Passivation Effect of Thiol-Modified Montmorillonite on Cadmium in Medium-Alkaline Farmland Soil in Northern China
-
摘要:
农田土壤重金属污染是影响中国农产品环境质量安全的主要因素。钝化材料是修复农田重金属污染土壤的关键材料,研究开发出高效土壤重金属钝化材料,对于修复重金属污染农田和保障农产品食用安全非常重要。本文以蒙脱石为原材料,将巯基基团负载在其表面或层间制备巯基改性蒙脱石,借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和傅里叶红外光谱(FTIR)等技术表征巯基改性蒙脱石的特性,并开展室内土培试验,采用二乙三胺五乙酸浸提-火焰原子吸收分光光度法分析土壤镉的有效态,通过Tessier修正顺序七步提取法分析土壤镉的赋存形态。结果表明:蒙脱石经巯基改性后不仅新增了C−H、S−H共价键,而且增强了−OH和C=O化学键的活性,能与Cd2+发生巯基及羟基配位吸附。供试土壤添加巯基改性蒙脱石后,由于巯基配位吸附作用使土壤离子交换态镉转化为铁锰氧化物结合态,而增强的羟基配位吸附作用使其转化为碳酸盐结合态,结果使土壤中镉的赋存形态发生显著改变,离子交换态大幅减少,作物根系可吸收的土壤有效镉显著降低。添加1%、3%、5%巯基改性蒙脱石后,土壤有效镉分别降低21.92%、69.11%、82.90%;而作为对照组添加1%、3%、5%蒙脱石仅分别降低3.37%、1.80%、6.71%。蒙脱石经巯基改性后对土壤镉的钝化效果得到显著提升,土壤有效镉的降低幅度有随巯基改性蒙脱石添加量增加而提高的趋势。巯基改性蒙脱石对中国北方中碱性农田土壤镉的钝化效果显著,具有一定的参考应用价值。
-
关键词:
- 蒙脱石 /
- 巯基改性蒙脱石 /
- 钝化 /
- 镉污染土壤 /
- 傅里叶红外光谱(FTIR) /
- Tessier修正顺序七步提取法
要点(1)蒙脱石经巯基改性后不仅新增了C−H、S−H共价键,而且增强了−OH和C=O化学键的活性,能与Cd2+发生巯基及羟基配位吸附。
(2)新增的巯基配位吸附作用使土壤Cd形态由离子交换态转化为铁锰氧化物结合态,增强的羟基配位吸附作用使其转化为碳酸盐结合态。
(3)蒙脱石经巯基改性后对土壤镉的钝化效果得到显著提升,土壤有效镉的降低幅度随添加量增加而提高。
HIGHLIGHTS(1) The thiol-modified montmorillonite not only added C-H and S-H covalent bonds, but also enhanced the activity of −OH and C=O chemical bonds, and could adsorb Cd2+ with thiol and hydroxyl groups.
(2) The newly added thiol coordination adsorption made the form of Cd in soil change from ion exchange state to iron-manganese oxide binding state, and the enhanced hydroxyl coordination adsorption made it change into carbonate binding state.
(3) The passivation effect of montmorillonite on soil cadmium was significantly improved after thiol modification, and the decrease of available cadmium in soil increased with the increase of addition amount.
Abstract:Passivation material is a key material for repairing heavy metal contaminated soil in farmland. To study and develop efficient soil heavy metal passivator, thiol-modified montmorillonite was studied. Montmorillonite was used as the raw material, and the thiol group was loaded on the surface or interlayer of montmorillonite to prepare thiol-modified montmorillonite. The characteristics of thiol-modified montmorillonite were characterized by XRD, SEM, TEM and FTIR, and the indoor soil culture test was carried out. The thiol-modified montmorillonite not only added C-H and S-H covalent bonds, but also enhanced the activity of -OH and C=O chemical bonds, and could adsorb with Cd2+ by thiol and hydroxyl coordination. As a result, the occurrence form of Cd in the soil was significantly changed, the ion exchange state was greatly reduced, and the available Cd in the soil absorbed by the crop roots was significantly reduced. After adding 1%, 3% and 5% thiol-modified montmorillonite, the available Cd in soil decreased by 21.92%, 69.11% and 82.90%, respectively. The passivation effect of montmorillonite on soil Cd was significantly improved after thiol modification, and the decrease of available Cd in soil tended to increase with the increase of thiol-modified montmorillonite. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202309010147.
BRIEF REPORTSignificance: Heavy metal pollution in farmland soil is the main factor affecting the environmental quality and safety of agricultural products in China. Passivation material is a key material for repairing heavy metal contaminated soil in farmland. Research and development of efficient soil heavy metal passivation materials is very important for repairing heavy metal contaminated farmland and ensuring the food safety of agricultural products. Passivation is one of the main technologies for the remediation of Cd-contaminated soil. There have been a lot of studies at home and abroad[2-3], but most of the studies are aimed at acidic Cd-contaminated soil[4-6]. Most of the northern and southern parts of China are alkaline soil[7-9], and the passivation remediation materials for Cd-contaminated farmland still need to be studied.
The passivation effect of montmorillonite before and after modification on the alkaline Cd contaminated farmland soil in northern China needs to be further studied. Montmorillonite is a 2∶1 type aluminosilicate mineral[10]. Due to its special layered structure, it has a large specific surface area and strong adsorption capacity for heavy metal ions in soil, and has been used to passivate and repair heavy metal pollution in soil[11-13]. However, due to the strong hydrophilicity and weak bonding ability of the silicon-oxygen structure on the surface of natural montmorillonite, the adsorption process is reversible, the adsorption effect is limited, and the passivation effect is unstable[14-15], which is limited in the application of adsorption and passivation of soil heavy metal Cd. Therefore, the current research focuses on the modification of natural montmorillonite before use, thereby enhancing the adsorption capacity[16-18]. The thiol group has a strong complexing ability, strong adhesion, and is a weak base. Cd2+ is a weak acid, based on the theory of soft and hard acid-base, thiol group and Cd2+ can form a stable binding state, and can be a good adsorption of heavy metal ions[19-20]. At present, studies have confirmed that thiol-modified montmorillonite has a passivation effect on acidic Cd-contaminated soil in the south. However, considering that the adsorption capacity of passivation materials for Cd2+ is greatly affected by soil pH[22,25], and the passivation of montmorillonite before and after modification on alkaline Cd-contaminated farmland, soil in the north is rarely reported. Therefore, this study was carried out to analyze the changes in material characterization before and after montmorillonite modification, the passivation effect of montmorillonite before and after modification, and different amounts of montmorillonite on Cd in alkaline farmland in the north.
Methods: Montmorillonite was used as the raw material, and the thiol group was loaded on the surface or interlayer of montmorillonite to prepare thiol-modified montmorillonite. The characteristics of thiol-modified montmorillonite were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). At the same time, indoor soil experiments were carried out to study the passivation effect of thiol-modified montmorillonite on Cd in northern alkaline farmland soil with different addition amounts, and explore the effects of montmorillonite modification and different addition amounts on the passivation and repair effect of Cd in northern alkaline farmland soil. Finally, combined with material characterization, the passivation mechanism of thiol-modified montmorillonite on Cd was analyzed in order to provide a theoretical basis for the remediation of Cd-contaminated farmland soil in northern China.
A total of 7 treatments were set up. Blank control treatment CK; montmorillonite powder treatments M1, M3 and M5 were added with 1%, 3% and 5% (percentage of soil quality, added to 100g contaminated soil per share). GM1, GM3 and GM5 were treated with 1%, 3% and 5% thiol-modified montmorillonite powder. Each treatment was set up with 3 replicates. The passivation material was added to the Cd-contaminated soil in proportion and fully mixed in the No.5 self-sealing bag. The soil samples treated above were accurately moved to the corresponding glass culture dish (the soil depth of the simulation experiment was 15mm), and the soil was replenished with deionized water every 2 days. The soil moisture content was controlled by the weighing method to maintain 70% of the field water holding capacity, and the culture dish was covered and placed in a constant temperature incubator at 25±2℃. At the same time, the soil samples were stirred and mixed with a plastic spoon to ensure multiple full mixing. Samples were taken 5 times at 7, 15, 30, 50 and 70 days, and 20g soil samples were weighed and dried in natural state through 20 mesh sieves. The pH, total Cd content, available Cd content and Cd content of each form were determined. The specific detection and analysis methods and basis are shown in Table 1.
