On-site Determination of Lithium in Hot Spring Water by Portable Li-K Analyzer
-
摘要:
锂是绿色能源和轻质合金的理想原料,作为一种重要的战略性资源而备受各国重视。热泉水中富含锂,储量可观,然而热泉水主要分布在西藏、云南等偏远地区,样品运输与实验室测试成本高、效率低,锂资源勘查急需现场分析技术的支持。热泉水一般含有较高浓度的钠、钾等元素,基体效应显著。本文利用自主研发的便携式锂钾分析仪,搭配负性滤光片,选择锂的分析谱线波长670.78nm,通过优化测量条件,建立了标准曲线法与标准加入法现场测定热泉水中锂元素的分析方法。实验结果表明,当电解质是体积分数为1.5%的盐酸,工作电流为70mA,进样流速为3.0mL/min时,锂检出限为4.07μg/L,相对标准偏差(RSD)为1.03%。对热泉水样品进行加标测试,加标回收率为81.6%~115.9%。当热泉水样品基体组成较简单时,直接采用标准曲线法即可获得较准确的分析结果;当样品基体组成较复杂或者基体浓度高时,采用标准加入法可有效地减小基体效应,获得的分析结果相对更准确。本方法适用于不同类型基体的热泉水中锂含量的分析测试。
Abstract:Lithium is an ideal material for green energy and lightweight alloys, and has been valued by many countries as an important strategic resource. Many hot springs, are rich in Li. However, hot springs are mainly distributed in remote areas such as Xizang and Yunnan, where the cost of sample transportation and laboratory testing is high and the efficiency is low, so the exploration of lithium resources urgently needs the support of on-site analysis technology. Hot spring water generally contains high concentrations of sodium, potassium and other elements, and the matrix effect is significant. In this study, the wavelength of the characteristic Li spectral line was set at 670.78nm. The analytical method for on-site determination of Li in hot spring water samples was established by a self-developed portable Li-K analyzer with a negative filter using the standard curve and standard addition methods. The experimental results show that when the electrolyte is 1.5% hydrochloric acid, the working current is 70mA and the sample flow rate is 3.0mL/min, the detection limit of Li is 4.07μg/L, and the measured precision (RSD) is better than 2%. The hot spring water samples were tested by standard addition, and the spiked recoveries were 81.6% to 115.9%. When the matrix composition of hot spring water samples is simple, accurate analysis results can be obtained by directly using