Geoderma, 2018, 319: 175−184. doi: 10.1016/j.geoderma.2018.01.011
[34] Sut‐Lohmann M, Ramezany S, Kästner F. Feasibility of pXRF to evaluate chosen heavy metals in soil highly influenced by municipal waste disposal—A monitoring study of a former sewage farm[J]. Land Degradation & Development, 2022, 33(3): 439−451. doi: 10.1002/ldr.4147
[35] 傅赵聪, 王翀, 吴春发, 等. HDXRF法农田土壤镉测定结果准确度评价与精准校正模型构建[J]. 土壤, 2023, 55(4): 829−837. doi: 10.13758/j.cnki.tr.2023.04.017 Fu Z C, Wang C, Wu C F, et al. Accuracy evaluation and accurate correction model construction of cadmium determination results in farmland soil by HDXRF method[J]. Soils, 2023, 55(4): 829−837. doi: 10.13758/j.cnki.tr.2023.04.017
[36] 曹发明. XRF分析技术在土壤重金属检测中的应用研究[D]. 成都: 成都理工大学, 2014. Cao F M. Application of XRF analysis in soil heavy metal detection[D]. Chengdu: Chengdu University of Technology, 2014.
[37] 倪子月, 陈吉文, 刘明博, 等. 能量色散X射线荧光光谱法测定土壤中铬和锰的干扰校正[J]. 冶金分析, 2016, 36(10): 10−14. doi: 10.13228/j.boyuan.issn1000-7571.009844 Ni Z Y, Chen J W, Liu M B, et al. Interference correction for determination of chromium and manganese in soil by energy dispersive X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(10): 10−14. doi: 10.13228/j.boyuan.issn1000-7571.009844
[38] 周云泷. X射线荧光法分析土壤中重金属含量[D]. 成都: 成都理工大学, 2015. Zhou Y L. Analysis of heavy metals in soil by X-ray fluorescence[D]. Chengdu: Chengdu University of Technology, 2015.
[39] Ulmanu M, Anger I, Gamen E, et al. Rapid and low-cost determination of some heavy metals in soil using an X-ray fluorescence portable instrument[J]. Research Journal of Agricultural Science, 2011, 43(3): 235−241.
[40] Lu J, Guo J, Wei Q, et al. A matrix effect correction method for portable X-ray fluorescence data[J]. Applied Sciences, 2022, 12(2): 568. doi: 10.3390/app12020568
[41] 章明奎. 亚热带山地垂直带土壤发生的讨论[J]. 中国农学通报, 2020, 36(23): 66−73. Zhang M K. Discussion on soil occurrence in the vertical zone of subtropical mountains[J]. Chinese Agricultural Science Bulletin, 2020, 36(23): 66−73.
[42] 唐晓勇, 倪晓芳, 商照聪, 等. 土壤中铁对砷的便携式X射线荧光光谱仪分析基体效应研究与校正[J]. 冶金分析, 2021, 41(1): 69−74. doi: 10.13228/j.boyuan.issn1000-7571.011109 Tang X Y, Ni X F, Shang Z C, et al. Study and correction of matrix effect of iron on arsenic in soil by portable X-ray fluorescence spectrometer[J]. Metallurgical Analysis, 2021, 41(1): 69−74. doi: 10.13228/j.boyuan.issn1000-7571.011109
[43] 唐晓勇, 倪晓芳, 商照聪. 土壤中铁元素对铬元素p-XRF测定准确度的影响与校正[J]. 岩矿测试, 2020, 39(3): 467−474. doi: 10.15898/j.cnki.11-2131/td.201911200161 Tang X Y, Ni X F, Shang Z C. Effect and correction of iron in soil on the accuracy of p-XRF determination of chromium[J]. Rock and Mineral Analysis, 2020, 39(3): 467−474. doi: 10.15898/j.cnki.11-2131/td.201911200161