Data and Results: The crystal structure, microstructure, particle morphology and functional group information were analyzed by material characterization techniques. The change of crystal structure was analyzed by XRD. The XRD patterns of montmorillonite and thiol-modified montmorillonite (Fig.1) were basically the same, indicating that this modification method did not destroy the original mineral structure. The thiol group may be loaded between the layers of the material, or it may be wrapped outside the material to complete the modification. According to the results of SEM (Fig.2), TEM (Fig.3) and BET, the particle size of montmorillonite increased after modification, the surface structure changed from flat and regular to curly and loose, and the interlayer spacing decreased. The thiol group had been effectively grafted onto the surface or interlayer of montmorillonite, forming a stable thiol-modified montmorillonite. Combined with FTIR analysis (Fig.4), it was found that the modified montmorillonite not only added C-H and S-H covalent bonds, but also enhanced the activity of -OH and C=O chemical bonds.
The passivation effect of thiol-modified montmorillonite on Cd in soil was significant. After the addition of thiol-modified montmorillonite to the test soil, the ion-exchanged Cd in the soil was converted into an iron-manganese oxide-bound state due to the thiol coordination adsorption, and the enhanced hydroxyl coordination adsorption converted it into a carbonate-bound state. As a result, the occurrence form of Cd in the soil was significantly changed, the ion exchange state was greatly reduced, and the available Cd in the soil absorbed by the crop roots was significantly reduced. After adding 1%, 3% and 5% thiol-modified montmorillonite, the available Cd in soil decreased by 21.92%, 69.11% and 82.90%, respectively (Fig.5). As the control group, the addition of 1%, 3%, and 5% montmorillonite only decreased by 3.37%, 1.80%, and 6.71%, respectively. The passivation effect of montmorillonite on soil Cd was significantly improved after thiol modification, and the decrease of available Cd in soil tended to increase with the increase of thiol-modified montmorillonite. When 5% thiol-modified montmorillonite was applied, the decrease of available Cd in soil could be increased to 82.90% on the basis of 6.71% in the control group. The passivation effect of thiol-modified montmorillonite on Cd-contaminated farmland soil in northern China is significant, and it can be used as a passivation material for safe utilization of Cd-contaminated farmland soil in Northern China.
-
西藏处于典型的喜马拉雅地热带,是中国高温地热流体分布最密集的地区,其地热资源居中国第一[1],境内共有709个地热带活动区,其中有131个地热系统温度高于150℃,8处地热层温度高于200℃[2]。位于境内的羊八井地热站是中国最大的地热发电站,也是中国所有热液系统中测得的储层温度最高的地热田[3],其日开采汽水总量约为12000t[2]。砷(As)和氟(F)是西藏羊八井高温地热流体中两种典型的高浓度有害元素,通过地热开发可以进一步促进或加速地热源As和F向地表或近地表环境释放,从而威胁附近水土生态环境。因此,调查As和F浓度水平与水体水化学特征从而揭示水体As和F的富集规律,对丰富和认识西藏地区水环境中As和F的环境地球化学行为具有重要意义。
关于羊八井地热水的水化学特征、水热蚀变和水体胶体粒子特征已开展前期研究[4-6]。研究表明,羊八井地热田热水水化学类型为Na-Cl型,大部分地热水为中性偏碱性,pH值在6.70~9.60之间,浅层热水主要来源于深层热水与地表水(冰川雪山融水和大气降水)的混合[7-8]。地表水补给来源于念青唐古拉山海拔4400~5800m的雪山融水[8],融雪水渗入地下后由底层岩浆热源加热,由于热水密度低于融雪水,加热后的热水能自然地流向地表。相比水化学研究,羊八井地热储层流体中As和F浓度特征、地热源As和F引起的水土环境影响是地热利用过程中关注的热点环境问题[9-12]。郭清海等[13]报道了羊八井热田地热流体As和F浓度分别高达5.70mg/L和19.60mg/L,远高于西藏其他地区[14-15],由于地热开发,输入地热邻近河流堆龙曲中主要的污染物为As和F。魏晓阳等[11]研究表明地热邻近河流堆龙曲中检出了高浓度F(0.41~1.31mg/L)。在As和F来源及富集机制方面,氟化物浓度受到氟石(CaF2)溶解度限制,其浓度与水化学类型密切相关,表现为F元素在Na-Cl或Na-Cl·SO4等Na型水中富集程度常高于Na·Ca-HCO3或Ca-HCO3等Ca型水体[15],因此羊八井高温地热水氟化物浓度高达19.60mg/L[13]。同时,弱碱性pH水体也为As和F的富集提供了有利条件[16]。羊八井地热流体中As主要来自岩浆脱气[17],As的富集与岩浆流体的浸取和地幔侵入高砷岩浆热源有关[18],也就是说,决定岩浆热液流体中As浓度高低最关键的因素是岩浆流体的地质成因及其化学成分。综上所述,羊八井高温地热水中As和F的来源及富集机制主要有两方面:①深部地热流体的升流混合作用;②补给水向下渗流过程中与含As和F硅酸盐矿物的溶滤作用,因此地下水体中As和F往往表现为共生性[19-20]。尽管研究者在羊八井地热水中As和F的浓度特征及其来源方面有了前期研究基础,但仍需要深入分析地热源As和F浓度年变化趋势、水环境演变规律和水土环境生态风险。
本文在前期研究的基础上,于2021—2022年对西藏羊八井地热田进行了三期的地热水、温泉水和土壤样品采集,分析羊八井热田水化学常规理化指标、水化学类型、阴阳离子组成,揭示地热水、温泉水和土壤样品中As和F浓度变化特征,剖析地热水和温泉水As和F的来源与富集机制,评价了水体和地表土壤超标风险情况,研究成果为羊八井地区地热的持续合理利用提供科学依据。
1. 研究区域地理位置概况
