Application of a SEM-EDS-Based Automated Process Mineralogy Analyzing System on the Occurrence State of Silver in Copper Ore Flotation Tailings
-
摘要:
元素赋存状态及工艺矿物学特征是决定其选矿工艺及回收指标的关键因素,对指导矿产资源高效综合回收利用有重要意义。由于银矿物种类繁多且含量低、粒度细小不易识别,传统人为鉴别目标矿物并统计工艺矿物学参数的方法在银的赋存特征研究方面存在局限性,制约了资源高效综合利用。本文利用基于扫描电子显微镜(SEM)和X射线能谱仪(EDS)的工艺矿物学参数自动分析系统(BPMA)对某铜矿浮选尾矿样品(Ag 41.96µg/g,Cu 0.44%)进行矿物学分析,展示其在尾矿样品中铜和银的赋存状态及工艺矿物学特征研究中的具体应用。结果表明:样品中铜矿物主要为辉铜矿和斑铜矿;铜硫化物及其集合体的嵌布粒度细微且解离程度低,是影响铜回收的主要矿物学因素。样品中银主要以独立矿物的形式存在,(含)银矿物有自然银、辉银矿/螺状硫银矿、硒银矿、硒铜银矿、硫铜银矿和含银辉铜矿,银在各(含)银矿物中的分布率分别为95.62%、2.07%、1.33%、0.15%、0.80%和0.03%;银矿物嵌布粒度不均匀,粗粒(>74µm)、中粒(74~37µm)、细粒(37~10µm)、微粒(<10µm)银矿物的占有率分别为32.25%、30.35%、21.44%和15.95%;银矿物的解离程度较高,单体含量高达88.28%,可采用浮选法与铜硫化物一起回收。该研究为提高资源的选矿回收率提供了矿物学依据,同时采用的BPMA & SEM-EDS分析方法为矿物种类复杂、含量低、粒度细小的稀贵金属元素赋存状态及工艺矿物学研究提供了一种技术借鉴。
-
关键词:
- 银;赋存状态 /
- 工艺矿物学 /
- 矿物粒度 /
- 矿物解离度 /
- 工艺矿物学参数自动分析系统
要点(1) BPMA & SEM-EDS技术联用测定铜矿浮选尾矿的矿物学组成及铜矿物的粒度、解离度、连生关系等工艺矿物学参数,并快速查找鉴定银矿物的种类、分析银的赋存特征。
(2)铜矿物主要为辉铜矿和斑铜矿,嵌布粒度细微,且解离程度较低。
(3)银在自然银、辉银矿/螺状硫银矿、硒银矿、硒铜银矿、硫铜银矿和含银辉铜矿中的分布率为95.62%、2.07%、1.33%、0.15%、0.80%和0.03%,银矿物粒度不均,解离程度较高,可采用浮选法与铜硫化物一起回收。
HIGHLIGHTS(1) BPMA & SEM-EDS technology was used to investigate the mineral composition of the flotation tailings, characterize the particle (and/or grain) size distribution, mineral liberation and interlocking relationships of main copper sulfide minerals in the tailings, and quickly identify the types of silver minerals and occurrence characteristics of silver.
(2) The copper minerals in the flotation tailings are mainly chalcocite (Cu2S) and bornite (Cu5FeS4), embedded with fine disseminated grain size and poor mineral liberation degree.
(3) The silver in the flotation tailings mainly occurs in native silver (Ag), argentite/acanthite (Ag2S), naumannite (Ag2Se), eucairite (CuAgSe), stromeyerite (AgCuS), and silver-bearing chalcocite [(Cu,Ag)2S], accounting for 95.62%, 2.07%, 1.33%, 0.15%, 0.80%, and 0.03%, respectively. The silver-bearing minerals with uneven grain size distribution and relatively high degree of liberation, can be recovered with copper sulfides using the flotation method.
Abstract:The silver occurrence state and process mineralogical characteristics are critical to its beneficiation process and recovery indicators, which can be used for assisting in process development, plant design, and improvement of silver recovery. In order to define the occurrence state of silver in copper ore flotation tailings with low-grade Ag 41.96g/g & Cu 0.44%, BGRIMM process mineralogy analyzing system (BPMA) with version 2.0 BPMA software, scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDS) were applied to investigate the copper mineralogical characteristics and silver occurrence state of the flotation tailings. The copper minerals in the tailings are mainly fine-grained and poorly liberated copper sulfide minerals; the silver mainly occurs as independent silver minerals, with high liberation and non-uniform grain size. The analytical results show that the BPMA & SEM-EDS in situ analysis method can serve as a technical reference for the study of the occurrence state and process mineralogy of rare precious metal elements. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202310250165.
-
Keywords:
- silver; occurrence state /
- process mineralogy /
- mineral particle size /
- mineral liberation /
- automated process mineralogy analyzing system
BRIEF REPORTSignificance: The occurrence state of elements and process mineralogical characteristics are critical to the availability of mineral resources, which is conducive to optimizing the ore extraction and smelting process and improving the comprehensive utilization of mineral resources. Due to the wide variety and low content of silver minerals, as well as their fine particle size, it is difficult to identify the occurrence state of silver. The traditional manual method, that is, mineral identification and parameter statistics mainly performed manually particle by particle, has limitations in investigating the occurrence characteristics of silver, which is difficult to effectively guide mineral processing production and greatly restricts the high-efficient utilization of mineral resources. We developed an in situ automated mineralogical analysis method of silver minerals in flotation tailings by SEM-EDS-based BPMA to give analytical technical support for the efficient utilization of silver resources. Our results indicate that the method can be used to find, identify and determine low-grade and fine-grained silver minerals in flotation tailings. It provides strong technical support for the study of the occurrence state and process mineralogy of rare precious metal elements.
Methods: The BPMA with version 2.0 BPMA software, which is a SEM-EDS-based automated mineralogy (AM) system, developed independently by BGRIMM Technology Group (China), was used to analyze the silver occurrence state and process mineralogical characteristics of low-grade flotation tailings (Ag 41.96g/g & Cu 0.44%) from a copper mine. The BPMA particle liberation analysis (BPLA) mode was applied to investigate the mineral composition, the particle (and/or grain) size distribution, and liberation and interlocking relationships of main copper sulfide minerals automatically. The BPMA specific particle liberation analysis (SPLA) mode was applied to find and identify silver-bearing minerals, and to determine their occurrence, mineral composition and size distribution of silver-bearing minerals in the tailings quickly and efficiently.
Data and Results: The results show that the copper minerals in the tailings are mainly chalcocite (Cu2S), with 0.45%, followed by bornite (Cu5FeS4), with 0.09%, and trace chalcopyrite (CuFeS2), which is less than 0.01%; silver mainly occurs in native silver (Ag), argentite/acanthite (Ag2S), naumannite (Ag2Se), eucairite (CuAgSe), stromeyerite (AgCuS), and silver-bearing chalcocite [(Cu,Ag)2S], accounting for 95.62%, 2.07%, 1.33%, 0.15%, 0.80%, and 0.03%, respectively. The copper sulfide minerals are embedded with fine particle size (more than 90% of grains smaller than 20m) and poor mineral liberation degree (the mass of copper sulfide minerals monomer accounts for less than 20%; the mass of copper sulfide minerals with a liberation degree below 25% accounts for more than 64.60%), which is the main mineralogical factor affecting beneficiation indexes of copper. The grain size range of silver-bearing minerals in the tailings is wide, and the contents of coarse-grained (>74m), medium-grained (74−37m), fine-grained (37−10m) and micro-grained (<10m) silver-bearing minerals are 32.25%, 30.35%, 21.45%, and 15.96%, respectively. The silver-bearing minerals are highly liberated, the content of liberated silver-bearing mineral monomer is up to 88.28%, which can be recovered with copper sulfides using the flotation method. However, a small amount of silver-bearing minerals (1.30%) wrapped in gangue minerals such as quartz and calcite are difficult to recycle through flotation.