[44] 杨桂兰, 倪晓芳, 张长波. 基于便携式X射线荧光光谱法的土壤重金属快速检测[J]. 浙江农业学报, 2019, 31(11): 1903−1908. doi: 10.3969/j.issn.1004-1524.2019.21.17 Yang G L, Ni X F, Zhang C B. Rapid detection of heavy metals in soil based on portable X-ray fluorescence spectrometry[J]. Journal of Zhejiang Agricultural Sciences, 2019, 31(11): 1903−1908. doi: 10.3969/j.issn.1004-1524.2019.21.17
[45] 陆安祥, 王纪华, 潘立刚, 等. 便携式X射线荧光光谱测定土壤中Cr, Cu, Zn, Pb和As的研究[J]. 光谱学与光谱分析, 2010, 30(10): 2848−2852. doi: 10.3964/j.issn.1000-0593(2010)10-2848-05 Lu A X, Wang J H, Pan L G, et al. Determination of Cr, Cu, Zn, Pb and As in soil by portable X-ray fluorescence spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(10): 2848−2852. doi: 10.3964/j.issn.1000-0593(2010)10-2848-05
[46] 徐少强, 杨菲, 刘爽, 等. 便携式XRF对西南喀斯特地区碳酸盐岩风化壳土壤分析适用性评估[J]. 地球与环境, 2023, 31(2): 1−10. doi: 10.14050/j.cnki.1672-9250.2023.51.013 Xu S Q, Yang F, Liu S, et al. Applicability of portable XRF for carbonate weathered crust soil analysis in southwest karst region[J]. Earth and Environment, 2023, 31(2): 1−10. doi: 10.14050/j.cnki.1672-9250.2023.51.013
[47] 唐嫚, 曾沛艺, 杨牧青, 等. X射线荧光光谱仪在茶园土壤总砷含量检测中的应用研究——以昌宁县为例[J]. 现代农业科技, 2022(20): 127−132, 144. doi: 10.3969/j.issn.1007-5739.2022.20.033 Tang M, Zeng P Y, Yang M Q, et al. Application of X-ray fluorescence spectrometer in the detection of total arsenic content in tea plantation soil: A case study of Changning County[J]. Modern Agricultural Science and Technology, 2022(20): 127−132, 144. doi: 10.3969/j.issn.1007-5739.2022.20.033
[48] 李燕, 魏雨露, 夏龙飞. 便携式X荧光光谱仪在场地重金属污染调查中的应用研究[C]// 《环境工程》2019年全国学术年会论文集(下册). 北京: 《环境工程》编委会, 2019: 6. Li Y, Wei Y L, Xia L F. Application of portable X-ray fluorescence spectrometer in the investigation of heavy metal pollution in the site[C]//Proceedings of the 2019 National Academic Annual Conference of Environmental Engineering (Volume Ⅱ). Beijing: Editorial Board of 《Environmental Engineering》, 2019: 6.
[49] 刘尚华, 陶光仪, 吉昂. X射线荧光光谱分析中的粉末压片制样法[J]. 光谱实验室, 1998, 15(6): 10−16. doi: 10.3969/j.issn.1004-8138.1998.06.003 Liu S H, Tao G Y, Ji A. Powder tablet preparation method in X-ray fluorescence spectroscopy[J]. Spectroscopy Laboratory, 1998, 15(6): 10−16. doi: 10.3969/j.issn.1004-8138.1998.06.003
[50] 金楚湄, 闫颖, 袁昕玥, 等. 影响XRF法测定土壤重金属Pb、Cd含量准确性的因素优化[J]. 山东化工, 2023, 52(19): 134−138, 142. doi: 10.3969/j.issn.1008-021X.2023.19.036 Jin C M, Yan Y, Yuan X Y, et al. Optimization of factors affecting the accuracy of XRF determination of soil heavy metal Pb and Cd content[J]. Shandong Chemical Industry, 2023, 52(19): 134−138, 142. doi: 10.3969/j.issn.1008-021X.2023.19.036
[51] Peralta E, Pérez G, Ojeda G, et al. Heavy metal availability assessment using portable X-ray fluorescence and single extraction procedures on former vineyard polluted soils[J]. Science of the Total Environment, 2020, 726: 138670. doi: 10.1016/j.scitotenv.2020.138670
[52] 钱原铬. X射线荧光光谱定量分析土壤中重金属方法研究[D]. 长春: 吉林大学, 2012. Qian Y G. Quantitative analysis of heavy metals in soil by X-ray fluorescence spectroscopy[D]. Changchun: Jilin University, 2012.