西藏羊八井地热发电站位于西藏自治区拉萨市西北约90km的当雄县羊八井镇,海拔约4300m。羊八井地层主要由第四系沉积物和基岩风化壳组成,第四系沉积物主要为冲洪积砂砾石层和冰碛砂砾层,而基岩风化壳则主要由花岗岩风化而成。羊八井气候寒冷干燥,年平均气温在2.5℃左右,年降水量在500mm左右[2]。由于空气稀薄,太阳辐射强,日照时间长,全年无霜期短,羊八井热田是中国目前已知的热储温度最高的地热田,其深部热储平均温度为252℃,最高记录热储温度达329.8℃[2],地表出露温度为68~84℃[21]。羊八井地热发电厂是中国建设的第一座最大的、海拔最高的地热试验田,也是当今世界迄今为止唯一利用中温浅层热储资源发电的电厂。地热站的建设为西藏地区的经济发展和社会稳定发挥了举足轻重的作用。羊八井地热站地势平坦,海拔7000m以上的念青唐古拉山屹立于地热站西北,东南方向为海拔6000m以上的唐山,终年覆盖有大量冰川,是地表径流的重要补给,地势上具有西北高、东南低的特点[22]。羊八井地热发电站和周边地理分布格局如图1所示。
青藏公路将热田分为南北两区,北区分布有二电厂和国家地质公园,南区分布有一电厂,一电厂紧邻藏布曲。羊八井镇因地热资源丰富而闻名,镇内分布有规模宏大的喷泉、沸泉、涌射泉、热泉和热水湖等。在羊八井镇格达乡建设有规模仅次于羊八井地热站的羊易地热站。羊八井地热温泉洗浴已成为重要的旅游胜地,目前建成“蓝色天国”温泉旅游区。地热站于2019年进入休采期,休采期间“蓝色天国”温泉旅游区对外开放,钻井口仍有地热水流出,在地热休采期间,其水环境影响仍不容忽视。
2. 实验部分
2.1 样品采集
根据资料显示和现场勘察,三次采样分别于2021年6月(丰水期)、2021年11月(平水期)和2022年4月(枯水期)在羊八井地热发电站钻井口、温泉水口共设2个采样点,水样采集依照《水和废水监测分析方法》(GB/T 8538—2008)进行。现场采集2份平行水样约1L,测定常规指标,包括pH值、电导率(EC)、总溶解固体(TDS)和盐度(SAL)。测定方法是将优特PCS Testr 35型便携式多参数测量仪电极深入水面下10cm处[23],待显示数字稳定后进行读数记录。地热水和温泉水出露温度采用水银温度计现场测定。
土壤样品全部采集于温泉排废口,使用铁锹采集温泉水淋滤的土壤约2kg,沥水冷却后装于塑料密封袋中保存,土壤样品带回实验室自然风干,过100目筛保存备用。水样带回实验室自然冷却,一份经0.45μm滤膜过滤后,加入优级纯硝酸5mL酸化并保存在0~4℃冰箱中备用,用于As和其他元素分析;另一份水样过滤后用于F离子和其他阴离子分析。
2.2 分析仪器
原子荧光光谱仪(AFS-9330型,AFS-8300型,北京吉天仪器有限公司)、高精度X射线荧光光谱仪(HD Rocksand型,美国XOS公司)、离子选择性电极(F090 ION 700型,美国Thermo Eutech公司)、电感耦合等离子体发射光谱仪(Optima 5300 DV型,美国PerkinElmer公司)、电感耦合等离子体质谱仪(ELAN DRC-e型,美国PerkinElmer公司)和离子色谱仪(IC,ICS-1000型,美国Dionex公司)用于目标物测定。
2.3 样品分析方法
(1) 水体和土壤中总As浓度采用原子荧光光谱法(AFS)和高精度X射线荧光光谱法(XRF)测定。水体总As浓度测定方法:地热水和温泉水逐级稀释200倍后,在9mL稀释后的待测水样中加入1mL 5%(硫脲+抗坏血酸)溶液,30℃恒温水浴反应30min,标准曲线的不同浓度点采用上述相同的操作进行,反应结束后进行总As浓度测定。土壤总As浓度测定方法:XRF测定土壤总As时,先用仪器自带能量校准样品(A750)进行能量校正,使用标准品(GBW07310)对仪器主要参数进行实验调试,以消除或减少元素间干扰,提高仪器准确度。
(2) F离子浓度采用离子选择性电极法测定。土壤中总F浓度的测定方法:依据《土壤质量 氟化物的测定 离子选择电极法》(GB/T 22104—2008)。具体流程:称取0.20g土壤样品于坩埚中,加入2g氢氧化钠,高温550℃条件下熔融煅烧,煅烧后采用热水浸取并定容至100mL,测定前加入适量盐酸中和到pH为5~6,采用氟电极测定F离子浓度。10mL样品中加入1mL总离子强度调节缓冲溶液(TISAB)并以掩蔽溶液中Fe3+和Al3+干扰。水体中总F浓度的测定与土壤中F的浸取液测定方法相同。
(3) 水体中元素Ca、K、Na、Mg、Fe、Al和Mn采用电感耦合等离子体发射光谱法(ICP-OES) 测定;Zn、Cr、Co、Ni、Mn、Cu和Cd 等元素采用电感耦合等离子体质谱法(ICP-MS) 测定,用浓度为10.00μg/L的Ba、Be、Ce、Co、In的调谐液优化仪器检测条件,使仪器灵敏度、氧化物离子产率、双电荷离子产率等各项指标达到测定要求。ICP-MS/OES元素分析采用在线加入内标物(In/Rh) 的方法降低基体干扰。水体Se、Hg和Sb通过原子荧光光谱仪测定。地热水和温泉水中阳离子(K+、Na+、Ca2+和Mg2+)和阴离子(Cl−和NO3 − )采用离子色谱法(IC)测定,CO3 2−和HCO3 − 采用容量法测定。水体阴阳离子IC分析和元素ICP-MS/OES分析是委托具有权威资质的第三方测试平台(西藏自治区地质矿产勘查开发局中心实验室)完成,样品测定值均为3次平行测定的平均值扣除空白后的结果,标准偏差小于5%。
目标物的分析方法和测定条件及检出限如表1所示。
表 1 样品分析方法及测定条件Table 1. Sample analysis methods and measurement conditions样品类型和元素 分析方法 检出限 RSD 仪器测定条件 水体As、Hg、Sb、Se AFS As:0.0096μg/L
Hg:0.0017μg/L
Sb:0.01μg/L
Se:0.01μg/L<5% (1)还原剂:0.5% (m/m) NaOH+2% (m/m) KBH4
(2)载液:5% (V/V)盐酸
(3)载气(Ar)流速0.4L/min土壤As XRF 1mg/kg <5% 分析线Kβ;能量11.72keV;电压50kV;分析时间300s;滤光片Ag 土壤和水体F ISE 定量下限0.09mg/L <5% 10mL样品+1mL总离子强度调节缓冲溶液(TISAB) 水体Ca2+、K+、Na+、Mg2+、Cl−、NO3 − IC Ca2+:0.011mg/L
K+:0.02mg/L
Na+:0.005mg/L
Mg2+:0.013mg/L
Cl−:0.032mg/L
NO3 −:0.054mg/L<5% (1) EGC-III淋洗液自动发生器;DS6型电导检测器
阳离子测定条件:CSRS 300-4 mm阳离子抑制器;CS12A型分离柱(4mm×250mm);淋洗液20mmol/L硫酸;流速1mL/min;进样体积500μL
(2)阴离子测定条件:ASRS 300-4 mm阴离子抑制器;Ion Pac AS19型分离柱(4mm×250mm);淋洗液:30mmol/L KOH; 流速1mL/min;进样体积500μL水体CO3 2−、HCO3 − 容量法 - <1% 5%酚酞-乙醇指示剂;1%溴酚蓝指示剂;双指示剂滴定分析法 水体Ca、K、Na、Mg、Fe、Al、Mn ICP-OES Ca:0.003mg/L
K:0.06mg/L
Na:0.02mg/L
Mg:0.02mg/L
Fe:0.002mg/L
Al:0.03mg/L
Mn:0.005mg/L<5% (1)射频功率1250W;等离子体气(Ar)流速15L/min;辅助气(Ar)流速0.2L/min;雾化器气体(Ar)流速0.75L/min;样品提升量1.5L/min;观测方式:垂直;冲洗时间30s;积分时间5s;重复测定3次
(2)最佳波长选择:Ca 317.933nm、K 766.49nm、Na 588.995nm、Mg 285.213nm、Fe 238.204nm、Al 396.153nm、Mn 285.213nm水体V、Be、Zn、Cr、Co、Ni、Mn、Pb、Mo、Ti、Cu、Ba、Cd ICP-MS
Zn、Cr、Be、Co、Ni、Mn、Cu、Cd: 1~10ng/L;
Mo、Pb、Ba、Ti、V: 0.1~1ng/L<5% (1)射频功率1150W;等离子体气(Ar)流速17 L/min;辅助气(Ar)流速1.2 L/min;载气(Ar)流速1.06 L/min;扫描模式为跳峰;重复测定3次
(2)m/z: 51V、9Be、66Zn、52Cr、59Co、60Ni、55Mn、208Pb、98Mo、48Ti、63Cu、115Ba、111Cd2.4 测试数据质量控制
水体总As和F浓度测定结果采用加标回收率的方法进行了准确性验证,结果如表2所示,水体总As的回收率在103.00%~114.80%,F的加标回收率在98.20%~99.90%。F的测定较As更准确,主要是F离子选择性电极法测定浓度为mg/L水平,而原子荧光光谱法测定总As浓度在μg/L水平,因而F的测定准确度更高。总体而言,As和F的加标回收率结果都在理论范围(80%~120%),表明测定方法可靠。在土壤总As和F含量测定中,采用国家一级标准物质的方法对分析方法准确度进行了检验。选择了沉积物标准品GBW07310作为分析样品,在相同分析方法下进行测定,总As和F的回收率分别为113.5%和92.6%,总As和F的测定值与标准值吻合,综上所述,方法的准确性良好,数据可靠。
表 2 水体和土壤中As和F浓度测定准确性验证Table 2. The accuracy of measuring As and F concentrations in water and soil samples样品类型 元素 加标值
(mg/L)测定值
(mg/L)回收率
(%)地热水 As 0 3.16±0.10 − 3 6.25±0.12 103.0±2.69 F 0 15.91±0.24 − 15 30.65±0.47 98.2±3.16 温泉水 As 0 4.18±0.07 − 4 8.78±0.12 114.8±2.98 F 0 17.67±0.23 − 20 37.65±0.15 99.9±0.75 土壤样品 元素 标准值