the standard curve method. When the matrix composition of the sample is complex or the matrix concentration is high, the matrix effect can be effectively reduced by the standard addition method, and the analysis results obtained are relatively more accurate, which is suitable for the analysis of lithium content in hot spring water with different matrix types.
-
Keywords:
- portable /
- Li-K analyzer /
- hot spring water /
- field analysis /
- lithium /
- electrolyte acidity /
- working current /
- sample flow rate
-
风化壳淋积型稀土矿床,即离子吸附型稀土矿床,此类矿床轻重稀土元素分配齐全,且可不经矿物分解的形式来分离稀土元素,是中国的优势矿产资源,也是世界上稀缺的矿产资源[1-5]。风化壳淋积型稀土矿床中稀土元素的赋存状态非常复杂,前人将此类矿床中的稀土元素划分为离子吸附相(含可交换性吸附态、专性吸附态),胶体分散相(含胶体吸附态、凝胶态),独立矿物相(含表生矿物态、残留矿物态),晶格杂质相(含类质同象态、内潜同晶态),这“四相八态”被称为“全相”稀土。目前“离子型”稀土提取工艺基本只能够利用“可交换吸附态”的稀土元素即“离子相”稀土,其他相态的稀土元素尚不能被有效地回收利用[6]。传统观点认为,风化壳淋积型稀土矿床中,稀土主要以吸附态赋存于风化壳黏土矿物表面,独立矿物相、晶格杂质等其他赋存形式占比较少。但近年来同步辐射研究显示,稀土元素也同时以内层络合物形式存在[7-8],而内层络合有可能抑制了矿石中稀土的离子交换率[9]。稀土元素还可以与有机质形成稳定的有机-稀土络合物[10]。如何将离子吸附型稀土矿中各种形态的稀土元素有效地溶出,对于提高稀土资源利用率十分重要。
分析风化壳淋积型稀土矿样品中的稀土元素时,常用的前处理方法有酸溶、碱熔、强电解质交换等方法。对于离子吸附型稀土矿,盐酸-硝酸-氢氟酸-高氯酸-硫酸(五酸)敞开法可在一定条件下代替操作复杂的碱熔法[11-12],用于测定样品中的“全相”稀土元素。《离子型稀土矿混合稀土氧化物化学分析方法 十五个稀土元素氧化物配分量的测定》(GB/T 18882.1—2008)中则选择使用50%的盐酸来溶出离子型稀土矿样品中的稀土元素。硫酸铵浸提是目前应用最为普遍的提取离子吸附型稀土矿中稀土元素的方法,也是在离子吸附型稀土矿稀土提取工艺中最常用的前处理方法[13-16]。上述前处理方法对风化壳淋积型稀土矿样品中稀土元素的溶出机理与结果的差异,尚无相关比较与讨论。
本文选取混合酸(五酸)消解、盐酸消解、硝酸消解、硫酸铵浸提的前处理方法,对来自中国南岭地区风化壳淋积型稀土矿的多个稀土样品开展了前处理研究,使用电感耦合等离子体质谱(ICP-MS)对处理后的样品进行测定,并探讨了不同前处理方法获得结果的差异,以及稀土元素化学特征和赋存状态之间的关系。以期为进一步研究风化壳淋积型稀土矿中稀土元素提取方法提供新的思路。
1. 实验部分
1.1 仪器设备及工作条件
稀土元素的测定使用的仪器为NexION 300D电感耦合等离子体质谱仪(美国PerkinElmer公司)。仪器工作条件见表1。
表 1 电感耦合等离子体质谱仪工作条件Table 1. Operating parameters for ICP-MS measurements.工作参数 设定值 工作参数 设定值 ICP功率 1300W 跳峰 1点/质量 冷却气流速 13.0L/min 停留时间 10ms/点 辅助气流速 1.2L/min 扫描次数 40次 雾化气流速 0.9L/min 测量时间 31s 取样锥孔径 1.0mm 截取锥孔径 0.9mm 超锥孔径 1.1mm 样品消解实验主要设备:控温鼓风干燥箱;多孔控温电热板;平板电热板;分析天平;30mL带盖聚四氟乙烯坩埚;100mL玻璃烧杯及表面皿;50mL离心管等。
1.2 标准溶液和主要试剂