[53] de Freitas M G, dos Santos F R, Parreira P S, et al. Influence of soil sample grain size on energy dispersive X-ray fluorescence analysis: A comparative study case with three spectrometers[J]. Spectroscopy Letters, 2021, 54(7): 560−570. doi: 10.1080/00387010.2021.1957941
[54] Ge L, Lai W, Lin Y. Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis[J]. X-Ray Spectrometry, 2005, 34(1): 28−34. doi: 10.1002/xrs.782
[55] 朱梦杰. 便携式XRF测定仪在土壤检测中的应用及其影响因素[J]. 中国环境监测, 2019, 35(6): 129−137. doi: 10.19316/j.issn.1002-6002.2019.06.18 Zhu M J. Application of portable XRF analyzer in soil detection and its influencing factors[J]. China Environmental Monitoring, 2019, 35(6): 129−137. doi: 10.19316/j.issn.1002-6002.2019.06.18
[56] 冉景, 王德建, 王灿, 等. 便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J]. 光谱学与光谱分析, 2014, 34(11): 3113−3118. doi: 10.3964/j.issn.1000-0593(2014)11-3113-06 Ran J, Wang D J, Wang C. Comparative study on the determination of heavy metals in soil by portable X-ray fluorescence spectrometry and atomic absorption/atomic fluorescence method[J]. Spectroscopy and Spectral Analysis, 2014, 34(11): 3113−3118. doi: 10.3964/j.issn.1000-0593(2014)11-3113-06
[57] 王清亚. 基于XRF的土壤重金属定量分析方法研究及应用[D]. 南昌: 东华理工大学, 2021. Wang Q Y. Research and application of quantitative analysis method of soil heavy metals based on XRF[D]. Nanchang: East China University of Technology, 2021.
[58] Weindorf D C, Bakr N, Zhu Y, et al. Influence of ice on soil elemental characterization via portable X-ray fluorescence spectrometry[J]. Pedosphere, 2014, 24(1): 1−12. doi: 10.1016/S1002-0160(13)60076-4
[59] 赵合琴, 郑先君, 魏丽芳, 等. X射线荧光光谱分析中样品制备方法评述[J]. 河南化工, 2006(10): 8−11. doi: 10.3969/j.issn.1003-3467.2006.10.003 Zhao H Q, Zheng X J, Wei L F, et al. Review of sample preparation methods in X-ray fluorescence spectroscopy[J]. Henan Chemical Industry, 2006(10): 8−11. doi: 10.3969/j.issn.1003-3467.2006.10.003
[60] 李亚, 王英凯, 张旭, 等. X射线荧光光谱法测定高含量有机碳样品中的钾、钠、钙、镁、硅、铝、铁、钛、锰、磷[J]. 中国无机分析化学, 2021, 11(2): 57−61. doi: 10.3969/j.issn.2095-1035.2021.02.012 Li Y, Wang Y K, Zhang X, et al. Determination of potassium, sodium, calcium, magnesium, silicon, aluminum, iron, titanium, manganese and phosphorus in high organic carbon samples by X-ray fluorescence spectroscopy[J]. China Journal of Inorganic Analytical Chemistry, 2021, 11(2): 57−61. doi: 10.3969/j.issn.2095-1035.2021.02.012
[61] 胡明情. XRF法检测土壤重金属的影响因素[J]. 环境监控与预警, 2016, 8(2): 23−24, 27. doi: 10.3969/j.issn.1674-6732.2016.02.006 Hu M Q. Influencing factors of XRF detection of heavy metals in soil[J]. Environmental Monitoring and Early Warning, 2016, 8(2): 23−24, 27. doi: 10.3969/j.issn.1674-6732.2016.02.006
[62] Hu W, Huang B, Weindorf D C, et al. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92(4): 420−426. doi: 10.1007/s00128-014-1236-3
[63] Angeles-Chavez C, Antonio J, Antonia M. Chemical quantification of Mo-S, W-Si and Ti-V by energy dispersive X-ray spectroscopy[M]//Sharma S K. X-Ray Spectroscopy, 2012.