(mg/kg)测定值
(mg/kg)回收率
(%)沉积物GBW07310 As 25±3.0 28.4±0.85 113.5±3.40 F 149±25 138.0±16.57 92.6±11.10 3. 结果与讨论
3.1 水体水化学类型
地热水主要用于电热发电厂发电,而温泉水主要用于蓝色天国洗浴中心。水质常规理化参数如表3所示,钻井口地热水出露温度在76~78℃之间,出露温度随季节性变化差异较小。温泉水水温在28.30~41.40℃,温泉洗浴水入口温度为41.40℃,温泉利用后,随着冷却水和生活水的共排放,温度会降低,排废温度在28.30~29.60℃。温泉水pH范围在7.87~9.42之间,入口pH值更高,排废口pH值低,地热水pH在8.95~9.15之间。温泉水和地热水的电导变化范围在1670~1882μS/cm之间,TDS值在1126~1340mg/L之间,盐度在914~983mg/L之间,水质变化基本呈现枯水期>平水期>丰水期的趋势。
表 3 水质常规理化参数Table 3. Conventional physicochemical parameters of the water quality采样时间 水期 样品类型 采样位置 水温
(℃)pH 电导
(μS/cm)TDS
(mg/L)盐度
(mg/L)2021年6月 丰水期 温泉水 温泉洗浴入口 41.4 9.42 1690 1180 914 地热水 电站钻井口 76.0 9.15 1699 1220 952 2021年11月 平水期 温泉水 温泉洗浴排废口 29.6 7.87 1882 1340 956 地热水 电站钻井口 78.0 8.95 1670 1213 935 2022年4月 枯水期 温泉水 温泉洗浴排废口 28.3 7.93 1783 1238 974 地热水 电站钻井口 77.5 9.14 1678 1126 983 以平水期地热水和温泉水样品为代表,测定了8个阴阳离子浓度,结果如表4所示,水体中阳离子Na+占主导,温泉水中的阴离子HCO3 − 和SO4 2−占主导,而地热水中阴离子Cl− 和HCO3 − 占主导。此外,阴阳离子平衡和相对误差也列入表4中,地热水阴阳离子平衡相对误差小于5%,表明分析数据可靠。在温泉水中,阴阳离子平衡相对误差较高,最高达13.15%,因为温泉水Na+占比较高,Cl−占比太低,导致阴阳离子平衡失调,从而导致相对误差偏高。
表 4 地热水和温泉水中主要阴阳离子浓度Table 4. Concentrations of major anion and cation ions in the geothermal and hot spring waters样品类型 阳离子浓度(mg/L) 阴离子浓度(mg/L) 阳离子当量浓度
(mmol/L)阴离子当量浓度
(mmol/L)相对误差
(%)Ca2+ Mg2+ K+ Na+ Cl− SO4 2− CO3 2− HCO3 − 地热水
(钻井口)一电厂6.66 0.20 35.19 445.5 331.6 16.79 85.95 546.4 20.63 21.53 2.13 地热水
(废井口)二电厂3.31 0.013 3.42 147.2 59.26 26.30 14.51 260.1 6.66 6.97 2.28 温泉水洗浴
(入口)38.23 10.86 15.91 183.4 72.46 99.9 4.84 262.3 11.19 8.59 13.15 温泉水洗浴
(排废)31.45 5.66 47.02 328.5 91.60 229 ND 428.9 17.53 14.38 9.85 注:“ND”为未检出。 采用Origin 9.2软件绘制了水体水化学Piper三线图,如图2所示,Piper三线图左侧三角形体现了主要阳离子的比例,右侧三角形体现了主要阴离子的比例,中间菱形体现了主要阴阳离子情况。数据点往高占比区域分布,表明水化学类型主要为高占比区域类型。地热水数据点集中分布在低Ca2+、高K++Na+占比方向,占阳离子总量的80%以上,而地热水中Na+浓度占K++Na+总浓度的87.50%~97.70%,因此阳离子主要以Na+为主导。水体Na+浓度高达445.5mg/L,Ca2+浓度低至3.31mg/L。在右下角的主要阴离子分布图中,阴离子主要分布在低Cl−和高CO2− 3+HCO− 3占比方向,而地热水中HCO− 3的浓度占CO2− 3+HCO− 3总浓度的86.50%~100%,因此阴离子主要以HCO− 3为主导。此外地热水Cl−占比最高达60%,综上所述,地热水水化学类型为Na-HCO3∙Cl,与文献[10]报道一致。
3.2 水体砷和氟浓度
高温地热水中As的来源主要为岩浆脱气,表现为深层地热水中总As浓度(5.70mg/L)大于浅层地热水(2.99mg/L)[24]。此外,As的浓度还会受到水体pH值影响,在碱性条件下硫代砷酸盐浓度占比高达83%[25]。羊八井地热水和温泉水总As浓度如图3a所示,钻井口地热水浓度在3.16~3.56mg/L之间,平均值为3.32mg/L,几乎不随水期的变化而变化。地热水总As浓度与张庆等[10]报道的羊八井地热水中总As浓度(3.54~3.56mg/L)一致。同时,对比了位于同一流域上游的羊易电站地热水中总As浓度,羊八井地热水中总As浓度高于羊易电站(2.24~2.30mg/L),这主要是地热区岩浆背景不同。相比钻井口地热水,温泉水总As浓度在4.18~6.50mg/L,浓度更高。地热水中F离子浓度如图3b所示,羊八井钻井口地热水F离子浓度在15.90~16.20mg/L,几乎不随水期的变化而变化,远高于西藏日多温泉中F离子浓度(6.20mg/L)。同时,对比了同一流域上游的羊易电站地热水中F离子浓度,羊八井地热水中F离子浓度显著(P<0.01)高于羊易电站钻井口(12.63mg/L)和羊易电站喷射泉(5.19mg/L)。显著(P<0.01)高于其他地区地热水(1.00~12.70mg/L)[26-27],与文献[28-29]报道的F离子浓度(17.00~18.90mg/L)相当,低于美国黄石公园报道的热泉氟化物浓度(31.60mg/L)[30]。地热水总F离子浓度与2012年报道的羊八井地热水(18.00~18.90mg/L)和羊易电站地热水(19.20mg/L)[24]相比,F离子浓度呈下降趋势。与As的分布规律一致,温泉洗浴水中总F离子浓度更高,在14.56~17.89mg/L,这是因为受水气蒸发浓缩影响(图3c),温泉水中As和F的浓度高于地热水。地热水来源于钻井口,水汽未发生分离或分离较少(图3d),因而浓度低于温泉水。温泉水中As和F浓度呈现枯水期>平水期>丰水期,这与季节蒸发量大小一致。地热水和温泉水As和F浓度显著高于《地热资源评价方法》(DZ40—85)对有害成分规定的最高允许排放浓度(总As为0.50mg/L,氟化物为10mg/L),地热废水的不当处理存在As和F的暴露风险。
As和F是高温地热水中典型的高浓度有害元素,主要来源于深层岩浆。通常,一些羟基矿物如白云母和黑云母常与F离子发生离子交换,当地下水为碱性时交换作用更容易发生,OH−能取代含F矿物质中的F离子,增加了地热水中F离子浓度,其基本过程存在如下反应[31]:
白云母:
$$ \begin{split} & \mathrm{K}\mathrm{A}\mathrm{l}_2\left[\mathrm{A}\mathrm{l}\mathrm{S}\mathrm{i}_3\mathrm{O}_{10}\right]\mathrm{F}_2+2\mathrm{O}\mathrm{H}^-= \\ &\mathrm{\ \ \ K}\mathrm{A}\mathrm{l}_2\left[\mathrm{A}\mathrm{l}\mathrm{S}\mathrm{i}_3\mathrm{O}_{10}\right]\left[\mathrm{O}\mathrm{H}\right]_2+2\mathrm{F}^- \end{split} $$ (1) 黑云母:
$$ \begin{split} & \mathrm{K}\mathrm{M}\mathrm{g}_3\left[\mathrm{A}\mathrm{l}\mathrm{S}\mathrm{i}_3\mathrm{O}_{10}\right]\mathrm{F}_2+2\mathrm{O}\mathrm{H}^-= \\ &\mathrm{\ \ \ K}\mathrm{M}\mathrm{g}\left[\mathrm{A}\mathrm{l}\mathrm{S}\mathrm{i}_3\mathrm{O}_{10}\right]\left[\mathrm{O}\mathrm{H}\right]_2+2\mathrm{F}^- \end{split} $$ (2) 羊八井浅层地热流体,pH值为8.95~9.15,偏碱性的水体为As和F溶出提供了有利条件。此外,水体中F离子浓度受氟石(CaF2)溶解度限制,Ca2+浓度越低,溶液中F离子浓度就会越高,而地热水中Ca2+浓度低至3.31mg/L,低浓度Ca2+是地热流体中F离子浓度富集的另一有利条件。
3.3 土壤砷和氟浓度
图4a为温泉排废口废水淋滤的土壤样品总As浓度。如图所示,枯水期和平水期总As浓度变化差异不大,总As浓度在97.60~99.08mg/kg之间,显著(P<0.01)大于丰水期浓度(79.50mg/kg)。丰水期土壤浓度较低,可能是河水受雨水补给,周边泥沙冲刷,稀释了土壤中总As的量,使其浓度偏低。土壤中总As浓度随季节性变化差异不大。与西藏土壤总As背景值(18.70mg/kg)相比[32],地热区的总As浓度显著高于背景值(P<0.01),是背景值的4.25~5.31倍,表明地热区土壤浓度处于高As污染风险。与济南温泉水尾水土壤中As浓度相比(15.45μg/kg)[33],羊八井地热区As浓度约高出3个数量级。与污染的寨上金矿矿区河流沉积物中As浓度(55~189mg/kg)相当[34]。