-
银属于稀贵金属,兼具工业属性和金融投资属性,也是一种自古以来就备受人们喜爱的首饰工艺品之一。银在矿石或载体矿物中的存在形式对于深入理解成矿过程、确定矿山选矿流程、提高选矿回收率、优化选冶工艺均具有重要意义[1-5]。银矿物种类繁多,目前已发现大约200余种,往往粒度细小不易识别,且银易以类质同象置换的方式进入矿物晶格[5-6],仅依靠传统的光学显微镜和扫描电子显微镜等人工手动统计方法耗时耗力,且难以实现微细粒、低含量银赋存状态特征的准确测定[7-8]。
近年来,基于扫描电子显微镜(SEM)和X射线能谱仪(EDS)的矿物自动分析系统得到飞速的发展和广泛的应用。如澳大利亚CSIRO Minerals开发的扫描电镜矿物定量评价系统(QEMSCAN或QEM*SEM)[9-10]、昆士兰大学Julius Kruttschnitt矿物研究中心(JKMRC)开发的矿物解离分析仪(MLA)[11-12]、澳大利亚Yingsheng Technology公司创始人Ying Gu博士创建的矿物特征自动分析系统(AMICS)[13-17]、捷克TESCAN公司推出的综合矿物分析仪(TIMA)[18-19]、德国Carl Zeiss公司推出的Zeiss Mineralogic[20-21]、美国ThermoFisher Scientific/FEI公司推出的MAPS Mineralogy[22-23]以及矿冶科技集团有限公司(中国)研发的工艺矿物学参数自动分析系统(BGRIMM Process Mineralogy Analyzing System,简称BPMA)[24-25]等。此类技术可以实现样品自动扫描测量、矿物自动识别和矿物参数表征计算,测定矿物(元素)种类、含量、粒度、解离度、连生关系、赋存状态等矿物学参数,具有自动、快速、准确、高分辨率等突出优势[26-29],已成为选矿工艺矿物学研究及地学微区矿物信息量化表征的重要手段,在选冶工艺矿物学、煤炭、地质、油气、环境等领域展现出良好应用前景[13-15,17-20,30-35],尤其适用于微细粒、低品位稀贵金属矿物查找和赋存状态研究[15,36-45]。
本文以某铜矿浮选尾矿为研究对象,利用矿冶科技集团有限公司(原北京矿冶研究总院)研发的BPMA型工艺矿物学参数自动分析系统测定了样品的矿物学组成,分析了铜矿物的粒度、解离度和连生关系等影响选矿指标关键工艺矿物学参数,并对银的赋存状态特征进行详细研究,旨在查明尾矿资源属性,为资源高效综合利用提供矿物学依据,同时为矿物组成复杂、含量低、粒度细小的稀贵金属元素赋存状态研究提供技术借鉴。
1. 实验部分
1.1 实验原料
本文研究的样品为某铜矿选矿厂的浮选尾矿,试样粒度筛析结果见表1。结果显示,该尾矿的磨矿细度较细,−0.074mm粒级的颗粒占有率为68.43%;尾矿中Cu品位为0.44%,主要集中分布在−0.023mm粒级中,分布率为53.65%,其次分布在+0.074mm粒级中,分布率为29.26%;Ag品位为41.96µg/g,主要分布在+0.074mm、−0.074至+0.038mm和−0.023mm粒级中,各粒级分布率分别为22.12%、35.51%和34.58%。
表 1 尾矿试样粒度筛析结果Table 1. Particle size sieving analysis results of the tailing samples粒级
(mm)质量
(g)产率
(%)元素品位 分布率 Cu(%) Ag(µg/g) Cu(%) Ag(%) +0.074 30.5 31.57 0.41 29.4 29.26 22.12 −0.074至+0.038 20.8 21.53 0.22 69.2 10.71 35.51 −0.038至+0.023 13.0 13.46 0.21 24.3 6.39 7.79 −0.023 32.3 33.44 0.71 43.4 53.65 34.58 合计 96.6 100.00 0.44 41.96 100.00 100.00 1.2 样品制备
取0.2~0.5g待测样品,经分散预处理,消除细颗粒团聚、凝絮现象,用按比例配好的环氧树脂在镶嵌模具内(Φ 30mm)将试样冷镶嵌固结,经过粗磨、细磨、精磨、抛光等处理制成专用砂光片,露出颗粒抛光截面,再经过蒸镀碳膜增加导电性之后即可上机测试。详细的样品制备流程可参考文献[41-42,46-48]。
1.3 实验仪器和测试条件
测试分析在矿冶过程智能优化制造全国重点实验室完成,仪器型号为:BPMA型工艺矿物学参数自动分析系统。该系统由扫描电子显微镜(型号:VEGA 3 XMU,捷克TESCAN Brno,s.r.o.)、X射线能谱仪(型号:QUANTAX 200 XFlash® 6|30双探头,德国Bruker Nano GmbH)和工艺矿物学自动分析软件(型号:BPMA V2.0,矿冶科技集团有限公司)组成[24-25,30,41],除了具有矿物自动分析系统的优势和功能外,亦可以作为扫描电子显微镜和能谱仪使用。
本次实验条件:加速电压20kV,束流强度16nA(~3nA),工作距离15mm,背散射电子(BSE)成像。使用Au标样检验EDS信号收集计数,用Au-Cu标样和环氧树脂调整SEM-BSE图像亮度/对比度,使BSE图像中环氧树脂的灰度值为10以下且Au标样的灰度值为255,设置BPMA测量参数,进行样品自动测量。
样品测试预设测量参数见表2。主要步骤为:①设置测量参数后,开始自动测量,获取样品BSE图像—去除背底—提取颗粒—颗粒分相—布置能谱分析点—收集EDS谱图,测量以视域(帧)为单位,对视域(帧)内的颗粒进行逐粒扫描;②测量过程由BPMA软件控制SEM & EDS自动进行,当前视域内的颗粒扫描完成之后,自动移至下一个视域进行扫描,直至测量结束,测量过程中尽量对砂光片进行全覆盖无缝隙扫描测量,以确保不遗漏目标矿物颗粒;③可以一次性放入多个砂光片样品,按预先设置的测量参数依次逐个测量,当一个样品测量完成之后,自动跳转至下一个样品继续测量;④所有样品都测量完成后自动关闭扫描电镜加速高压,自动停止测量,整个测量过程无需人员值守,可夜间连续工作[24,26,41-42];⑤测量完成后,将测量文件中的EDS谱图与BPMA标准库中的矿物EDS谱图进行比对匹配,自动识别矿物并通过伪彩色图像显示矿物成分图(图1),其中标准库中的EDS谱图可以采用BPMA内置的理论合成谱图,也可以利用实际矿物标定;⑥通过图像分析方法统计计算表征矿物参数;⑦利用BPMA软件控制SEM回找定位到银矿物颗粒所在位置,进行SEM-EDS分析,并统计银矿物的种类、化学成分、粒度、颗粒形态、与载体矿物之间的关系等数据。
表 2 BPMA系统预设测量参数Table 2. Operation conditions of the BPMA system仪器工作参数 设定条件 全颗粒测量 选择颗粒测量 加速电压 20keV 20keV 工作距离 15mm 15mm 束流强度 3nA 3nA 放大倍率 400 1000 视场宽度 692.02µm 276.77µm 图像分辨率 1024×768pixel 1024×768pixel 像素尺寸 0.67µm 0.27µm 最大可测量帧数 1320 8426 背底阈值 30 100 最小颗粒面积 50pixel 1pixel 最大颗粒面积 − − 亮相灰度 100 100 亮相最小打点相面积 4pixel 1pixel 暗相最小打点相面积 4pixel 1pixel 分相精度 3 5 能谱采谱时间 60ms 60ms 测量终止条件 颗粒数: 105000 帧数: 8426 指定目标灰度 / 100~255 指定目标元素 / Ag 图 1 尾矿试样的BSE图像和BPMA矿物组成伪彩色图a—BPMA扫描BSE图像(局部,25个视域拼接图); b—BPMA矿物组成伪彩色图(局部,25个视域拼接图); c—含辉铜矿颗粒BPMA伪彩色图; d—含斑铜矿颗粒BPMA伪彩色图。Figure 1. BSE image and BPMA false-colored mineral map of the tailing samplesa—BSE image of the tailings (partial); b—BPMA false-colored mineral map of the tailings (partial); c—BPMA false-colored chalcocite-bearing mineral particles; d—BPMA false-colored bornite-bearing mineral particles.2. 结果与讨论
2.1 矿物组成和含量
利用BPMA全颗粒测量模式(PLA),自动获取样品的BSE图像,根据BSE图像灰度差异去除背底、提取矿石颗粒并分割矿物相布置EDS分析点,然后自动逐点→逐粒→逐帧扫描获取BSE图像和EDS谱图,并利用EDS谱图自动识别矿物,从而获得每个颗粒的矿物组成(元素组成)、面积、粒径、形状、矿物与矿物之间的镶嵌关系等,最后经过图像处理方法进行统计计算而得到各种矿物学数据。本次研究采用PLA模式测量的预设参数见表2,研究得到样品的BSE图像和BPMA矿物组成伪彩色图(局部)如图1所示(其中矿物图例仅显示质量分数>0.01%的矿物)。
环氧树脂砂光片的制备是矿物自动识别和矿物参数测量最关键的一环,其代表性直接关系到后续数据测量的准确性和真实性[48],从图1中a和b可以看出,样品经过分散预处理后,消除了细颗粒相互接触团聚、凝絮现象,颗粒分散性良好,保证了后续测量数据的可靠性和真实性;同时,本次研究利用BPMA扫描测量的矿物颗粒样本数较大,共计扫描了105386个矿物颗粒(表3),保证了测量数据的准确性。矿物种类及含量分析结果列于表3。根据BPMA测定的样品中辉铜矿(Cu2S)、斑铜矿(Cu5FeS4)、黄铜矿(CuFeS2)等含铜矿物含量及对应的矿物中元素含量理论值计算的Cu元素质量百分比(0.42%)与试样中Cu的品位(0.44%)基本一致,从侧面反映了本次BPMA测量数据的准确性。
表 3 尾矿试样的矿物组成分析结果Table 3. Analytical results of mineral composition for the tailing samples序号 矿物名称 分子式 矿物
颗粒数矿物含量
(wt.%)序号 矿物名称 分子式 矿物
颗粒数矿物含量