单元素标准储备液:La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、Sc、Ba浓度均为1000μg/mL (国家有色金属及电子材料分析测试中心)。
ICP-MS校准标准工作溶液:由标准储备液逐级稀释至20ng/mL。其中STD1为Sc、Y、La、Ce、Pr、Nd、Sm、Eu的混合溶液,各元素浓度均为20ng/mL,介质分别为5%硝酸和5%盐酸;STD2为Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu的混合溶液,各元素浓度均为20ng/mL,介质分别为5%硝酸和5%盐酸。
干扰校正溶液:Ba、Ce、Pr、Nd单元素溶液,浓度均为1μg/mL,介质分别为5%硝酸和5%盐酸。
内标溶液:10ng/mL 的Rh、Re混合溶液,介质分别为5%硝酸和5%盐酸。内标溶液于测定时通过三通在线加入。
硝酸、盐酸、氢氟酸均为BV Ⅲ级;硫酸、高氯酸为优级纯;过氧化氢:MOS级;硫酸铵:分析纯;超纯水:电阻率大于18MΩ•cm。
1.3 样品采集及处理方法
实验用样品采集自南岭地区的六个离子吸附型稀土样品,编号分别为L03、L05、L14、L22、L20、L28。按照《岩石和矿石化学分析方法总则及一般规定》(GB/T 14505)的相关规定,加工样品的粒径应小于74μm,于105℃烘箱烘干2h,备用。
对样品分别开展混合酸(五酸)消解、盐酸消解、硝酸消解、硫酸铵浸提的前处理。其消解流程如下。
(1)混合酸消解(五酸):称取0.1000g样品置于30mL聚四氟乙烯坩埚中,加入3mL盐酸、2mL硝酸、3mL氢氟酸、1mL高氯酸、1mL 50%硫酸,盖上坩埚盖,把坩埚放在控温电热板上,开启电热板,控制温度为130℃分解样品2h。洗净坩埚盖,将电热板升温至150℃,继续分解样品2h,然后将电热板升温至180℃蒸至高氯酸浓烟冒尽。取下坩埚,冷却至室温,用50%盐酸冲洗坩埚壁,再放在电热板上继续赶酸,直至溶液体积不再变化,重复操作此步骤两次。取下坩埚,加入10mL 50%盐酸,将坩埚放置在电热板上溶解盐类约15min,取下坩埚冷却至室温后,转移至50mL容量瓶中,用水稀释定容,摇匀备用。分取制备的溶液2.50mL,稀释至10.00mL,摇匀,此为混合酸消解样品待测溶液。
(2)硝酸消解:称取0.3000g样品置于100mL烧杯中,加入20mL 50%硝酸,加热至冒大气泡后,冷却至室温,用水定容至100mL。移取上述溶液10mL用5%硝酸定容至100mL;此为硝酸消解样品待测溶液。
(3)硝酸+过氧化氢消解:称取0.3000g样品置于100mL烧杯中,加入20mL 50%硝酸和0.5mL过氧化氢,加热至冒大气泡后,冷却至室温,用水定容至100mL。移取上述溶液10mL用5%硝酸定容至100mL;此为硝酸和过氧化氢消解样品待测溶液。
(4)盐酸+过氧化氢消解:称取0.3000g样品置于100mL烧杯中,加入20mL 50%盐酸和0.5mL过氧化氢,加热至冒大气泡后,冷却至室温,用水定容至100mL。移取上述溶液10mL用5%盐酸定容至100mL;此为盐酸和过氧化氢消解样品待测溶液。
(5)硫酸铵浸提:称取5.00g样品置于50mL离心管中,加入2.5%硫酸铵溶液40mL,摇匀后静置24h。取1mL上清液,加入5%硝酸9mL,此为硫酸铵浸提取样品待测溶液。
所有前处理方法的试剂空白与样品消解均同时进行。
1.4 样品测定
按照ICP-MS操作规程启动仪器,仪器点火后稳定30min以上。用仪器调试液进行仪器参数最佳化调试。按表1中的仪器工作条件测定溶液中的139La、140Ce、141Pr、142Nd、152Sm、153Eu、158Gd、159Tb、164Dy、165Ho、166Er、169Tm、174Yb、175Lu、89Y、45Sc共16种元素,同时测定空白溶液。以常用的干扰系数校正法来消除轻稀土对重稀土的干扰[17-21]。不同消解方法应选取与之基体相匹配的内标和校准溶液,以降低质谱测定中的基体效应。
混合酸溶采用离子型稀土矿石国家一级标准物质GBW07160、GBW07161进行质量监控;其他前处理方法通过加标试验对前处理过程进行监控。
2. 结果与讨论
2.1 样品前处理方法的评价
2.1.1 混合酸(五酸)消解方法