[64] Newlander K, Goodale N, Jones G T, et al. Empirical study of the effect of count time on the precision and accuracy of pXRF data[J]. Journal of Archaeological Science, 2015, 3: 534−548. doi: 10.1016/j.jasrep.2015.07.007
[65] 王晔, 冷传旭, 潘增志, 等. 提高便携式XRF测定仪在土壤污染调查中使用效果的措施[J]. 化工管理, 2022(34): 71−73. doi: 10.19900/j.cnki.ISSN1008-4800.2022.34.022 Wang Y, Leng C X, Pan Z Z, et al. Measures to improve the use of portable XRF analyzers in soil pollution investigation[J]. Chemical Industry Management, 2022(34): 71−73. doi: 10.19900/j.cnki.ISSN1008-4800.2022.34.022
[66] 吴晓玲. XRF分析土壤重金属元素含量的方法研究[D]. 成都: 成都理工大学, 2016. Wu X L. XRF method for analysis of heavy metal content in soil[D]. Chengdu: Chengdu University of Technology, 2016.
[67] 黄秋鑫, 孙秀敏. 粉末标准曲线XRF法检测土壤中的重/类金属[J]. 环境科学与技术, 2014, 37(9): 92−98. doi: 10.3969/j.issn.1003-6504.2014.09.018 Huang Q X, Sun X M. Detection of heavy/metalloids in soil by standard curve XRF of powder[J]. Environmental Science and Technology, 2014, 37(9): 92−98. doi: 10.3969/j.issn.1003-6504.2014.09.018
[68] 王世芳, 韩平, 王纪华, 等. X射线荧光光谱分析法在土壤重金属检测中的应用研究进展[J]. 食品安全质量检测学报, 2016, 7(11): 4394−4400. doi: 10.19812/j.cnki.jfsq11-5956/ts.2016.11.028 Wang S F, Han P, Wang J H, et al. Research progress on the application of X-ray fluorescence spectroscopy in the detection of heavy metals in soil[J]. Journal of Food Safety and Quality, 2016, 7(11): 4394−4400. doi: 10.19812/j.cnki.jfsq11-5956/ts.2016.11.028
[69] 章炜, 张玉钧, 陈东. 土壤重金属镍元素的X射线荧光定量分析[J]. 激光与光电子学进展, 2012, 49(1): 137−140. doi: 10.3788/LOP49.013002 Zhang Y, Zhang Y J, Chen D. X-ray fluorescence quantitative analysis of heavy metal nickel in soil[J]. Advances in Laser and Optoelectronics, 2012, 49(1): 137−140. doi: 10.3788/LOP49.013002
[70] Li F, Ge L, Tang Z, et al. Recent developments on XRF spectra evaluation[J]. Applied Spectroscopy Reviews, 2020, 55(4): 263−287. doi: 10.1080/05704928.2019.1580715
[71] López-Camacho E, García-Cortés A, Palacio C. A family of smoothing algorithms for electron and other spectroscopies based on the Chebyshev filter[J]. Thin Solid Films, 2006, 513(1−2): 72−77. doi: 10.1016/j.tsf.2006.01.024
[72] Wu X, Liu Z. A smoothing method for X-ray spectrum based on best beamforming[J]. Radiation Physics and Chemistry, 2012, 81(3): 248−252. doi: 10.1016/j.radphyschem.2011.11.048
[73] 杨帆, 王鹏, 张宁超, 等. 一种基于小波变换的改进滤波算法及其在光谱去噪方面的应用[J]. 国外电子测量技术, 2020, 39(8): 98−104. doi: 10.19652/j.cnki.femt.2002126 Yang F, Wang P, Zhang N C, et al. An improved filtering algorithm based on wavelet transform and its application in spectral denoising[J]. Foreign Electronic Measurement Technology, 2020, 39(8): 98−104. doi: 10.19652/j.cnki.femt.2002126
[74] 李芳. 基于小波变换的能量色散X射线荧光光谱建模方法研究[D]. 长春: 吉林大学, 2015. Li F. Research on modeling method of energy-dispersive X-ray fluorescence spectroscopy based on wavelet transform[D]. Changchun: Jilin University, 2015.