(wt.%)1 自然银 Ag 50 0.004 17 方解石 Ca[CO3] 5498 5.55 2 辉银矿/螺状硫银矿 Ag2S 21 0.0001 18 白云石 CaMg[CO3]2 4596 4.77 3 硒银矿 Ag2Se 55 <0.0001 19 绢云母 K{Al2[AlSi3O10](OH,F)2} 10001 4.74 4 硒铜银矿 CuAgSe 13 Trace 20 斜长石 (Na,Ca)[(Si,Al)4O8] 7100 1.66 5 硫铜银矿 AgCuS 13 Trace 21 辉石 (Ca,Mg,FeⅡ,FeⅢ,Al)(Si,Al)2O6 4373 1.51 6 辉铜矿 Cu2S 454 0.45 22 黑云母 K{Mg,Fe)3[AlSi3O10](OH)2 4893 1.23 7 斑铜矿 Cu5FeS4 182 0.09 23 绿泥石 {(Mg,Fe,Al)3[(Si,Al)4O10](OH)2}·(Mg,Fe,Al)3(OH)6 844 0.38 8 黄铜矿 CuFeS2 10 <0.01 24 金红石 TiO2 397 0.26 9 黄铁矿 FeS2 16 <0.01 25 重晶石 Ba[SO4] 255 0.20 10 方铅矿 PbS 20 <0.01 26 磷灰石 Ca5[(PO4)3]F 263 0.20 11 闪锌矿 ZnS 8 <0.01 27 高岭石 Al4[Si4O10](OH)8 276 0.09 12 磁铁矿 FeⅡFeⅢ2O4 560 0.59 28 锆石 Zr[SiO4] 68 0.03 13 钛铁矿 FeTiO3 104 0.01 29 独居石 Ce[PO4] 22 0.03 14 石英 SiO2 28976 54.21 30 其他 / 961 0.21 15 钾长石 K[AlSi3O8] 23726 13.10 合计 / 105386 100.00 16 钠长石 Na[AlSi3O8] 11627 10.66 表3结果显示,研究样品中(含)银矿物主要为自然银(Ag,0.0040%,质量分数,下同),含少量辉银矿/螺状硫银矿(Ag2S,0.0001%)和硒银矿(Ag2Se),偶见微量硒铜银矿(CuAgSe)、硫铜银矿(AgCuS)和含银辉铜矿[(Cu,Ag)2S];铜矿物主要为辉铜矿(Cu2S 0.45%),其次为斑铜矿(Cu5FeS4,0.09%),偶见微量黄铜矿(CuFeS2,<0.01%);其他金属硫化物含量甚微;含少量的磁铁矿(Fe3O4,0.59%)和微量钛铁矿(FeTiO3,0.01%);脉石矿物主要为石英(54.21%),其次为钾长石(13.20%)和钠长石(10.66%),含少量方解石(5.55%)、白云石(4.77%)、绢云母(4.74%)、斜长石(1.66%)、辉石(1.51%)、黑云母(1.23%)和微量的绿泥石(0.38%)、金红石(0.26%)、重晶石(0.20%)、磷灰石(0.20%)、锆石(0.03%)等。
2.2 铜矿物的粒度分布和解离特征
2.2.1 铜矿物粒度分布特征
研究样品中的铜矿物主要以辉铜矿(Cu2S)的形式存在,其次为斑铜矿(Cu5FeS4),偶见微量黄铜矿(Cu5FeS4)。利用BPMA测量统计辉铜矿、斑铜矿及铜硫化物集合体(辉铜矿-斑铜矿-黄铜矿集合体)的嵌布粒度特征,结果列于表4。
表 4 尾矿中主要铜矿物嵌布粒度分布Table 4. Grain size distribution of main copper minerals in tailing samples粒级(mm) 辉铜矿 斑铜矿 铜硫化物集合体 含量(%) 累积(%) 含量(%) 累积(%) 含量(%) 累积(%) +0.038 — — — — — — −0.038至+0.020 7.81 7.81 — — 8.55 8.55 −0.020至+0.015 9.04 16.85 — — 12.45 21.00 −0.015至+0.010 23.65 40.50 23.54 23.54 18.94 39.94 −0.010至+0.005 31.25 71.75 33.16 56.70 32.64 72.58 −0.005 28.25 100.00 43.31 100.01 27.42 100.00 注:铜硫化物集合体是将样品中辉铜矿、斑铜矿、黄铜矿等铜硫化物作为一个整体进行统计计算,下同。 表4结果显示,铜硫化物及其集合体的嵌布粒度细微,其嵌布粒度均小于0.038mm,呈细粒-微粒嵌布。其中,辉铜矿嵌布粒度均小于0.038mm,粒度在0.038~0.010mm之间的细粒级辉铜矿占有率为40.50%,粒度小于0.020mm的辉铜矿占有率高达92.19%,粒度小于0.010mm的微粒级辉铜矿占有率高达59.50%;斑铜矿嵌布粒度相对更细,嵌布粒度均在0.015mm以下,其中粒度小于0.010mm的微粒级斑铜矿占有率高达76.47%。
将辉铜矿、斑铜矿、黄铜矿等铜硫化物视为一个整体统计其工艺粒度,结果显示,铜硫化物集合体嵌布粒度依然很细,均在0.038mm以下,其中粒度在0.038~0.010mm之间的细粒铜硫化物集合体占有率为39.94%,粒度小于0.020mm的铜硫化物集合体占有率高达91.45%,粒度小于0.010mm的微粒铜硫化物集合体占有率高达60.06%。
2.2.2 铜矿物解离特征和连生关系
利用BPMA测量统计辉铜矿、斑铜矿及辉铜矿-斑铜矿-黄铜矿集合体(铜硫化物集合体)的解离特征和连生关系,结果列于表5和表6。结果显示,样品中铜矿物及其集合体的解离程度均较低。本文将颗粒中目标矿物的质量百分比在50<x<100%区间的矿物颗粒视为富连生体,将颗粒中目标矿物的质量百分比在0<x≤25%区间的矿物颗粒视为贫连生体(下同),则辉铜矿完全解离的单体含量仅占15.55%,辉铜矿富连生体占有率为6.08%,富连生体和单体合计占21.63%,辉铜矿贫连生体占有率高达70.12%;斑铜矿完全解离的单体含量占19.22%,富连生体占有率为5.68%,富连生体和单体合计占24.90%,贫连生体占有率高达67.28%。
表 5 尾矿中主要铜矿物解离度分析结果Table 5. Mineral liberation degree analysis results of main copper minerals in tailing samples矿物名称 目标矿物占比(%) 合计
(%)0<x≤25 25<x≤50 50<x≤75 75<x<100 100 辉铜矿 70.12 8.25 4.52 1.56 15.55 100.00 斑铜矿 67.28 7.82 4.06 1.63 19.22 100.00 铜硫化物集合体 64.60 12.94 3.36 1.67 17.43 100.00 注:“x”为复合颗粒中目标矿物的质量百分比。 表 6 尾矿中主要铜矿物连生关系分析结果Table 6. The interlocking relationships of main copper minerals in tailing samples矿物名称 矿物单体含量
(%)连生体含量(%) 合计
(%)与其他铜硫化物连生 与石英连生 与长石连生 与方解石、白云石连生 与云母连生 与其他矿物连生 辉铜矿 15.55 6.73 40.90 21.77 7.50 5.56 1.99 100.00 斑铜矿 19.22 17.60 21.16 15.92 12.61 4.18 9.31 100.00 铜硫化物集合体 17.43 / 38.17 24.05 9.57 5.39 5.39 100.00 从铜矿物连生关系来看,除了部分铜矿物单体和少量硫化铜矿物彼此共伴生形成连生体外,大多数铜矿物与石英、长石、云母、方解石、白云石等脉石矿物连生(表6)。其中,与斑铜矿-黄铜矿连生的辉铜矿占有率为6.73%,与石英、长石、碳酸盐矿物(方解石、白云石)、云母等脉石矿物连生的辉铜矿占有率分别为40.90%、21.77%、7.50%和5.56%;与辉铜矿-黄铜矿连生的斑铜矿占有率为17.60%,与石英、长石、碳酸盐矿物(方解石、白云石)、云母等脉石矿物连生的辉铜矿占有率分别为21.16%、15.92%、12.61%和4.18%。
将辉铜矿、斑铜矿、黄铜矿等铜硫化物作为一个整体统计矿物解离特征和连生关系,结果显示,铜硫化物集合体的解离度依然很低,完全解离的单体含量仅占17.43%,富连生体(占5.03%)和单体合计仅占22.46%,而贫连生体占有率高达64.60%。铜硫化物矿物集合体的连生体中,与石英、长石、碳酸盐矿物、云母等脉石矿物连生的占有率分别为38.17%、24.05%、9.57%和5.39%。
综上,在当前磨矿细度下(−0.074mm占68.43%),铜矿物及其集合体的解离度很低,大部分为贫连生体,欲进一步提高铜的回收率,需要进一步细磨,使铜矿物充分解离或暴露而与药剂接触[8,49],从而浮选回收。但铜硫化物本身粒度细微,粒度小于0.020mm的铜硫化物及其集合体颗粒占比高于90%,即便细磨也难以充分解离,因此该尾矿的铜回收率很难大幅提高。此外,尾矿中含有少量的绢云母(4.74%)、绿泥石(0.38%)等层状硅酸盐矿物,在磨矿过程中易产生泥化,恶化选矿环境,影响选矿指标[40,49-50],因此选厂可以通过调整浮选药剂制度或优化流程加强浮选,尽可能地回收辉铜矿、斑铜矿等铜硫化物,以最大程度地回收铜矿物。
2.3 银的赋存特征
2.3.1 银矿物的种类与相对含量
利用BPMA选择颗粒测量模式(SPLA)在1000倍放大倍率下(对应的像素尺寸为0.27µm,以囊括粒度在0.27µm以上的所有目标矿物颗粒)对样品进行全覆盖无缝隙自动扫描测量,以最大限度地保证不遗漏目标矿物,本次实验扫描矿物总颗粒数累计大于150万颗,共识别出银矿物156粒,具有较好的统计性。
样品中银矿物种类及相对含量统计结果列于表7。结果显示,样品中银矿物主要为自然银(Ag)(图2中a,b,c),矿物相对质量分数为93.55%,含少量辉银矿/螺状硫银矿(Ag2S)(图2中d,e)和硒银矿(Ag2Se)(图2f),相对质量分数分别为2.30%和1.84%,偶见微量硒铜银矿(CuAgSe)(图2g)、硫铜银矿(AgCuS)(图2h)和含银辉铜矿[(Cu,Ag)2S](图2i),相对质量分数分别为0.41%、1.51%和0.39%。
表 7 尾矿中银矿物的种类及相对含量Table 7. Mineral composition and relative content of silver-bearing minerals in tailing samples银矿物种类 银矿物含量 矿物中银元素的
平均含量(%)银的分布率