混合酸(五酸)消解法是基于经典四酸消解法的基础之上。通常情况下,酸溶法过程中引入氢氟酸是为了使样品完全分解,特别是硅酸盐结构的分解。但对于稀土样品,引入氢氟酸易生成难溶氟化物,导致稀土结果偏低。引入少量硫酸能有效地提升赶酸过程的温度,同时赶酸过程中溶液不会完全蒸干,既有利于难溶稀土氟化物的分解,也能尽量地避免稀土氟化物的沉淀。对于离子吸附型稀土矿,五酸敞开法可在一定条件下代替操作复杂的碱熔法[11],用于测定样品中的稀土元素。本研究中采用GBW07160和GBW07161对五酸消解法进行监控,测定结果均在标准值范围内(表2)。因此,可将混合酸(五酸)消解的结果视为样品中“全相”稀土量。
表 2 GBW07160和GBW07161采用混合酸(五酸)消解测定结果(n=3)Table 2. Analytical results of GBW07160 and GBW07161 determined by open mixed acid digestion (n=3).稀土
元素GBW07160 GBW07161 五酸消解结果
(μg/g)标准值
(μg/g)五酸消解结果
(μg/g)标准值
(μg/g)Sc 6.22 5.67~6.98 8.29 7.69±0.59 Y 2383 2386±205 965 976±47 La 85.3 93.8±8.5 2271 2362±145 Ce 24.7 28.3±4.1 178 187±8.1 Pr 33.8 37.2 440 447±24.8 Nd 170 189±17 1568 1595±86 Sm 115 129±17 286 285±25.9 Eu 1.10 1.55±0.26 62.3 64.8±3.63 Gd 210 234 234 226±26 Tb 46.4 49.1±5.1 31.6 34.6±2.2 Dy 315 314±44 182 183±17 Ho 68.1 65.5±5.4 31.9 35.7±4.0 Er 207 192±26 90.1 96±9 Tm 26.8 27.7±3.1 12.3 13.2±1.1 Yb 184 193±26 78.1 87.8±11 Lu 24.9 26.7±2.6 11.24 12.0±0.88 2.1.2 盐酸、硝酸消解或硫酸铵浸提法
硝酸、盐酸消解处理或是硫酸铵浸提法,都只能将离子吸附型稀土样品中部分稀土元素溶出。50%的盐酸或硝酸能够溶出以离子状态吸附于黏土矿物或铁锰氧化物中的稀土元素,以及以氧化物、碳酸盐、磷酸盐等形式存在的稀土元素。但是对于硅酸盐结构中的稀土元素,其溶出效果有限。硫酸铵浸提法则只能溶出离子相稀土。呈离子状态被吸附于高岭土、长石、云母等黏土表面和颗粒间的稀土元素,在遇到化学性质更活泼的阳离子强电解质NH4+时能被其交换解吸而转入溶液。这部分能被离子交换浸出工艺交换出的稀土,即为离子相稀土[14]。
硝酸消解、硝酸+过氧化氢消解、盐酸+过氧化氢消解法和硫酸铵提取法,在称取样品后加入高浓度标准溶液,随后按1.3节方法处理样品,对前处理流程进行监控。各元素加入量及结果见表3,以样品L14和L28为例,加标回收率在80%~120%之间,满足实验分析要求。
表 3 加标试验回收率 (n=3)Table 3. Recovery rates of added standard tests (n=3).样品
L04硝酸消解 硝酸+双氧水消解 盐酸+双氧水消解 硫酸铵浸提 加标量
(μg)回收量
(μg)回收率
(%)加标量
(μg)回收量
(μg)回收率
(%)加标量
(μg)回收量
(μg)回收率
(%)加标量
(μg)回收量
(μg)回收率
(%)Sc 6.00 6.48 108 6.00 5.96 99.4 6.00 5.43 90.5 200 215.4 108 Y 6.00 6.50 108 6.00 5.72 95.3 6.00 6.19 103 200 183.2 91.6 La 6.00 6.84 114 6.00 6.86 114 6.00 5.99 100 200 212.9 106 Ce 6.00 6.29 105 6.00 6.53 109 6.00 6.60 110 200 208.1 104 Pr 6.00 5.75 96 6.00 6.08 101 6.00 7.12 119 200 192.0 96.0 Nd 6.00 5.66 94 6.00 5.92 98.7 6.00 6.40 107 200 177.9 89.0 Sm 6.00 6.43 107 6.00 6.57 109 6.00 6.49 108 200 203.4 102 Eu 6.00 6.14 102 6.00 6.28 105 6.00 6.18 103 200 200.6 100 Gd 1.50 