[75] 黄素真, 宋晓梅, 任正伟. 基于双树复小波变换信号去噪算法研究[J]. 国外电子测量技术, 2017, 36(10): 19−22. doi: 10.3969/j.issn.1002-8978.2017.10.006 Huang S Z, Song X M, Ren Z W. Research on denoising algorithm for signal based on double-tree complex wavelet transform[J]. Foreign Electronic Measurement Technology, 2017, 36(10): 19−22. doi: 10.3969/j.issn.1002-8978.2017.10.006
[76] Lu B, Chen Y, Zhu Y, et al. An energy spectrum smoothing algorithm based on TCC-DEE[J]. Nuclear Science and Techniques, 2017, 28(10): 140. doi: 10.1007/s41365-017-0290-z
[77] 王卓, 葛良全, 张庆贤, 等. 基于傅里叶变换的本底扣除法在X荧光分析中的应用[J]. 核技术, 2012, 35(7): 549−551. Wang Z, Ge L Q, Zhang Q X, et al. Application of background subtraction method based on Fourier transform in X-ray fluorescence analysis[J]. Nuclear Techniques, 2012, 35(7): 549−551.
[78] Hu Y, Zhou J, Tang J, et al. The application of complex wavelet transform to spectral signals background deduction[J]. Chromatographia, 2013, 76(11−12): 687−696. doi: 10.1007/s10337-013-2456-0
[79] Zhao F, Wang A. A background subtraction approach based on complex wavelet transforms in EDXRF: Background subtraction approach based on complex wavelet[J]. X-Ray Spectrometry, 2015, 44(2): 41−47. doi: 10.1002/xrs.2576
[80] Morháč M. An algorithm for determination of peak regions and baseline elimination in spectroscopic data[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600(2): 478−487. doi: 10.1016/j.nima.2008.11.132
[81] Jia L, Gu Y, Zhang Q, et al. The accuracy evaluation method of baseline estimation algorithms in energy dispersive X-ray fluorescence spectrum analysis[J]. X-Ray Spectrometry, 2023, 52(1): 22−27. doi: 10.1002/xrs.3180
[82] 王欣然. 基于XRF的土壤重金属元素检测分析方法研究[D]. 成都: 电子科技大学, 2023. Wang X R. Research on XRF-based analysis method for the detection of heavy metal elements in soil[D]. Chengdu: University of Electronic Science and Technology of China, 2023.
[83] 刘峥莹. 土壤重金属XRF光谱重叠峰解析及含量预测模型研究[D]. 秦皇岛: 燕山大学, 2022. Liu Z Y. Analysis of overlapping peaks of soil heavy metal XRF spectra and content prediction model[D]. Qinhuangdao: Yanshan University, 2022.