(%)银矿物颗粒数 相对质量百分比(%) 自然银(Ag) 50 93.55 99.09 95.62 辉银矿/螺状硫银矿(Ag2S) 21 2.30 87.11 2.07 硒银矿(Ag2Se) 55 1.84 70.33 1.33 硒铜银矿(CuAgSe) 13 0.41 35.43 0.15 硫铜银矿(AgCuS) 13 1.51 51.15 0.80 含银辉铜矿[(Ag,Cu)2S] 4 0.39 6.88 0.03 合计 156 100.00 / 100.00 图 2 尾矿中银矿物嵌布特征(BSE图像)a—粒径较大的自然银单体颗粒; b—自然银与方解石连生; c—微细粒自然银被石英包裹; d—微细粒裂纹椭球状辉银矿/螺状硫银矿被石英包裹; e—螺状硫银矿呈菱形片状、板状集合体; f—微细粒硒银矿(Nau-1)嵌布于方解石裂隙中,硒银矿(Nau-2)被方解石包裹; g—硒铜银矿沿方解石颗粒内部的裂隙发育; h—硫铜银矿与石英连生; i—含银辉铜矿与钾长石连生。Slv—自然银; Arg—辉银矿; Aca—螺状硫银矿; Nau—硒银矿; Euc—硒铜银矿; Str—硫铜银矿; Chc-(Ag)—含银辉铜矿; Qtz—石英; Cal—方解石; Kln—高岭石; Ab—钠长石; Chc—辉铜矿; Kfs—钾长石。Figure 2. BSE images of silver-bearing minerals in tailing samplesa—Natural silver particles with larger size; b—Natural silver coexists with calcite; c—Fine grained natural silver particles wrapped in quartz; d—Fine grained ellipsoidal argentite/acanthite with cracks,wrapped in quartz; e—Rhombic or plate-like acanthite aggregate; f—Fine grained naumannite (Nau-1) embedded in calcite cracks,naumannite (Nau-2) wrapped in calcite; g—Eucairite developed along calcite fractures; h—Stromeyerite coexists with quartz; i—Silver-bearing chalcocite coexists with K-feldspar. Slv—Natural silver; Arg—Argentite; Aca—Acanthite; Nau—Naumannite; Euc—Eucairite; Str—Stromeyerite; Chc-(Ag)—Silver-bearing chalcocite; Qtz—Quartz; Cal—Calcite; Kln—Kaolinite; Ab—Albite; Chc—Chalcocite; Kfs—K-feldspar.利用EDS分析银矿物的化学成分,得到各类银矿物的平均化学元素含量为:自然银Ag 99.09%,S 0.91%;辉银矿/螺状硫银矿Ag 87.11%,S 12.89%;硒银矿Ag 70.33%,Se 29.67%;硒铜银矿Ag 35.43%,Cu 31.10%,Se 33.48%;硫铜银矿Ag 51.15%,Cu 31.81%,S 17.04%;含银辉铜矿Ag 6.88%,Cu 69.75%,S 23.37%。据此,计算银在自然银、辉银矿/螺状硫银矿、硒银矿、硒铜银矿、硫铜银矿、含银辉铜矿中的分布率分别为95.62%、2.07%、1.33%、0.15%、0.80%和0.03%(表7)。
2.3.2 银矿物的嵌布特征
银矿物的嵌布特征统计结果列于表8。结果表明,样品中银矿物的解离程度较高,银矿物单体占有率高达88.28%;与石英、方解石、长石等脉石矿物共伴生产出但表面裸露的银矿物连生体占有率为9.82%;嵌布于石英、方解石裂隙中的银矿物占有率为0.60%。由于自然银、辉银矿/螺状硫银矿相对易浮且解离程度较高,故可以通过浮选法与铜硫化物一起回收[51-53]。此外,样品中还存在少量被石英、方解石等脉石矿物包裹的银矿物,其占有率为1.30%,这部分银矿物难以解离和回收[8,54]。
表 8 尾矿中银矿物的嵌布特征及占有率统计结果Table 8. Occurrence characteristics and distribution ratio of silver-bearing minerals in tailing samples银矿物种类 银矿物赋存形式 嵌布特征 颗粒数 相对质量百分比
(%)合计
(%)自然银 单体 单体解离 39 84.13 84.13 连生 与石英连生 4 7.40 8.92 与方解石连生 2 1.38 与钠长石连生 2 0.14 包裹 被石英包裹 2 0.47 0.49 被方解石包裹 1 0.02 辉银矿/螺状硫银矿 单体 单体解离 17 2.01 2.01 连生 与钠长石连生 1 0.07 0.07 包裹 被石英包裹 3 0.22 0.22 硒银矿 单体 单体解离 4 0.42 0.42 连生 与方解石连生 6 0.54 0.57 与钠长石连生 2 0.03 裂隙 嵌布于方解石裂隙中 16 0.25 0.34 嵌布于石英裂隙中 3 0.09 包裹 被方解石包裹 23 0.48 0.50 被石英包裹 1 0.02 硒铜银矿 单体 单体解离 1 0.16 0.16 裂隙 嵌布于方解石裂隙中 12 0.26 0.26 硫铜银矿 单体 单体解离 9 1.24 1.24 连生 与白云石连生 1 0.15 0.19 与石英连生 1 0.03 包裹 被石英包裹 2 0.09 0.09 含银辉铜矿 单体 单体解离 3 0.32 0.32 连生 与钾长石连生 1 0.07 0.07 合计 156 100.00 100.00 注: “连生”是指银矿物与其他矿物共伴生但其表面裸露的嵌布形式,下同。 2.3.3 银矿物的嵌布粒度
样品中银矿物的嵌布粒度统计列于表9。结果显示,银矿物嵌布粒度不均匀,粗粒(>74µm)、中粒(74~37µm)、细粒(37~10µm)、微粒(<10µm)银矿物的占有率分别为32.25%、30.35%、21.44%和15.95%。
表 9 尾矿中银矿物粒度分布Table 9. Size distribution of silver-bearing minerals in tailing samples粒级
(µm)银矿物* 自然银 辉银矿/螺状硫银矿 硒银矿 颗粒数 质量百分比
(%)累积
(%)颗粒数 质量百分比
(%)累积
(%)颗粒数 质量百分比
(%)累积
(%)颗粒数 质量百分比
(%)累积
(%)+74 1 32.25 32.25 1 34.47 34.47 — — — — — — −74+37 1 30.35 62.60 1 32.44 66.91 — — — — — — −37+20 2 14.99 77.59 2 16.03 82.94 — — — — — — −20+10 4 6.45 84.04 4 6.90 89.84 — — — — — — −10+5 20 8.69 92.73 13 6.77 96.61 3 50.75 50.75 1 15.29 15.29 −5+4 14 2.39 95.12 4 1.02 97.63 2 11.33 62.09 3 26.43 41.71 −4+3 23 2.61 97.73 12 1.79 99.42 5 21.08 83.17 3 13.20 54.91 −3+2 30 1.49 99.22 5 0.34 99.77 7 13.22 96.38 8 22.58 77.49 −2+1 29 0.65 99.88 8 0.23 100.00 3 3.49 99.87 16 17.56 95.05 −1 32 0.12 100.00 0 0.00 100.00 1 0.13 100.00 24 4.95 100.00 注: “银矿物粒度”是指将试样中自然银、辉银矿/螺状硫银矿、硒银矿、硒铜银矿、硫铜银矿等所有的银矿物作为整体统计其粒度。 各类银矿物中,自然银的嵌布粒度相对较粗,粗粒(>74µm)、中粒(74~37µm)、细粒(37~10µm)、微粒(<10µm)自然银的占有率分别为34.47%、32.44%、22.93%和10.15%;辉银矿/螺状硫银矿、硒银矿、硒铜银矿、硫铜银矿等的嵌布粒度细微,其嵌布粒度均小于10µm。
综上,由于样品中主要银矿物(自然银、辉银矿/螺状硫银矿)相对易浮,且在当前磨矿细度下(−0.074mm占68.43%),银矿物的解离度较高,可通过加强浮选与铜硫化物一起回收[51-53]。由于银矿物密度较大,在浮选中易从气泡表面脱落进入尾矿中,因此在浮选过程中应该注意对粗粒(>74µm)和中粒(74~37µm)银矿物的回收,防止其沉槽而造成损失[41],采用重选法配合浮选可以有效回收尾矿中粗粒银矿物[50,55-58]。另外,样品中存在少量被石英、方解石等脉石矿物包裹的银矿物(1.30%),这部分银矿物难以回收。
3. 结论
采用基于扫描电子显微镜(SEM)和X射线能谱仪(EDS)的工艺矿物学参数自动分析系统(BPMA),对铜矿浮选尾矿(Ag 41.96µg/g,Cu 0.44%)开展了铜和银的赋存状态及工艺矿物学特征研究。结果表明,样品中的铜主要赋存于辉铜矿和斑铜矿中,铜矿物及其集合体的嵌布粒度细微(<0.038mm)且解离程度较低(单体占比<20%),是影响铜回收的主要矿物学因素;银主要以自然银的形式存在,含少量辉银矿/螺状硫银矿、硒银矿,偶见微量硒铜银矿、硫铜银矿和含银辉铜矿,银在各(含)银矿物中的分布率分别为95.62%、2.07%、1.33%、0.15%、0.80%和0.03%;银矿物嵌布粒度不均匀,粗粒、中粒、细粒、微粒银矿物的占有率分别为32.25%、30.35%、21.44%和15.95%;银矿物的解离程度较高,单体占有率高达88.28%。通过加强浮选尽可能地回收辉铜矿、斑铜矿等铜硫化物,以最大程度地回收铜,大部分银矿物可以随之富集回收,采用重选配合浮选回收粗粒银矿物。
本文采用BPMA全颗粒测量模式测定样品的矿物学组成,并分析了铜矿物的粒度、解离度和连生关系等影响选矿指标关键工艺矿物学参数;利用BPMA选择颗粒测量模式—BPMA目标矿物回找—SEM-EDS微区形貌和成分分析,快速查找鉴定银矿物种类并探究银的赋存特征。采用的BPMA & SEM-EDS矿物分析方法,可以从微米-亚微米级尺度完成矿物自动识别与矿物参数表征,为开展稀贵金属矿元素赋存状态及工艺矿物学特性、资源高效综合利用等方面的研究提供技术支撑。然而,目前微细粒目标矿物BPMA回找和SEM-EDS分析仍然需要人工完成,因此开发BPMA回找和SEM-EDS分析全自动解决方案是下一步亟待开展的工作。
-
图 1 尾矿试样的BSE图像和BPMA矿物组成伪彩色图
a—BPMA扫描BSE图像(局部,25个视域拼接图); b—BPMA矿物组成伪彩色图(局部,25个视域拼接图); c—含辉铜矿颗粒BPMA伪彩色图; d—含斑铜矿颗粒BPMA伪彩色图。
Figure 1. BSE image and BPMA false-colored mineral map of the tailing samples
a—BSE image of the tailings (partial); b—BPMA false-colored mineral map of the tailings (partial); c—BPMA false-colored chalcocite-bearing mineral particles; d—BPMA false-colored bornite-bearing mineral particles.