1.44 96 1.50 1.70 113 1.50 1.61 107 80.0 80.4 100 Tb 1.50 1.62 108 1.50 1.68 112 1.50 1.63 109 80.0 80.2 100 Dy 1.50 1.45 96 1.50 1.67 111 1.50 1.64 109 80.0 80.1 100 Ho 1.50 1.61 108 1.50 1.61 107 1.50 1.57 105 80.0 82.8 103 Er 1.50 1.62 108 1.50 1.67 111 1.50 1.37 91.6 80.0 84.3 105 Tm 1.50 1.55 103 1.50 1.57 105 1.50 1.57 104 80.0 80.9 101 Yb 1.50 1.60 106 1.50 1.63 109 1.50 1.60 106 80.0 77.7 97.1 Lu 1.50 1.50 100 1.50 1.56 104 1.50 1.58 105 80.0 83.7 105 样品
L28硝酸消解 硝酸+双氧水消解 盐酸+双氧水消解 硫酸铵浸提 加标量
(μg)回收量
(μg)回收率
(%)加标量
(μg)回收量
(μg)回收率
(%)加标量
(μg)回收量
(μg)回收率
(%)加标量
(μg)回收量
(μg)回收率
(%)Sc 6.00 6.55 109 6.00 6.55 109 6.00 5.87 97.9 100 106.6 107 Y 6.00 6.10 102 6.00 6.27 104 6.00 5.92 98.6 100 105.1 105 La 6.00 6.76 113 6.00 6.88 115 6.00 4.93 82.1 100 107.6 108 Ce 6.00 6.18 103 6.00 6.56 109 6.00 6.14 102 100 106.8 107 Pr 6.00 6.16 103 6.00 6.10 102 6.00 6.68 111 100 110.9 111 Nd 6.00 6.13 102 6.00 6.19 103 6.00 5.04 84.0 100 116.6 117 Sm 6.00 6.55 109 6.00 6.45 107 6.00 5.95 99.2 100 98.9 98.9 Eu 6.00 6.35 106 6.00 6.31 105 6.00 6.17 103 100 118.4 118 Gd 1.50 1.64 109 1.50 1.79 119 1.50 1.75 116 4.00 4.09 102 Tb 1.50 1.61 108 1.50 1.54 103 1.50 1.56 104 4.00 3.88 96.9 Dy 1.50 1.44 96.0 1.50 1.70 114 1.50 1.57 104 4.00 4.31 108 Ho 1.50 1.61 107 1.50 1.57 105 1.50 1.55 103 4.00 4.17 104 Er 1.50 1.56 104 1.50 1.69 113 1.50 1.46 97.1 4.00 3.92 98.0 Tm 1.50 1.52 102 1.50 1.49 100 1.50 1.53 102 4.00 4.03 101 Yb 1.50 1.51 100 1.50 1.56 104 1.50 1.50 100 4.00 3.61 90.3 Lu 1.50 1.52 102 1.50 1.55 103 1.50 1.52 102 4.00 4.01 100 2.2 样品前处理方法对提取结果的影响
选取六个离子吸附型稀土矿样品,采用不同前处理方法测得各稀土元素总量见表4。不同前处理方法提取出的稀土量存在较大差异,其中混合酸(五酸)消解结果最高,硝酸消解、硝酸和过氧化氢消解、盐酸和过氧化氢消解结果相近,略低于混合酸(五酸)消解溶出稀土量,硫酸铵浸提溶出稀土量最低。用50%硝酸、盐酸等消解方法溶出的稀土量占混合酸(五酸)消解溶出稀土量(全相稀土)的71.7%~97.5%,硫酸铵浸提溶出的稀土量(离子相稀土)仅占全相稀土量的9.1%~75.5%(表4)。这与混合酸(五酸)消解溶出全相稀土,50%的盐酸或硝酸能溶出离子态以及以氧化物、碳酸盐、磷酸盐等形式存在的稀土,而硫酸铵浸提仅能溶出离子相稀土的原理一致。