土壤母质是土壤中氟化物的基本来源。土壤中总F浓度如图4b所示,总F浓度在1162.70~1285.10mg/kg之间,三次采样的平均值为1237.40mg/kg。表现为丰水期、平水期浓度大于枯水期,土壤总F浓度随季节变化差异不大。与西藏土壤总F背景值(542mg/kg)相比[32],温泉淋滤的土壤总F浓度显著高于背景值,是背景值的2.28倍。与全国土壤F背景值(453mg/kg)以及世界土壤F中位值(200mg/kg)相比[35],温泉淋滤的土壤氟化物显著偏高(P<0.01)。与云南省洱源县高氟温泉点附近土壤总F浓度相比(630.48~1000.27mg/kg)[36],其浓度也处于居高水平,其来源主要受高氟温泉水的冲刷、沉降和土壤吸附。水溶性的氟化物会对周边地下水和生物体产生富集影响,从而造成氟威胁。因此,对温泉水淋洗过的土壤样品进行了可溶态氟离子测定,土壤可溶态氟离子浓度在3.47~9.37mg/kg之间,表明温泉淋洗后的土壤可溶态氟浓度占比较高。
3.4 水体中金属离子浓度
以平水期为代表,测定了地热水和温泉水样品中的元素组成。结果如表5所示,地热水常量组成主要为Na和K;而温泉水中Na离子占主导,其次为Ca。通常,F离子浓度受氟石(CaF2)溶解积(Ksp)约束,Ca离子浓度越低,溶液中F离子浓度就会越高,地热水和温泉水中Ca离子浓度在6.36~35.74mg/L之间,低浓度Ca离子为F离子富集提供有利条件。此外,地热流体F离子溶解还会受到多因素的影响,如温度、pH、配体、共存离子等,使得F离子浓度分布出现反常。温泉水检出10.20mg/L的Mg离子,而在地热水却几乎未检出,Mn离子也出现了相同的规律。考虑到Mg和Mn两元素主要存在于母质矿石中,猜测温泉水与地表母质岩石中的Mg和Mn氧化物发生了交换。其他金属如Be、Cr、Pb、Sb和Mo等组分的浓度分布几乎没有显著差异。
表 5 地热水和温泉水中金属元素浓度Table 5. The metal element concentrations in geothermal and hot spring waters样品类型 金属元素浓度(mg/L) Ca K Mg Na Fe V Be Mn Cr Pb Sb 温泉水 35.74 15.46 10.20 195.4 0.091 0.009 0.002 0.14 0.035 0.0002 0.014 地热水 6.36 36.63 <0.013 456.5 0.047 0.013 0.005 0.012 0.049 0.0002 0.027 样品类型 Mo Cd Ti Se Zn Cu Ni Co Ba Hg 温泉水 0.035 0.0002 0.018 ND 0.002 0.0008 0.0032 0.00013 0.16 <0.0004 地热水 0.070 0.0001 0.025 ND 0.003 0.0014 0.0029 0.00003 0.090 <0.0004 注:“ND”表示未检出。 4. 结论
本文结合野外调查和室内分析对西藏羊八井地热区的地热水和温泉水水样开展了水化学、As和F浓度调查,阐明了水体水化学类型及As和F浓度变化趋势,揭示了水体As和F的来源及富集机制,评价了水体和土壤As和F超标情况和生态风险,具体结论如下:①富Na贫Ca高pH是羊八井地热水和温泉水最主要的水化学特征,为As和F离子溶出富集提供了有利条件;②地热废水的不当处理存在As和F的暴露风险,受水汽蒸发浓缩影响,温泉水As和F风险相比地热水更高;③水体As和F来源主要为水-岩浸溶相互作用,温泉淋滤促进了地表土壤As和F的富集,导致土壤总As和总F浓度均显著高于西藏土壤背景值。
本文丰富了西藏地区水环境中的As和F来源探析及环境地球化学行为,为地热水持续合理开发利用和水土环境风险评价提供依据。需要进一步完善覆盖地热流经区堆龙曲流域地表水、地下水As和F生态风险评价,加强环境监测预警。其次,需要关注温泉洗浴中As和F暴露风险。
BRIEF REPORT
Significance: It is of great significance to study the concentration characteristics and sources of As and F to understand the environmental geochemical behavior of As and F in the geothermal system and their impact on the surrounding water and soil environment. Xizang Plateau is the region of China where high-temperature hydrothermal systems are intensively distributed, and the distribution of heat flow in the Xizang Plateau ranks first in China[1]. The Yangbajing Geothermal Power Plant is the highest and largest geothermal power plant in China, setting a record for the highest reservoir temperature in China[3]. The release of As and F can cause surface water and soil environmental pollution. Although researchers have made preliminary research on the concentration of these two typical harmful elements in geothermal fluids and their impact on the surrounding water environment[9-12], it is still necessary to conduct in-depth analysis of the annual variation trend of As and F concentrations in a geothermal system, the contribution of hydrochemical characteristics to the enrichment of As and F, and the ecological risks of the surrounding soil and water environment caused by As and F leakage. On the basis of previous studies, we investigated the As and F concentrations of geothermal water, hot spring water and soil samples in the Yangbajing geothermal field, analyzed the hydrochemical characteristics of the water bodies, identified the source and enrichment mechanism of As and F in a geothermal system, and evaluated the ecological risks of As and F in water bodies and surface soils.
Methods: Three periods of field collection of geothermal water, hot spring water and soil samples were carried out in the Yangbajing geothermal field in Xizang from 2021 to 2022. Conventional physicochemical parameters were measured on site, including pH value, conductivity (EC), total dissolved solids (TDS), salinity (SAL), and temperature. The indoor analysis used atomic fluorescence spectrometer and X-ray fluorescence spectrometer to determine the concentration of total As in water and soil, respectively. The F concentration was measured using the ion selective electrode method. The pollution of As and F in water samples and soils was evaluated by comparing with the allowable maximum emission values of harmful elements in the standard and specified soil background values, respectively.