图 2 尾矿中银矿物嵌布特征(BSE图像)
a—粒径较大的自然银单体颗粒; b—自然银与方解石连生; c—微细粒自然银被石英包裹; d—微细粒裂纹椭球状辉银矿/螺状硫银矿被石英包裹; e—螺状硫银矿呈菱形片状、板状集合体; f—微细粒硒银矿(Nau-1)嵌布于方解石裂隙中,硒银矿(Nau-2)被方解石包裹; g—硒铜银矿沿方解石颗粒内部的裂隙发育; h—硫铜银矿与石英连生; i—含银辉铜矿与钾长石连生。Slv—自然银; Arg—辉银矿; Aca—螺状硫银矿; Nau—硒银矿; Euc—硒铜银矿; Str—硫铜银矿; Chc-(Ag)—含银辉铜矿; Qtz—石英; Cal—方解石; Kln—高岭石; Ab—钠长石; Chc—辉铜矿; Kfs—钾长石。
Figure 2. BSE images of silver-bearing minerals in tailing samples
a—Natural silver particles with larger size; b—Natural silver coexists with calcite; c—Fine grained natural silver particles wrapped in quartz; d—Fine grained ellipsoidal argentite/acanthite with cracks,wrapped in quartz; e—Rhombic or plate-like acanthite aggregate; f—Fine grained naumannite (Nau-1) embedded in calcite cracks,naumannite (Nau-2) wrapped in calcite; g—Eucairite developed along calcite fractures; h—Stromeyerite coexists with quartz; i—Silver-bearing chalcocite coexists with K-feldspar. Slv—Natural silver; Arg—Argentite; Aca—Acanthite; Nau—Naumannite; Euc—Eucairite; Str—Stromeyerite; Chc-(Ag)—Silver-bearing chalcocite; Qtz—Quartz; Cal—Calcite; Kln—Kaolinite; Ab—Albite; Chc—Chalcocite; Kfs—K-feldspar.
表 1 尾矿试样粒度筛析结果
Table 1 Particle size sieving analysis results of the tailing samples
粒级
(mm)质量
(g)产率
(%)元素品位 分布率 Cu(%) Ag(µg/g) Cu(%) Ag(%) +0.074 30.5 31.57 0.41 29.4 29.26 22.12 −0.074至+0.038 20.8 21.53 0.22 69.2 10.71 35.51 −0.038至+0.023 13.0 13.46 0.21 24.3 6.39 7.79 −0.023 32.3 33.44 0.71 43.4 53.65 34.58 合计 96.6 100.00 0.44 41.96 100.00 100.00 表 2 BPMA系统预设测量参数
Table 2 Operation conditions of the BPMA system
仪器工作参数 设定条件 全颗粒测量 选择颗粒测量 加速电压 20keV 20keV 工作距离 15mm 15mm 束流强度 3nA 3nA 放大倍率 400 1000 视场宽度 692.02µm 276.77µm 图像分辨率 1024×768pixel 1024×768pixel 像素尺寸 0.67µm 0.27µm 最大可测量帧数 1320 8426 背底阈值 30 100 最小颗粒面积 50pixel 1pixel 最大颗粒面积 − − 亮相灰度 100 100 亮相最小打点相面积 4pixel 1pixel 暗相最小打点相面积 4pixel 1pixel 分相精度 3 5 能谱采谱时间 60ms 60ms 测量终止条件 颗粒数: 105000 帧数: 8426 指定目标灰度 / 100~255 指定目标元素 / Ag 表 3 尾矿试样的矿物组成分析结果
Table 3 Analytical results of mineral composition for the tailing samples
序号 矿物名称 分子式 矿物
颗粒数矿物含量
(wt.%)序号 矿物名称 分子式 矿物
颗粒数矿物含量
(wt.%)1 自然银 Ag 50 0.004 17 方解石 Ca[CO3] 5498 5.55 2 辉银矿/螺状硫银矿 Ag2S 21 0.0001 18 白云石 CaMg[CO3]2 4596 4.77 3 硒银矿 Ag2Se 55 <0.0001 19 绢云母 K{Al2[AlSi3O10](OH,F)2} 10001 4.74 4 硒铜银矿 CuAgSe 13 Trace 20 斜长石 (Na,Ca)[(Si,Al)4O8] 7100 1.66 5 硫铜银矿 AgCuS 13 Trace 21 辉石 (Ca,Mg,FeⅡ,FeⅢ,Al)(Si,Al)2O6 4373 1.51 6 辉铜矿 Cu2S 454 0.45 22 黑云母 K{Mg,Fe)3[AlSi3O10](OH)2 4893 1.23 7 斑铜矿 Cu5FeS4 182 0.09 23 绿泥石 {(Mg,Fe,Al)3[(Si,Al)4O10](OH)2}·(Mg,Fe,Al)3(OH)6 844 0.38 8 黄铜矿 CuFeS2 10 <0.01 24 金红石 TiO2 397 0.26 9 黄铁矿 FeS2 16 <0.01 25 重晶石 Ba[SO4] 255 0.20 10 方铅矿 PbS 20 <0.01 26 磷灰石 Ca5[(PO4)3]F 263 0.20 11 闪锌矿 ZnS 8 <0.01 27 高岭石 Al4[Si4O10](OH)8 276 0.09 12 磁铁矿 FeⅡFeⅢ2O4 560 0.59 28 锆石 Zr[SiO4] 68 0.03 13 钛铁矿 FeTiO3 104 0.01 29 独居石 Ce[PO4] 22 0.03 14 石英 SiO2 28976 54.21 30 其他 / 961 0.21 15 钾长石 K[AlSi3O8] 23726 13.10 合计 / 105386 100.00 16 钠长石 Na[AlSi3O8] 11627 10.66 表 4 尾矿中主要铜矿物嵌布粒度分布
Table 4 Grain size distribution of main copper minerals in tailing samples
粒级(mm) 辉铜矿 斑铜矿 铜硫化物集合体 含量(%) 累积(%) 含量(%) 累积(%) 含量(%) 累积(%) +0.038 — — — — — — −0.038至+0.020 7.81 7.81 — — 8.55 8.55 −0.020至+0.015 9.04 16.85 — — 12.45 21.00 −0.015至+0.010 23.65 40.50 23.54 23.54 18.94 39.94 −0.010至+0.005 31.25 71.75 33.16 56.70 32.64 72.58 −0.005 28.25 100.00 43.31 100.01 27.42 100.00 注:铜硫化物集合体是将样品中辉铜矿、斑铜矿、黄铜矿等铜硫化物作为一个整体进行统计计算,下同。 表 5 尾矿中主要铜矿物解离度分析结果
Table 5 Mineral liberation degree analysis results of main copper minerals in tailing samples
矿物名称 目标矿物占比(%) 合计
(%)0<x≤25 25<x≤50 50<x≤75 75<x<100 100 辉铜矿 70.12 8.25 4.52 1.56 15.55 100.00 斑铜矿 67.28 7.82 4.06 1.63 19.22 100.00 铜硫化物集合体 64.60 12.94 3.36 1.67 17.43 100.00 注:“x”为复合颗粒中目标矿物的质量百分比。 表 6 尾矿中主要铜矿物连生关系分析结果
Table 6 The interlocking relationships of main copper minerals in tailing samples
矿物名称 矿物单体含量
(%)连生体含量(%) 合计
(%)与其他铜硫化物连生 与石英连生 与长石连生 与方解石、白云石连生 与云母连生 与其他矿物连生 辉铜矿 15.55 6.73 40.90 21.77 7.50 5.56 1.99 100.00 斑铜矿 19.22 17.60 21.16 15.92 12.61 4.18 9.31 100.00 铜硫化物集合体 17.43 / 38.17 24.05 9.57 5.39 5.39 100.00 表 7 尾矿中银矿物的种类及相对含量
Table 7 Mineral composition and relative content of silver-bearing minerals in tailing samples
银矿物种类 银矿物含量 矿物中银元素的
平均含量(%)银的分布率
(%)银矿物颗粒数 相对质量百分比(%) 自然银(Ag) 50 93.55 99.09 95.62 辉银矿/螺状硫银矿(Ag2S) 21 2.30 87.11 2.07 硒银矿(Ag2Se) 55 1.84 70.33 1.33 硒铜银矿(CuAgSe) 13 0.41 35.43 0.15 硫铜银矿(AgCuS) 13 1.51 51.15 0.80 含银辉铜矿[(Ag,Cu)2S] 4 0.39 6.88 0.03 合计 156 100.00 / 100.00 表 8 尾矿中银矿物的嵌布特征及占有率统计结果
Table 8 Occurrence characteristics and distribution ratio of silver-bearing minerals in tailing samples
银矿物种类 银矿物赋存形式 嵌布特征 颗粒数 相对质量百分比
(%)合计
(%)自然银 单体 单体解离 39 84.13 84.13 连生 与石英连生 4 7.40 8.92 与方解石连生 2 1.38 与钠长石连生 2 0.14 包裹 被石英包裹 2 0.47 0.49 被方解石包裹 1 0.02 辉银矿/螺状硫银矿 单体 单体解离 17 2.01 2.01 连生 与钠长石连生 1 0.07 0.07 包裹 被石英包裹 3 0.22 0.22 硒银矿 单体 单体解离 4 0.42 0.42 连生 与方解石连生 6 0.54 0.57 与钠长石连生 2 0.03 裂隙 嵌布于方解石裂隙中 16 0.25 0.34 嵌布于石英裂隙中 3 0.09 包裹 被方解石包裹 23 0.48 0.50 被石英包裹 1 0.02 硒铜银矿 单体 单体解离 1 0.16 0.16 裂隙 嵌布于方解石裂隙中 12 0.26 0.26 硫铜银矿 单体 单体解离 9 1.24 1.24 连生 与白云石连生 1 0.15 0.19 与石英连生 1 0.03 包裹 被石英包裹 2 0.09 0.09 含银辉铜矿 单体 单体解离 3 0.32 0.32 连生 与钾长石连生 1 0.07 0.07 合计 156 100.00 100.00 注: “连生”是指银矿物与其他矿物共伴生但其表面裸露的嵌布形式,下同。 表 9 尾矿中银矿物粒度分布
Table 9 Size distribution of silver-bearing minerals in tailing samples
粒级
(µm)银矿物* 自然银 辉银矿/螺状硫银矿 硒银矿 颗粒数 质量百分比
(%)累积
(%)颗粒数 质量百分比
(%)累积
(%)颗粒数 质量百分比
(%)累积
(%)颗粒数 质量百分比
(%)累积
(%)+74 1 32.25 32.25 1 34.47 34.47 — — — — — — −74+37 1 30.35 62.60 1 32.44 66.91 — — — — — — −37+20 2 14.99 77.59 2 16.03 82.94 — — — — — — −20+10 4 6.45 84.04 4 6.90 89.84 — — — — — — −10+5 20 8.69 92.73 13 6.77 96.61 3 50.75 50.75 1 15.29 15.29 −5+4 14 2.39 95.12 4 1.02 97.63 2 11.33 62.09 3 26.43 41.71 −4+3 23 2.61 97.73 12 1.79 99.42 5 21.08 83.17 3 13.20 54.91 −3+2 30 1.49 99.22 5 0.34 99.77 7 13.22 96.38 8 22.58 77.49 −2+1 29 0.65 99.88 8 0.23 100.00 3 3.49 99.87 16 17.56 95.05 −1 32 0.12 100.00 0 0.00 100.00 1 0.13 100.00 24 4.95 100.00 注: “银矿物粒度”是指将试样中自然银、辉银矿/螺状硫银矿、硒银矿、硒铜银矿、硫铜银矿等所有的银矿物作为整体统计其粒度。 -