表 4 不同前处理方法测得稀土总量与提取率 (n=3)Table 4. Content and extraction rates of REEs by different pretreatment methods (n=3).样品前处理方式 六个离子吸附型稀土样品稀土总量测定结果(μg/g) L20 L28 L22 L14 L05 L03 混合酸 208 344 310 511 771 152 硝酸 178 275 276 439 752 109 硝酸+过氧化氢 176 265 272 444 737 113 盐酸+过氧化氢 175 259 267 419 707 119 硫酸铵浸提 19.0 106 160 308 581 15.4 样品前处理方式 六个离子吸附型稀土样品稀土总量提取率(%) L20 L28 L22 L14 L05 L03 硝酸 85.6 79.9 89.0 85.9 97.5 71.7 硝酸+过氧化氢 84.6 77.0 87.7 86.9 95.6 74.3 盐酸+过氧化氢 84.1 75.3 86.1 82.0 91.7 78.3 硫酸铵浸提 9.1 30.8 51.7 60.3 75.5 10.2 注:提取率为各种方法提取稀土结果与混合酸(五酸)消解结果(全相稀土)相比的百分数。 2.3 稀土元素特性及赋存状态对提取结果的影响
不同消解方法结果的差异与样品中稀土元素的赋存状态密切相关,混合酸消解能够将样品结构彻底破坏,样品中所有的稀土元素都能被溶出。受原岩化学成分的影响,不同矿区风化壳矿石的化学成分不完全相同,但有许多共同点。稀土元素在风化壳各层发生分异-富集,原岩在风化后仍有一部分稀土以矿物相形式赋存[14],离子相的稀土的含量与风化壳各层的风化程度、矿物组成等因素密切相关[22-24],风化壳不同部位离子相稀土含量占比不尽相同。盐酸或硝酸能够溶出以离子状态吸附于黏土矿物或铁锰氧化物中的稀土元素,以及碳酸盐、磷酸盐等形式存在的稀土元素。但是,还有部分稀土元素稳定存在于不能被硝酸和盐酸完全溶解的硅酸盐矿物晶格中。而硫酸铵浸提只能将样品中离子相稀土溶出,因此,盐酸和硝酸的消解结果低于全相稀土的量,高于硫酸铵浸提法。
实验结果(图1)显示,硝酸和盐酸消解处理中,Sc的提取率也远低于稀土元素总量的提取率,硫酸铵浸提则不能将钪(Sc)溶出。这是由于Sc3+的离子半径(0.075nm)明显小于镧系元素离子半径(0.106~0.085nm),却与Mg2+(0.072nm)和Fe3+(0.078nm)具有相似的离子半径,因而能以类质同象的形式替换Mg2+、Fe3+离子进入多种造岩矿物的晶格中[25-26]。因此,Sc元素几乎不能被NH4+以离子交换的形式置换到溶液中,而存在于造岩矿物晶格中的Sc也只能被硝酸或者盐酸部分溶出。
铈(Ce)是地壳中丰度最高的稀土元素,Ce作为变价元素,其含量变化受氧化还原条件等多种因素影响[27]。自然界中的Ce通常呈Ce3+和Ce4+两种价态,Ce3+极易氧化成Ce4+,以胶态相Ce(OH)4或矿物相方铈矿(CeO2)的形式而滞留于原地[28-29]。Ce与其他稀土元素不同的富集-分异特性也导致在硫酸铵浸提中,Ce元素的提取率与其他稀土元素提取率、轻稀土总量提取率以及稀土总量提取率之间不存在相关性(图1和图2)。
比较不同消解方法中稀土元素的提取率可以发现,离子半径相近的稀土元素,提取率也往往相近(图2和图3)。钇(Y)与镧系元素具有很强的化学亲和性,与钬(Ho)也具有相似的离子半径(Y3+ 0.088nm,Ho3+ 0.089nm),因此将Y划为重稀土一组[30]。从图3也可以发现,在同一种前处理方法中,Y和Ho具有相近的提取率。大部分情况下轻稀土的提取率高于重稀土,轻稀土单元素提取率与轻稀土总量(除Ce以外)提取率(图2)、重稀土单元素提取率与重稀土总量提取率正相关(图3)。
3. 结论
本文初步讨论了不同前处理方法溶出风化壳淋积型稀土矿中稀土元素的差异及影响因素,能够为进一步研究风化壳淋积型稀土矿中稀土元素提取方法提供参考依据。混合酸(五酸)消解能够提取出风化壳淋积型稀土矿样品中的全相稀土,可用于评价风化壳淋积型稀土矿中稀土总量。硝酸消解、硝酸和过氧化氢消解、盐酸和过氧化氢消解能够溶出离子相稀土,以及以氧化物、碳酸盐、磷酸盐等形式存在的稀土元素,对于硅酸盐结构中的稀土元素,不能完全溶出,因此,该方法适用于评价样品中以离子态、氧化物、碳酸盐、磷酸盐等形式存在稀土元素的含量。硫酸铵浸提则能提取出离子相稀土,可用于评价风化壳淋积型稀土矿中离子态稀土含量。