Data and Results: (1) The main hydrochemical characteristics. The conventional physicochemical parameters of water quality are shown in Table 3. The pH value of geothermal fluids is between 7.87 and 9.42. Geothermal fluids have a complex matrix, with conductivity, TDS, and salinity ranging from 1670−1882μS/cm, 1126−1340mg/L, and 914−983mg/L, respectively. The changes in water quality physicochemical parameters generally show a trend of dry season>normal season>high season. The analysis of the concentration composition of eight major anions and cations shows that cation Na+ dominates in water, anions HCO− 3 and SO4 2− dominate in hot spring water, and anions Cl− and HCO− 3 dominate in geothermal water. As the result of the Fig.E.1(a), the hydrochemical type of geothermal water is Na-HCO3∙Cl, consistent with literature[10]. Rich Na, poor Ca, and high pH are the main hydrochemical characteristics of Yangbajing geothermal and hot spring water.
(2) Concentration levels of As and F in geothermal fluids and ecological risk assessment. The total As and F concentrations of Yangbajing geothermal water and hot spring water are shown in Fig.E.1(b). The concentrations of total As and F in geothermal water are 3.16−6.50mg/L and 15.90−17.89mg/L, respectively, which hardly changes with the change of water period. The total As concentration in geothermal water is consistent with the total As concentration in Yangbajing geothermal water reported by Zhang et al.[10] (3.54−3.56mg/L). The F concentration of geothermal water shows a decreasing trend compared to the reported Yangbajing geothermal water (18.0−18.9mg/L) and Yangyi hydropower station geothermal water (19.2mg/L)[24]. As shown in Fig.E.1(c), influenced by the evaporation of water, the total concentration of As (4.18−6.50mg/L) and F (14.56−17.89mg/L) in hot spring water are higher than those in geothermal water. The concentration of As and F shows a trend of dry season>normal season>flood season. Notably, the total concentration of As and F in waters are significantly (P<0.01) higher than the maximum allowable emission concentrations for harmful components (0.5mg/L for As, and 10mg/L for F) in the Geothermal Resources Assessment Method (DZ40—85). Improper treatment of geothermal wastewater may pose exposure risks to As and F in the surrounding environment.
(3) Concentration levels of As and F in soils and ecological risk assessment. Fig.E.1(d) shows the total As and F concentrations of soil samples leached from the wastewater at the hot spring discharge outlet. There is no significant difference in the total As concentration between the dry season and the normal season. The total As concentration ranges from 97.6 to 99.08mg/kg, which is significantly higher (P<0.01) than the concentration during the flood season (79.5mg/kg). The total F concentration ranges from 1162.7 to 1285.1mg/kg, showing no significant variation with the seasons. Compared with the background values of total As (18.7mg/kg) and F (542mg/kg) in Xizang soil[32], the total As and F concentrations in the geothermal area are significantly higher than the background values (P<0.01), which are 4.25−5.31 and 2.28 times of the background values respectively. The results show that the soil in the geothermal area is at risk of high As and F pollution.
(4) The main sources of As and F in geothermal water and surface soil are water-rock leaching interaction, and the unique hydrochemical characteristics provide favourable conditions for the leaching of As and F. Rock leaching in the geothermal reservoir is the main resource of As and F enrichment in geothermal water. The geothermal fluids in Yangbajing have a pH value of 7.87−9.42. In addition, some hydroxyl minerals such as muscovite and biotite often undergo ion exchange with F. If the groundwater is alkaline, the exchange is more likely to occur. OH- can replace F in fluorinated minerals, increasing the concentration of F in geothermal water. It is known that the concentration of F in a water system is restricted by the solubility of fluorite. The alkaline environment caused by the hydrolysis of minerals due to water-rock interaction has a significant impact on the dissolution of fluoride, and the alkaline environment with high concentrations of Na+ and low concentrations of Ca2+ is an important reason for the formation of high fluoride. Additionally, low sulfide concentrations (as low as 16.79mg/L) further promote high arsenic geothermal water. It is worth noting that the geothermal water in Xizang has high sodium (up to 445.5mg/L), low sulfur (16.79−26.3mg/L), low calcium (3.31−6.66mg/L), and weakly alkaline (8.95−9.15), providing better convenient conditions for the dissolution of high As and F in Yangbajing geothermal fluids.
-
表 1 样品的检测分析方法及依据
Table 1 Detection and analysis methods and their basis of samples
检测项目 检测指标 检测方法 方法依据(标准方法) 土壤理化性质 pH 玻璃电极法 NY/T 1121.2—2006 CEC 1mol/L乙酸铵交换法 LY/T 1243—1999 有机质 重铬酸钾氧化-外加热法 LY/T 1237—1999 土壤元素全量 N 半微量凯氏法 NY/T 53—1987 P 碱熔法 NY/T 88—1988 K 碱熔法 NY/T 87—1988 Cd 王水提取-电感耦合等离子体质谱法 HJ 803—2016 土壤元素有效性 碱解氮 碱解-扩散法 LY/T 1228—2015 有效磷 0.5mol/L碳酸氢钠浸提法 NY/T 1121.7—2014 速效钾 1mol/L乙酸铵浸提-火焰光度法 LY/T 1236—1999 有效态Cd 二乙三胺五乙酸浸提-火焰原子吸收分光光度法 GB/T 23739—2009 Cd各赋存形态 Tessier修正顺序七步提取法 DZ/T 0289—2015 钝化材料
元素全量pH 玻璃电极法 NY/T 1121.2—2006 CEC 1mol/L乙酸铵交换法 NY/T 295—1995 Cd、Pb、Cr、Cu、Ni、Zn 电感耦合等离子体质谱法 HJ 766—2015 Hg 原子荧光光谱法 GB/T 22105.1—2008 As 原子荧光光谱法 GB/T 22105.2—2008 钝化材料
表征分析比表面积 气体吸附法(BET) GB/T 19587—2017 物相组成 多晶体X射线衍射(XRD) JY/T 0587—2020 微观形貌、微区成分和结构分析 扫描电子显微镜(SEM) JY/T 0584—2020 超微结构、晶体学信息 透射电子显微镜(TEM) JY/T 0581—2020 官能团信息 红外光谱分析法(FTIR) GB/T 6040—2019 表 2 不同钝化处理对土壤pH值的影响(70天)
Table 2 Effects of different passivation treatments on soil pH (70d)
钝化剂处理 处理代号 土壤pH 空白对照 CK 8.22±0.05e 1%蒙脱石 M1 8.34±0.03d 3%蒙脱石 M3 8.66±0.03b 5%蒙脱石 M5 9.00±0.03a 1%巯基改性蒙脱石 GM1 8.52±0.07c 3%巯基改性蒙脱石 GM3 8.72±0.03b 5%巯基改性蒙脱石 GM5 9.07±0.05a 注:不同小写字母a、b、c、d表示各处理间差异显著(p<0.05)。 -
[1] 綦峥, 齐越, 杨红, 等. 土壤重金属镉污染现状、危害及治理措施[J]. 食品安全质量检测学报, 2020, 11(7): 2286−2294. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.07.048 Qi Z, Qi Y, Yang H, et al. Status, harm and treatment measures of heavy metal cadmium pollution in soil[J]. Journal of Food Safety and Quality, 2020, 11(7): 2286−2294. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.07.048
[2] Liu L W, Li W, Song W P, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environment, 2018, 633: 206−219. doi: 10.1016/j.scitotenv.2018.03.161
[3] Lin H, Wang Z W, Liu C J, et al. Technologies for removing heavy metal from contaminated soils on farmland: A review[J]. Chemosphere, 2022, 305: 135457. doi: 10.1016/j.chemosphere.2022.135457
[4] Gong S T, Wang H, Lou F, et al. Calcareous materials effectively reduce the accumulation of Cd in potatoes in acidic cadmium-contaminated farmland soils in mining areas[J]. International Journal of Environmental Research and Public Health, 2022, 19(18): 11736. doi: 10.3390/ijerph191811736
[5] Li Y P, Li X, Kang X R, et al. Effects of a novel Cd passivation approach on soil Cd availability, plant uptake, and microbial activity in weakly alkaline soils[J]. Ecotoxicology and Environmental Safety, 2023, 253: 114631. doi: 10.1016/j.ecoenv.2023.114631
[6] 宿俊杰, 刘永兵, 王鹤立, 等. 面向碱性农地镉污染土壤钝化的凹凸棒改性特征及效果研究[J]. 岩矿测试, 2022, 41(6): 1029−1039. doi: 10.15898/j.cnki.11-2131/td.202203160053 Su J J, Liu Y B, Wang H L, et al. Characteristics and effects of modified attapulgite for stabilization of cadmium contaminated alkaline soils[J]. Rock and Mineral Analysis, 2022, 41(6): 1029−1039. doi: 10.15898/j.cnki.11-2131/td.202203160053
[7] 张力浩, 白姣杰, 田瑞云, 等. 中国北方碱性农田土壤镉污染修复: 现状与挑战[J/OL]. 土壤学报, 2024. DOI: 10.11766/trxb202209110503. Zhang L H, Bai J J, Tian R Y, et al. Cadmium remediation strategies in alkaline arable soils in Northern China: Current status and challenges[J/OL]. Acta Pedologica Sinica, 2024. DOI: 10.11766/trxb202209110503.