[1] 李磊, 郜伟, 王明燕, 等. 银的赋存特征及其对选矿的影响[J]. 有色金属(选矿部分), 2018(5): 6−9, 48. doi: 10.3969/j.issn.1671-9492.2018.05.002 Li L, Gao W, Wang M Y, et al. Occurrence characteristics of silver and its influence on mineral processing[J]. Nonferrous Metals (Mineral Processing Section), 2018(5): 6−9, 48. doi: 10.3969/j.issn.1671-9492.2018.05.002
[2] 黄晓梅, 李国斌, 胡亮, 等. 银的提取研究进展及前景展望[J]. 稀有金属, 2015, 39(3): 268−275. doi: 10.13373/j.cnki.cjrm.2015.03.011 Huang X M, Li G B, Hu L, et al. Research progress and prospect of extracting silver[J]. Chinese Journal of Rare Metals, 2015, 39(3): 268−275. doi: 10.13373/j.cnki.cjrm.2015.03.011
[3] 杨睿娜, 纵瑞, 杨东潮. 豫西董家埝银矿床银的赋存状态研究[J]. 矿床地质, 2020, 39(3): 486−500. doi: 10.16111/j.0258-7106.2020.03.006 Yang R N, Zong R, Yang D C. Research on modes of occurrence of silver in Dongjianian silver deposit, Western Henan Province[J]. Mineral Deposits, 2020, 39(3): 486−500. doi: 10.16111/j.0258-7106.2020.03.006
[4] 岳秋雨, 翟德高, 赵刚, 等. 江西牛形坝—柳木坑银金多金属矿床银矿物与银的赋存状态[J]. 矿物学报, 2023, 43(3): 311−324. doi: 10.16461/j.cnki.1000-4734.2023.43.023 Yue Q Y, Zhai D G, Zhao G, et al. The compositions of silver-bearing minerals and the occurrence of silver in the Niuxingba—Liumukeng silver-gold polymetallic deposit, Jiangxi Province, China[J]. Acta Mineralogica Sinica, 2023, 43(3): 311−324. doi: 10.16461/j.cnki.1000-4734.2023.43.023
[5] 吴冠斌, 刘建明, 曾庆栋, 等. 内蒙古双尖子山铅锌银矿床银的赋存状态及其指示意义[J]. 地学前缘, 2014, 21(5): 105−115. doi: 10.13745/j.esf.2014.05.009 Wu G B, Liu J M, Zeng Q D, et al. Occurrences of silver in the Shuangjianzishan Pb-Zn-Ag deposit and its implications for mineral processing[J]. Earth Science Frontiers, 2014, 21(5): 105−115. doi: 10.13745/j.esf.2014.05.009
[6] 康明, 岳长成. 内蒙古西山湾羊场银多金属矿床银的赋存形式及成矿机理[J]. 岩石学报, 2020, 36(11): 3363−3379. doi: 10.18654/1000-0569/2020.11.07 Kang M, Yue C C. Metallogenic process in Xishanwanyangchang silver polymetallic deposit, Inner Mongolia, China: Constraints from occurrence of silver[J]. Acta Petrologica Sinica, 2020, 36(11): 3363−3379. doi: 10.18654/1000-0569/2020.11.07
[7] 王俊萍, 武慧敏, 王玲. MLA在银的赋存状态研究中的应用[J]. 矿冶, 2015, 24(1): 77−80. doi: 10.3969/j.issn.1005-7854.2015.01.019 Wang J P, Wu H M, Wang L. Application of MLA in the study of silver occurrence status[J]. Mining and Metallurgy, 2015, 24(1): 77−80. doi: 10.3969/j.issn.1005-7854.2015.01.019
[8] 王明燕, 祁小军. 影响江西某铜矿中伴生金、银选矿指标的工艺矿物学因素研究[J]. 矿冶, 2015, 24(1): 81−86. doi: 10.3969/j.issn.1005-7854.2015.01.020 Wang M Y, Qi X J. Process mineralogy factors affecting the beneficiation indexes of associated gold and silver in a copper mine in Jiangxi[J]. Mining and Metallurgy, 2015, 24(1): 81−86. doi: 10.3969/j.issn.1005-7854.2015.01.020
[9] Sutherland D N, Gottlieb P. Application of automated quantitative mineralogy in mineral processing[J]. Minerals Engineering, 1991, 4(7-11): 753−762. doi: 10.1016/0892-6875(91)90063-2
[10] Gottlieb P, Wilkie G, Sutherland D, et al. Using quantitative electron microscopy for process mineralogy applications[J]. Journal of the Minerals, Metals & Materials Society, 2000, 52(4): 24−25. doi: 10.1007/s11837-000-0126-9
[11] Gu Y. Automated scanning electron microscope based mineral liberation analysis: An introduction to JKMRC/FEI mineral liberation analyser[J]. Journal of Minerals and Materials Characterization and Engineering, 2003, 2(1): 33−41. doi: 10.4236/jmmce.2003.21003
[12] Fandrich R, Gu Y, Burrows D, et al. Modern SEM-based mineral liberation analysis[J]. International Journal of Mineral Processing, 2007, 84(1-4): 310−320. doi: 10.1016/j.minpro.2006.07.018
[13] 温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121−129. doi: 10.15898/j.cnki.11-2131/td.201708110129 Wen L G, Zeng P S, Zhan X C, et al. Application of the automated mineral identification and characterization system (AMICS) in the identification of rare earth and rare minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121−129. doi: 10.15898/j.cnki.11-2131/td.201708110129
[14] 朱丹, 桂博艺, 王芳, 等. AMICS测试技术在铌矿中的应用——以竹溪铌矿为例[J]. 有色金属(选矿部分), 2021(3): 1−7. doi: 10.3969/j.issn.1671-9492.2021.03.001 Zhu D, Gui B Y, Wang F, et al. Application of the advanced mineral identification and characterization system (AMICS) in the Nb deposit: A case study of the Zhuxi Nb deposit[J]. Nonferrous Metals (Mineral Processing Section), 2021(3): 1−7. doi: 10.3969/j.issn.1671-9492.2021.03.001
[15] 方明山, 王明燕. AMICS在铜矿伴生金银综合回收中的应用[J]. 矿冶, 2018, 27(3): 104−108. doi: 10.3969/j.issn.1005-7854.2018.03.023 Fang M S, Wang M Y. Application of AMICS in comprehensive recovery of associated gold and silver in a copper ore[J]. Mining and Metallurgy, 2018, 27(3): 104−108. doi: 10.3969/j.issn.1005-7854.2018.03.023
[16] Jiao Y, Qiu K H, Zhang P C, et al. Process mineralogy of Dalucao rare earth ore and design of beneficiation process based on AMICS[J]. Rare Metals, 2020, 39(8): 959−966. doi: 10.1007/s12598-020-01446-w
[17] Xu W, Shi B, Tian Y, et al. Process mineralogy characteristics and flotation application of a refractory collophanite from Guizhou, China[J]. Minerals, 2021, 11(11): 1249. doi: 10.3390/min11111249
[18] Hrstka T, Gottlieb P, Skála R, et al. Automated mineralogy and petrology—Applications of TESCAN integrated mineral analyzer (TIMA)[J]. Journal of Geosciences, 2018, 63(1): 47−63. doi: 10.3190/jgeosci.250
[19] 陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2): 345−368. doi: 10.16111/j.0258-7106.2021.02.010 Chen Q, Song W L, Yang J K, et al. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy: An example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2): 345−368. doi: 10.16111/j.0258-7106.2021.02.010
[20] Keulen N, Malkki S N, Graham S. Automated quantitative mineralogy applied to metamorphic rocks[J]. Minerals, 2020, 10(1): 47. doi: 10.3390/min10010047