稀土元素的提取率,受稀土元素化学特性和赋存状态的影响较大。由于Sc3+的离子半径明显小于其他稀土元素,能以类质同象的形式进入多种造岩矿物的晶格中,从而导致硫酸铵浸提不能将Sc溶出。Ce元素与其他稀土元素不同的富集-分异特性,也使得其在硫酸铵浸提中提取率与其他轻稀土元素不一致。具有相近离子半径的稀土元素,在相同的前处理中往往提取效率也相近。
-
表 1 热泉水样品Li元素加标回收率测试结果
Table 1 Spiked recovery of Li in hot spring water
样品编号 Li含量测定值*
(mg/L)加标量
(mg/L)加标后Li含量
测定值(mg/L)加标回收率
(%)W1 0.40 0.50 0.90 101.0 W2 0.32 0.30 0.61 98.1 W3 0.07 0.10 0.15 81.6 W4 0.90 1.00 1.96 106.6 W5 1.85 1.50 3.59 115.9 W6 1.51 1.00 2.60 109.0 W7 0.18 0.20 0.39 102.6 W8 1.38 1.00 2.48 110.1 W9 0.32 0.30 0.61 97.6 W10 0.43 0.50 0.95 102.4 注:“*”表示结果为样品溶液中的Li含量测定值,没有乘以稀释倍数。 表 2 热泉水样品中Li含量的锂钾分析仪测定值与ICP-OES测定值对比
Table 2 Comparison of analytical results of Li content in hot spring samples by Li-K analyzer and ICP-OES
样品编号 Li含量
ICP-OES
测定值
(mg/L)锂钾分析仪(标准曲线法) 锂钾分析仪(标准加入法) Li含量测定值
(mg/L)与ICP-OES测定值
相对偏差(%)Li含量测定值
(mg/L)与ICP-OES测定值
相对偏差(%)W1 2.00 2.00 −0.20 1.96 −2.12 W2 1.64 1.59 −3.21 1.55 −5.41 W3 0.38 0.36 −4.04 0.35 −9.13 W4 4.45 4.48 0.78 4.42 −0.66 W5 8.40 9.26 10.3 9.16 9.03 W6 6.97 7.55 8.38 7.47 7.15 W7 0.94 0.92 −2.18 0.89 −5.01 W8 6.62 6.89 4.08 6.81 2.93 W9 1.56 1.60 2.78 1.57 0.54 W10 2.24 2.18 −2.78 2.14 −4.61 注:相对偏差=(锂钾分析仪测定值−ICP-OES测定值)/ICP-OES测定值×100%。 -
[1] 李建康, 刘喜方, 王登红. 中国锂矿成矿规律概要[J]. 地质学报, 2014, 88(12): 2269−2283. doi: 10.19762/j.cnki.dizhixuebao.2014.12.009 Li J K, Liu X F, Wang D H. The metallogenetic regularity of lithium deposit in China[J]. Acta Geologica Sinica, 2014, 88(12): 2269−2283. doi: 10.19762/j.cnki.dizhixuebao.2014.12.009
[2] 刘舒飞, 陈德稳, 李会谦. 中国锂资源产业现状及对策建议[J]. 资源与产业, 2016, 18(2): 12−15. doi: 10.13776/j.cnki.resourcesindustries.20160315.006 Liu S F, Chen D W, Li H Q. Situation and suggestions of China’s lithium resources industry[J]. Resources & Industries, 2016, 18(2): 12−15. doi: 10.13776/j.cnki.resourcesindustries.20160315.006
[3] 宋彭生, 项仁杰. 盐湖锂资源开发利用及对中国锂产业发展的建议[J]. 矿床地质, 2014, 33(5): 977−992. doi: 10.16111/j.0258-7106.2014.05.007 Song P S, Xiang R J. Utilization and exploitation of lithium resources in salt lakes and some suggestions concerning development of Li industries in China[J]. Mineral Deposits, 2014, 33(5): 977−992. doi: 10.16111/j.0258-7106.2014.05.007