[8] 韩天富, 柳开楼, 黄晶, 等. 近30年中国主要农田土壤pH时空演变及其驱动因素[J]. 植物营养与肥料学报, 2020, 26(12): 2137−2149. doi: 10.11674/zwyf.20399 Han T F, Liu K L, Huang J, et al. Spatio-temporal evolution of soil pH and its driving factors in the main Chinese farmland during past 30 years[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2137−2149. doi: 10.11674/zwyf.20399
[9] 解晓露, 袁毳, 朱晓龙, 等. 中碱性镉污染农田原位钝化修复材料研究进展[J]. 土壤通报, 2018, 49(5): 1254−1260. doi: 10.19336/j.cnki.trtb.2018.05.37 Xie X L, Yuan C, Zhu X L, et al. In-situ passivation remediation material in cadmium contaminated alkaline agricultural soil: A review[J]. Chinese Journal of Soil Science, 2018, 49(5): 1254−1260. doi: 10.19336/j.cnki.trtb.2018.05.37
[10] Anjos V E d, Rohwedder J R, Cadore S, et al. Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: Adsorption and desorption studies of As, Ba, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sr, V, and Zn[J]. Applied Clay Science, 2014, 99: 289−296. doi: 10.1016/j.clay.2014.07.013
[11] Du J, Wang Q H, Chen J. Understanding Cd2+ adsorption mechanism on montmorillonite surfaces by combining DFT and MD[J]. Processes, 2022, 10(7): 1381. doi: 10.3390/pr10071381
[12] 卿艳红, 苏小丽, 王钺博, 等. 蒙脱石黏土矿物环境材料构建的研究进展[J]. 材料导报, 2020, 34(10): 19018−19026. doi: 10.11896/cldb.19100243 Qing Y H, Su X L, Wang Y B, et al. Research progress in construction of montmorillonite environmental mineral materials[J]. Materials Reports, 2020, 34(10): 19018−19026. doi: 10.11896/cldb.19100243
[13] 朱维, 刘代欢, 陈建清, 等. 黏土矿物在土壤重金属污染中的应用研究进展[J]. 土壤通报, 2018, 49(2): 499−504. doi: 10.19336/j.cnki.trtb.2018.02.34 Zhu W, Liu D H, Chen J Q, et al. Research progress on the application of clay minerals in the remediation of cadmium polluted farmland[J]. Chinese Journal of Soil Science, 2018, 49(2): 499−504. doi: 10.19336/j.cnki.trtb.2018.02.34
[14] 任超, 朱利文, 李竞天, 等. 不同钝化剂对弱酸性镉污染土壤的钝化效果[J]. 生态与农村环境学报, 2022, 38(3): 383−390. doi: 10.19741/j.issn.1673-4831.2021.0098 Ren C, Zhu L W, Li J T, et al. Study on the passivation effect of different treatments on weakly acidic cadmium polluted soil[J]. Journal of Ecology and Rural Environment, 2022, 38(3): 383−390. doi: 10.19741/j.issn.1673-4831.2021.0098
[15] 任超, 李竞天, 朱利文, 等. 不同钝化剂对碱性镉污染土壤钝化效果研究[J]. 环境科学与技术, 2021, 44(3): 71−78. doi: 10.19672/j.cnki.1003-6504.2021.03.010 Ren C, Li J T, Zhu L W, et al. Study on the passivation effect of different passivators on alkaline cadmium contaminated soil[J]. Environmental Science & Technology, 2021, 44(3): 71−78. doi: 10.19672/j.cnki.1003-6504.2021.03.010
[16] Jiang M, Wang K, Li G, et al. Stabilization of arsenic, antimony, and lead in contaminated soil with montmorillonite modified by ferrihydrite: Efficiency and mechanism[J]. Chemical Engineering Journal, 2023, 457: 141182. doi: 10.1016/j.cej.2022.141182
[17] Meng Z Y, Li J, Zou Y X, et al. Advanced montmorillonite modification by using corrosive microorganisms as an alternative filler to reinforce natural rubber[J]. Applied Clay Science, 2022, 225: 106534. doi: 10.1016/j.clay.2022.106534
[18] Song C H, Zhao Y, Pan D L, et al. Heavy metals passivation driven by the interaction of organic fractions and functional bacteria during biochar/montmorillonite-amended composting[J]. Bioresource Technology, 2021, 329: 124923. doi: 10.1016/j.biortech.2021.124923
[19] 李正龙, 周咏春, 李海波, 等. 巯基改性生物炭对镉污染土壤的稳定化效果[J]. 环境工程, 2022, 40(9): 143−149. doi: 10.13205/j.hjgc.202209019 Li Z L, Zhou Y C, Li H B, et al. Stabilization of cadmium-contaminated soil by sulfhydryl modified biochar[J]. Environmental Engineering, 2022, 40(9): 143−149. doi: 10.13205/j.hjgc.202209019
[20] 王亚玲, 李述贤, 杨合. 有机改性蒙脱石负载巯基修复汞污染土壤[J]. 环境工程学报, 2018, 12(12): 3433−3439. doi: 10.12030/j.cjee.201807106 Wang Y L, Li S X, Yang H. Mercury contaminated soils remediation by using organic modified montmorillonite with sulfhydryl group loading[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3433−3439. doi: 10.12030/j.cjee.201807106
[21] 庞婷雯, 杨志军, 黄逸聪, 等. 巯基化、钠化和酸化膨润土对Cu2+, Pb2+和Zn2+的吸附性能研究[J]. 光谱学与光谱分析, 2018, 38(4): 1203−1208. doi: 10.3964/j.issn.1000-0593(2018)04-1203-06 Pang T W, Yang Z J, Huang Y C, et al. Adsorption properties of thiol-modified, sodium-modified and acidified bentonite for Cu2+, Pb2+ and Zn2+[J]. Spectroscopy and Spectral Analysis, 2018, 38(4): 1203−1208. doi: 10.3964/j.issn.1000-0593(2018)04-1203-06
[22] 朱霞萍, 刘慧, 谭俊, 等. 巯基改性蒙脱石对Cd(Ⅱ)的吸附机理研究[J]. 岩矿测试, 2013, 32(4): 613−620. doi: 10.15898/j.cnki.11-2131/td.2013.04.014 Zhu X P, Liu H, Tan J, et al. Mechanism study of cadmium(Ⅱ) adsorption on thiol-modified montmorillonite[J]. Rock and Mineral Analysis, 2013, 32(4): 613−620. doi: 10.15898/j.cnki.11-2131/td.2013.04.014
[23] 朱凰榕, 赵秋香, 倪卫东, 等. 巯基-蒙脱石复合材料对不同程度Cd污染农田土壤修复研究[J]. 生态环境学报, 2018, 27(1): 174−181. doi: 10.16258/j.cnki.1674-5906.2018.01.024 Zhu H R, Zhao Q X, Ni W D, et al. Immobilization of cadmium by thiol-functionalized montmorillonite in soils contaminated by cadmium in various degrees[J]. Ecology and Environmental Sciences, 2018, 27(1): 174−181. doi: 10.16258/j.cnki.1674-5906.2018.01.024