[21] Graham S, Keulen N. Nanoscale automated quantitative mineralogy: A 200-nm quantitative mineralogy assessment of fault gouge using mineralogic[J]. Minerals, 2019, 9(11): 665. doi: 10.3390/min9110665
[22] Han S J, Lӧhr S, Abbott A, et al. Earth system science applications of next-generation SEM-EDS automated mineral mapping[J]. Frontiers in Earth Science, 2022, 10: 956912. doi: 10.3389/feart.2022.956912
[23] Shan P F, Cao M J, Evans N, et al. Automated quantitative mineralogy analysis reveals characteristics of Co occurrence in the Jinchang porphyry deposit, NE China[J]. Ore Geology Reviews, 2023, 158(31): 105524. doi: 10.1016/j.oregeorev.2023.105524
[24] 温利刚, 贾木欣, 王清, 等. 基于扫描电子显微镜的自动矿物学新技术——BPMA及其应用前景[J]. 有色金属(选矿部分), 2021(2): 13−24. doi: 10.3969/j.issn.1671-9492.2021.02.003 Wen L G, Jia M X, Wang Q, et al. A new SEM-based automated mineralogy system: BPMA and its application prospects in mining industry[J]. Nonferrous Metals (Mineral Processing Section), 2021(2): 13−24. doi: 10.3969/j.issn.1671-9492.2021.02.003
[25] 徐承焱, 王培龙, 孙体昌, 等. BPMA在矿石可选性研究实验课程中的应用[J]. 实验技术与管理, 2021, 38(4): 223−230, 239. doi: 10.16791/j.cnki.sjg.2021.04.045 Xu C Y, Wang P L, Sun T C, et al. Application of BPMA in experimental course of ore beneficiablity research[J]. Experimental Technology and Management, 2021, 38(4): 223−230, 239. doi: 10.16791/j.cnki.sjg.2021.04.045
[26] Hou X Z, Yang Z F, Wang Z J. The occurrence characteristics and recovery potential of middle-heavy rare earth elements in the Bayan Obo deposit, Northern China[J]. Ore Geology Reviews, 2020, 126: 103737. doi: 10.1016/j.oregeorev.2020.103737
[27] Gu Y, Schouwstra R P, Rule C. The value of automated mineralogy[J]. Minerals Engineering, 2014, 58(4): 100−103. doi: 10.1016/j.mineng.2014.01.020
[28] Rollinson G. Automated Mineralogy by SEM-EDS[M].Encyclopedia of Geology (The 2nd edition, 2019: 1-8.
[29] Worden R H, Utley J E P. Automated mineralogy (SEM-EDS) approach to sandstone reservoir quality and diagenesis[J]. Frontiers in Earth Science, 2022, 10: 794266. doi: 10.3389/feart.2022.794266
[30] 温利刚, 付强, 于志超, 等. 矿物自动定量分析系统在低品位微细粒钼矿工艺矿物学研究中的应用[J]. 有色金属(选矿部分), 2022(2): 31−38. doi: 10.3969/j.issn.1671-9492.2022.02.004 Wen L G, Fu Q, Yu Z C, et al. Application of automated quantitative mineralogy system in the process mineralogy study of low-grade fine-grained molybdenum ore[J]. Nonferrous Metals (Mineral Processing Section), 2022(2): 31−38. doi: 10.3969/j.issn.1671-9492.2022.02.004
[31] 张涛, 宋文磊, 陈倩, 等. 矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用[J]. 岩矿测试, 2023, 42(4): 748−759. doi: 10.15898/j.ykcs.202210250206 Zhang T, Song W L, Chen Q, et al. Application of automated quantitative mineral analysis system in process mineralogy of low-grade copper slag[J]. Rock and Mineral Analysis, 2023, 42(4): 748−759. doi: 10.15898/j.ykcs.202210250206
[32] 谢小敏, 李利, 袁秋云, 等. 应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试, 2021, 40(1): 50−60. doi: 10.15898/j.cnki.11-2131/td.202007120103 Xie X M, Li L, Yuan Q Y, et al. Grain size distribution of organic matter and pyrite in Alum shales characterized by TIMA and its paleo-environmental significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50−60. doi: 10.15898/j.cnki.11-2131/td.202007120103
[33] 张然, 叶丽娟, 党飞鹏, 等. 自动矿物分析技术在鄂尔多斯盆地砂岩型铀矿矿物鉴定和赋存状态研究中的应用[J]. 岩矿测试, 2021, 40(1): 61−73. doi: 10.15898/j.cnki.11-2131/td.202005130071 Zhang R, Ye L J, Dang F P, et al. Application of automatic mineral analysis technology to identify minerals and occurrences of elements in sandstone-type uranium deposits in the Ordos Basin[J]. Rock and Mineral Analysis, 2021, 40(1): 61−73. doi: 10.15898/j.cnki.11-2131/td.202005130071
[34] Liu T T, Song W L, Kynicky J, et al. Automated quantitative characterization REE ore mineralogy from the giant Bayan Obo deposit, Inner Mongolia, China[J]. Minerals, 2022, 12(4): 426. doi: 10.3390/min12040426
[35] Guhl A, Brett B, Schulz B, et al. Particle responses of stabilised fly ash to chemical treatment for resource extraction: An automated mineralogy investigation[J]. Minerals Engineering, 2019, 145(3): 106092. doi: 10.1016/j.mineng.2019.106092
[36] 肖仪武, 叶小璐, 冯凯, 等. “四稀”金属矿工艺矿物学研究技术现状与展望[J]. 矿冶, 2022, 31(3): 6−13. doi: 10.3969/j.issn.1005-7854.2022.03.002 Xiao Y W, Ye X L, Feng K, et al. Current situation and prospect of “Four Rare” process mineralogy research technology[J]. Mining and Metallurgy, 2022, 31(3): 6−13. doi: 10.3969/j.issn.1005-7854.2022.03.002
[37] Coetzee L L, Theron S J, Martin G J, et al. Modern gold deportments and its application to industry[J]. Minerals Engineering, 2011, 24(6): 565−575. doi: 10.1016/j.mineng.2010.09.001
[38] Goodall W R, Butcher A R. The use of QEMSCAN in practical gold deportment studies[J]. Mineral Processing and Extractive Metallurgy, 2012, 121(4): 199−204. doi: 10.1179/1743285512Y.0000000021
[39] 冯岳川, 邓军, 于皓丞, 等. 胶东玲珑金矿田金的赋存状态及其对成矿过程的指示意义[J]. 岩石学报, 2023, 39(2): 377−392. doi: 10.18654/1000-0569/2023.02.06 Feng Y C, Deng J, Yu H C, et al. Gold occurrence and its indicative significance to mineralization process in Linglong gold district, Jiaodong gold province[J]. Acta Petrologica Sinica, 2023, 39(2): 377−392. doi: 10.18654/1000-0569/2023.02.06
[40] 徐净, 侯文达, 王力圆, 等. 稀有金属花岗岩结晶分异过程中铷的富集与成矿: 来自江西甘坊岩体的矿物学证据[J]. 地质学报, 2023, 97(11): 3766−3785. doi: 10.19762/j.cnki.dizhixuebao.2023366 Xu J, Hou W D, Wang L Y, et al. Rb mineralization during magmatic differentiation: Insight from mineralogical study on the Ganfang rare metal granite, Jiangxi Province[J]. Acta Geologica Sinica, 2023, 97(11): 3766−3785. doi: 10.19762/j.cnki.dizhixuebao.2023366
[41] 温利刚, 贾木欣, 付强, 等. 矿物自动定量分析系统在金的赋存状态研究中的应用[J]. 有色金属(选矿部分), 2022(4): 1−8. doi: 10.3969/j.issn.1671-9492.2022.04.001 Wen L G, Jia M X, Fu Q, et al. Application of automated quantitative mineralogy system in the deportment study of low-grade and fine-grained gold[J]. Nonferrous Metals (Mineral Processing Section), 2022(4): 1−8. doi: 10.3969/j.issn.1671-9492.2022.04.001