[84] 江晓宇, 李福生, 王清亚, 等. 便携式XRF分析仪检测土壤重金属应用研究[J]. 核电子学与探测技术, 2021, 41(6): 1005−1012. doi: 10.3969/j.issn.0258-0934.2021.06.015 Jiang X Y, Li F S, Wang Q Y, et al. Research on the application of portable XRF analyzer for the detection of heavy metals in soil[J]. Nuclear Electronics and Detection Technology, 2021, 41(6): 1005−1012. doi: 10.3969/j.issn.0258-0934.2021.06.015
[85] 程惠珠, 杨婉琪, 李福生, 等. 面向XRF的竞争性自适应重加权算法和粒子群优化的支持向量机定量分析研究[J]. 光谱学与光谱分析, 2023, 43(12): 3742−3746. doi: 10.3964/j.issn.1000-0593(2023)12-3742-05 Cheng H Z, Yang W Q, Li F S. Quantitative analysis of competitive adaptive reweighting algorithm and support vector machine for particle swarm optimization for XRF[J]. Spectroscopy and Spectral Analysis, 2023, 43(12): 3742−3746. doi: 10.3964/j.issn.1000-0593(2023)12-3742-05
[86] 黄启厅, 周炼清, 史舟, 等. FPXRF——偏最小二乘法定量分析土壤中的铅含量[J]. 光谱学与光谱分析, 2009, 29(5): 1434−1438. doi: 10.3964/j.issn.1000-0593(2009)05-1434-05 Huang Q T, Zhou L Q, Shi Z, et al. FPXRF: Partial least squares method for quantitative analysis of lead content in soil[J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1434−1438. doi: 10.3964/j.issn.1000-0593(2009)05-1434-05
[87] 杨惠. 基于XRF的土壤重金属CNN-ELM混合预测模型研究[D]. 秦皇岛: 燕山大学, 2021. Yang H. Research on CNN-ELM hybrid prediction model of soil heavy metals based on XRF[D]. Qinhuangdao: Yanshan University, 2021.
[88] Kirsanov D, Panchuk V, Goydenko A, et al. Improving precision of X-ray fluorescence analysis of lanthanide mixtures using partial least squares regression[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 113: 126−131. doi: 10.1016/j.sab.2015.09.013
[89] Cheng S. Heavy metal pollution in China: Origin, pattern and control[J]. Environmental Science and Pollution Research, 2003, 10(3): 192−198. doi: 10.1065/espr2002.11.141.1
[90] Melquiades F L, dos Santos F R. Preliminary Results: Energy dispersive X-ray fluorescence and partial least squares regression for organic matter determination in soil[J]. Spectroscopy Letters, 2015, 48(4): 286−289. doi: 10.1080/00387010.2013.874532
[91] Morona F, dos Santos F R, Brinatti A M, et al. Quick analysis of organic matter in soil by energy-dispersive X-ray fluorescence and multivariate analysis[J]. Applied Radiation and Isotopes, 2017, 130: 13−20. doi: 10.1016/j.apradiso.2017.09.008
[92] John K, Kebonye N M, Agyeman P C, et al. Comparison of cubist models for soil organic carbon prediction via portable XRF measured data[J]. Environmental Monitoring and Assessment, 2021, 193(4): 1−15. doi: 10.1007/s10661-021-08946-x
[93] Zhu Y, Weindorf D C, Zhang W. Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture[J]. Geoderma, 2011.
[94] Silva S H G, Weindorf D C, Pinto L C, et al. Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach[J]. Geoderma, 2020, 362: 114136. doi: 10.1016/j.geoderma.2019.114136
[95] Weindorf S. Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH)[J]. Geoderma, 2014, 232-234: 141−147. doi: 10.1016/j.geoderma.2014.05.005
[96] Teixeira A F D S, Pelegrino M H P, Faria W M. Tropical soil pH and sorption complex prediction via portable X-ray fluorescence spectrometry[J]. Geoderma, 2020, 361: 114132. doi: 10.1016/j.geoderma.2019.114132
[97] Pelegrino M H P, Silva S H G, de Faria Á J G, et al. Prediction of soil nutrient content via pXRF spectrometry and its spatial variation in a highly variable tropical area[J]. Precision Agriculture, 2022, 23(1): 18−34. doi: 10.1007/s11119-021-09825-8
[98] Andrade R, Silva S H G, Weindorf D C, et al. Micronutrients prediction via pXRF spectrometry in Brazil: Influence of weathering degree[J]. Geoderma Regional, 2021, 27: e00431. doi: 10.1016/j.geodrs.2021.e00431
计量
- 文章访问数: 161
- HTML全文浏览量: 64
- PDF下载量: 100