[24] 曾燕君, 周志军, 赵秋香. 蒙脱石-OR-SH复合体材料对土壤镉的钝化及机制[J]. 环境科学, 2015, 36(6): 2314−2319. doi: 10.13227/j.hjkx.2015.06.053 Zeng Y J, Zhou Z J, Zhao Q X. Mechanism study of the smectite-OR-SH compound for reducing cadmium uptake by plants in contaminated soils[J]. Environmental Science, 2015, 36(6): 2314−2319. doi: 10.13227/j.hjkx.2015.06.053
[25] Marković J, Jović M, Smičiklas I, et al. Cadmium retention and distribution in contaminated soil: Effects andinteractions of soil properties, contamination level, aging time and in situimmobilization agents[J]. Ecotoxicology and Environmental Safety, 2019, 174: 305−314. doi: 10.1016/j.ecoenv.2019.03.001
[26] 代亚平, 吴平霄. 3-氨丙基三乙氧基硅烷改性蒙脱石的表征及其对Sr(Ⅱ)的吸附研究[J]. 环境科学学报, 2012, 32(10): 2402−2407. doi: 10.13671/j.hjkxxb.2012.10.015 Dai Y P, Wu P X. Characterization of APTES-modified montmorillonite and adsorption of Sr(Ⅱ)[J]. Acta Scientiae Circumstantiae, 2012, 32(10): 2402−2407. doi: 10.13671/j.hjkxxb.2012.10.015
[27] 刘雪梅, 屈凌霄. 土壤重金属污染钝化修复技术研究进展[J]. 应用化工, 2022, 51(6): 1799−1803. doi: 10.16581/j.cnki.issn1671-3206.20220429.006 Liu X M, Qu L X. Research progress of passivation remediation technology for soil heavy metal pollution[J]. Applied Chemical Industry, 2022, 51(6): 1799−1803. doi: 10.16581/j.cnki.issn1671-3206.20220429.006
[28] 王泓博, 苟文贤, 吴玉清, 等. 重金属污染土壤修复研究进展: 原理与技术[J]. 生态学杂志, 2021, 40(8): 2277−2288. doi: 10.13292/j.1000-4890.202108.037 Wang H B, Gou W X, Wu Y Q, et al. Progress in remediation technologies of heavy metals contaminated soil: Principles and technologies[J]. Chinese Journal of Ecology, 2021, 40(8): 2277−2288. doi: 10.13292/j.1000-4890.202108.037
[29] 周春海, 张振强, 黄志红, 等. 不同钝化剂对酸性土壤中重金属的钝化修复研究进展[J]. 中国农学通报, 2020, 36(33): 71−79. doi: 10.11924/j.issn.1000-6850.casb20191200928 Zhou C H, Zhang Z Q, Huang Z H, et al. Passivation and remediation of heavy metals in acid soil with different passivators: A research progress[J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 71−79. doi: 10.11924/j.issn.1000-6850.casb20191200928
[30] 陶玲, 仝云龙, 杨万辉, 等. 碱改性凹凸棒石对土壤中镉化学形态及环境风险的影响[J]. 岩矿测试, 2022, 41(1): 109−119. doi: 10.15898/j.cnki.11-2131/td.202108270108 Tao L, Tong Y L, Yang W H, et al. Chemical speciation and environmental risk of Cd in soil stabilized with alkali-modified attapulgite[J]. Rock and Mineral Analysis, 2022, 41(1): 109−119. doi: 10.15898/j.cnki.11-2131/td.202108270108
[31] 付成, 雷泞菲, 裴向军, 等. 巯基改性凹凸棒石黏土对土壤有效态镉及油菜吸收镉的影响[J]. 岩石矿物学杂志, 2022, 41(5): 941−949. doi: 10.3969/j.issn.1000-6524.2022.05.007 Fu C, Lei N F, Pei X J, et al. Effects of sulfhydryl-modified attapulgite on available cadmium in soil and cadmium absorption by rape[J]. Acta Petrologica et Mineralogica, 2022, 41(5): 941−949. doi: 10.3969/j.issn.1000-6524.2022.05.007
[32] 段海芹, 秦秦, 吕卫光, 等. 有机肥长期施用对设施土壤全镉和有效态镉含量的影响[J]. 土壤学报, 2021, 58(6): 1486−1495. doi: 10.11766/trxb202003030088 Duan H Q, Qin Q, Lyu W G, et al. Effects of long-term application of organic manure on contents of total and available cadmium in greenhouse soil[J]. Acta Pedologica Sinica, 2021, 58(6): 1486−1495. doi: 10.11766/trxb202003030088
[33] 化党领, 朱利楠, 赵永芹, 等. 膨润土、褐煤及其混合添加对铅、镉复合污染土壤重金属形态的影响[J]. 土壤通报, 2020, 51(1): 201−206. doi: 10.19336/j.cnki.trtb.2020.01.27 Hua D L, Zhu L N, Zhao Y Q, et al. Fractions of heavy metals in Cd/Pb contaminated soil amended with bentonite and lignite[J]. Chinese Journal of Soil Science, 2020, 51(1): 201−206. doi: 10.19336/j.cnki.trtb.2020.01.27
[34] 任露陆, 蔡宗平, 王固宁, 等. 不同钝化机制矿物对土壤重金属的钝化效果及微生物响应[J]. 农业环境科学学报, 2021, 40(7): 1470−1480. doi: 10.11654/jaes.2020-1436 Ren L L, Cai Z P, Wang G N, et al. Effects of minerals with different immobilization mechanisms on heavy metals availability and soil microbial response[J]. Journal of Agro-Environment Science, 2021, 40(7): 1470−1480. doi: 10.11654/jaes.2020-1436
[35] Gupta S S, Bhattacharyya K G. Adsorption of heavy metals on kaolinite and montmorillonite: A review[J]. Physical Chemistry Chemical Physics, 2012, 14(19): 6698−6723. doi: 10.1039/c2cp40093f
[36] 刘慧, 朱霞萍, 韩梅, 等. 巯基改性蒙脱石对Cd2+的吸附及酸雨解吸[J]. 非金属矿, 2013, 36(3): 69−72. DOI: CNKI:SUN:FJSK.0.2013-03-024. Liu H, Zhu X P, Han M, et al. Cd2+ adsorption on thiol-modified montmorillonite and desorption by acid rain[J]. Non-Metallic Mines, 2013, 36(3): 69−72. DOI: CNKI:SUN:FJSK.0.2013-03-024.
[37] 刘丹丹, 缪德仁, 刘菲. 不同提取方法对土壤中活性部分重金属提取能力的对比研究[J]. 安徽农业科学, 2009, 37(35): 17613−17615. doi: 10.13989/j.cnki.0517-6611.2009.35.045 Liu D D, Miu D R, Liu F. Comparison study on the extraction ability of some heavy metals in active parts of soils by different extraction methods[J]. Journal of Anhui Agricultural Sciences, 2009, 37(35): 17613−17615. doi: 10.13989/j.cnki.0517-6611.2009.35.045
[38] 安艳, 朱霞萍, 孟兴锐, 等. 巯基膨润土钝化修复镉污染水稻土的研究[J]. 土壤通报, 2021, 52(4): 934−939. doi: 10.19336/j.cnki.trtb.2020091401 An Y, Zhu X P, Meng X R, et al. Passivation remediation of Cd contaminated paddy soils by mercapto bentonite[J]. Chinese Journal of Soil Science, 2021, 52(4): 934−939. doi: 10.19336/j.cnki.trtb.2020091401
[39] 孟兴锐. 巯基膨润土对水稻土中镉形态转化的影响研究[D]. 成都: 成都理工大学, 2019. Meng X R. Effect of sulfhydryl-modified bentonite on transformation of cadmium in rice soil[D]. Chengdu: Chengdu University of Technology, 2019.