[42] 温利刚, 付强, 贾木欣, 等. 基于工艺矿物学自动分析系统的微细粒金矿物量化表征[J]. 有色金属工程, 2022, 12(11): 76−84. doi: 10.3969/j.issn.2095-1744.2022.11.011 Wen L G, Fu Q, Jia M X, et al. Quantitative investigation of fine-grained gold minerals by automated process mineralogy analyzing system[J]. Nonferrous Metals Engineering, 2022, 12(11): 76−84. doi: 10.3969/j.issn.2095-1744.2022.11.011
[43] 张一帆, 范裕, 陈静, 等. 矿精粉中关键金属元素赋存状态研究方法流程的建立: 以长江中下游成矿带富钴硫矿精粉为例[J]. 岩石学报, 2021, 37(9): 2791−2804. doi: 10.18654/1000-0569/2021.09.12 Zhang Y F, Fan Y, Chen J, et al. Establishment of a research workflow for occurrence state of critical metal in ore concentrate powder: A case study of the cobalt-rich sulfur ore concentrate powder from the middle-lower Yangtze River valley metallogenic belt, China[J]. Acta Petrologica Sinica, 2021, 37(9): 2791−2804. doi: 10.18654/1000-0569/2021.09.12
[44] 张一帆, 范裕. 矿石中关键金属钴赋存状态研究方法流程的建立: 以庐枞盆地龙桥富钴矽卡岩铁矿床为例[J]. 岩石学报, 2023, 39(10): 3156−3168. doi: 10.18654/1000-0569/2023.10.18 Zhang Y F, Fan Y. Establishment of research methodology and workflow for the occurrence state of the critical metal cobalt in ore: A case study of the Longqiao cobalt-rich skarn iron deposit in the Luzhong Basin[J]. Acta Petrologica Sinica, 2023, 39(10): 3156−3168. doi: 10.18654/1000-0569/2023.10.18
[45] Schulz B, Sandmann D, Gilbricht S. SEM-based automated mineralogy and its application in geo- and material sciences[J]. Minerals, 2020, 10(11): 1004. doi: 10.3390/min10111004
[46] Kwitko-Ribeiro R. New sample preparation developments to minimize mineral segregation in process mineralogy[C]//Broekmans M. Proceedings of the 10th International Congress for Applied Mineralogy (ICAM). Verlag Berlin Heidelberg: Springer, 2012: 411−417.
[47] 方明山, 刘方明, 肖仪武, 等. 浅谈岩矿样品制样设备的现状及发展趋势[J]. 矿冶, 2021, 30(1): 69−73. doi: 10.3969/j.issn.1005-7854.2021.01.013 Fang M S, Liu F M, Xiao Y W, et al. Discussion on the current situation and development trend of rock and ore sample preparation equipment[J]. Mining and Metallurgy, 2021, 30(1): 69−73. doi: 10.3969/j.issn.1005-7854.2021.01.013
[48] 肖仪武, 叶小璐, 武若晨, 等. 选矿产品矿物自动分析的光片制备[J]. 中国无机分析化学, 2020, 10(2): 1−6. doi: 10.3969/j.issn.2095-1035.2020.02.001 Xiao Y W, Ye X L, Wu R C, et al. Polished section sample preparation of mineral processing products for mineral automatic analysis[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(2): 1−6. doi: 10.3969/j.issn.2095-1035.2020.02.001
[49] 王明燕, 李磊, 肖仪武. 内蒙古某银矿矿石特性及其对选矿的影响[J]. 有色金属(选矿部分), 2022(4): 20−26, 32. doi: 10.3969/j.issn.1671-9492.2022.04.003 Wang M Y, Li L, Xiao Y W. Mineralogical properties of a silver ore in Inner Mongolia and its effects on mineral processing[J]. Nonferrous Metals (Mineral Processing Section), 2022(4): 20−26, 32. doi: 10.3969/j.issn.1671-9492.2022.04.003
[50] 敖顺福, 王春光, 洪秋阳, 等. 云南某含银低品位铅锌矿工艺矿物学特性研究[J]. 贵金属, 2019, 40(2): 12−18. doi: 10.3969/j.issn.1004-0676.2019.02.003 Ao S F, Wang C G, Hong Q Y, et al. Process mineralogical features and factors affecting mineral processing for a low-grade lead-zinc ore containing silver from Yunnan Province[J]. Precious Metals, 2019, 40(2): 12−18. doi: 10.3969/j.issn.1004-0676.2019.02.003
[51] 敖顺福. 有色金属矿中伴生金银选矿进展[J/OL]. 贵金属, 1−11[2024-01-01]. http://kns.cnki.net/kcms/detail/53.1063.TG.202309132023.002.html. Ao S F. Research progress on mineral processing of associated gold and silver in nonferrous metal mines[J/OL]. Precious Metals, 1−11[2024-01-01]. http://kns.cnki.net/kcms/detail/53.1063.TG.202309132023.002.html.
[52] 宋宝旭, 邱显扬, 冉金城, 等. 硫化矿浮选体系中辉银矿的浮选行为研究[J]. 贵金属, 2018, 39(2): 24−28. doi: 10.3969/j.issn.1004-0676.2018.02.005 Song B X, Qiu X Y, Ran J C, et al. Behavior of argentite in the sulphide flotation system[J]. Precious Metals, 2018, 39(2): 24−28. doi: 10.3969/j.issn.1004-0676.2018.02.005
[53] 冉金城, 邱显扬. 铜硫分离中银的选择性导向回收[J]. 矿冶工程, 2020, 40(5): 33−38. doi: 10.3969/j.issn.0253-6099.2020.05.008 Ran J C, Qiu X Y. Selective recovery of silver in Cu-S flotation separation[J]. Mining and Metallurgical Engineering, 2020, 40(5): 33−38. doi: 10.3969/j.issn.0253-6099.2020.05.008
[54] 孙晓华, 付强, 应永朋, 等. 青海某低品位铜铅锌银多金属矿工艺矿物学研究[J]. 有色金属(选矿部分), 2020(5): 5−10. doi: 10.3969/j.issn.1671-9492.2020.05.002 Sun X H, Fu Q, Ying Y P, et al. Mineralogy of a low-grade copper-lead-zinc-silver polymetallic ore in Qinghai Province[J]. Nonferrous Metals (Mineral Processing Section), 2020(5): 5−10. doi: 10.3969/j.issn.1671-9492.2020.05.002
[55] 陈桥, 佟琳琳, 陈贵民, 等. 海南抱伦金矿工艺矿物学研究[J]. 东北大学学报(自然科学版), 2019, 40(9): 1268−1272. doi: 10.12068/j.issn.1005-3026.2019.09.010 Chen Q, Tong L L, Chen G M, et al. Process mineralogy of Baolun gold mine in Hainan Province[J]. Journal of Northeastern University (Natural Science), 2019, 40(9): 1268−1272. doi: 10.12068/j.issn.1005-3026.2019.09.010
[56] 吉强, 李光胜, 朱幸福, 等. 基于工艺矿物学分析提高金浮选尾矿选矿回收率的研究[J]. 贵金属, 2023, 44(3): 31−34. doi: 10.3969/j.issn.1004-0676.2023.03.007 Ji Q, Li G S, Zhu X F, et al. Study on improving floatation tailings of a gold mineral recovery based on process mineralogy analysis[J]. Precious Metals, 2023, 44(3): 31−34. doi: 10.3969/j.issn.1004-0676.2023.03.007
[57] 李国栋, 刘剑, 郭艳华, 等. 应用重选-浮选联合工艺综合回收窑渣中金、银的试验研究[J]. 矿山机械, 2020, 48(8): 44−48. doi: 10.16816/j.cnki.ksjx.2020.08.010 Li G D, Liu J, Guo Y H, et al. Test research on comprehensive recovery of gold and silver from kiln slag by combined process of gravity separation and flotation[J]. Mining and Processing Equipment, 2020, 48(8): 44−48. doi: 10.16816/j.cnki.ksjx.2020.08.010
[58] 冯博, 朱贤文, 彭金秀, 等. 有色金属硫化矿中伴生金银资源回收研究进展[J]. 贵金属, 2016, 37(2): 70−76. doi: 10.3969/j.issn.1004-0676.2016.02.014 Feng B, Zhu X W, Peng J X, et al. Research progress in recovering associated gold and silver from non-ferrous metal sulfide ores[J]. Precious Metals, 2016, 37(2): 70−76. doi: 10.3969/j.issn.1004-0676.2016.02.014
-
其他相关附件