[4] 王秋舒, 元春华, 许虹. 全球锂矿资源分布与潜力分析[J]. 中国矿业, 2015, 24(2): 10−17. doi: 10.3969/j.issn.1004-4051.2015.02.005 Wang Q S, Yuan C H, Xu H. Analysis of the global lithium resource distribution and potential[J]. China Mining Magazine, 2015, 24(2): 10−17. doi: 10.3969/j.issn.1004-4051.2015.02.005
[5] 蔡艳龙, 李建武. 全球锂资源开发利用形势分析及启示[J]. 地球学报, 2017, 38(1): 25−29. doi: 10.3975/cagsb.2017.01.05 Cai Y L, Li J W. The analysis and enlightenment of exploitation situation of global lithium resources[J]. Acta Geoscientica Sinica, 2017, 38(1): 25−29. doi: 10.3975/cagsb.2017.01.05
[6] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449−459. doi: 10.3975/cagsb.2017.04.02 Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 449−459. doi: 10.3975/cagsb.2017.04.02
[7] 郭唯明, 马圣钞, 孙艳, 等. 云南腾冲热泉中稀有金属矿化特征及其意义[J]. 地质学报, 2019, 93(6): 1321−1330. doi: 10.19762/j.cnki.dizhixuebao.2019088 Guo W M, Ma S C, Sun Y, et al. Characteristics and significance of rare metal mineralization in hot-springs of Tengchong area, Yunnan[J]. Acta Geologica Sinica, 2019, 93(6): 1321−1330. doi: 10.19762/j.cnki.dizhixuebao.2019088
[8] 李文, 孔祥军, 袁利娟, 等. 中国地热资源概况及开发利用建议[J]. 中国矿业, 2020, 29(S1): 22−26. doi: 10.12075/j.issn.1004-4051.2020.S1.038 Li W, Kong X J, Yuan L J, et al. General situation and suggestions of development and utilization of geothermal resources in China[J]. China Mining Magazine, 2020, 29(S1): 22−26. doi: 10.12075/j.issn.1004-4051.2020.S1.038
[9] 于沨, 于扬, 王登红, 等. 锂同位素地球化学在地热流体水岩反应中的应用——以川西现代富锂热泉研究为例[J]. 岩石学报, 2022, 38(2): 472−482. doi: 10.18654/1000-0569/2022.02.11 Yu F, Yu Y, Wang D H, et al. Application of Li isotope in geothermal fluid-rock interaction: A case study of modern Li-rich geothermal water in Western Sichuan[J]. Acta Petrologica Sinica, 2022, 38(2): 472−482. doi: 10.18654/1000-0569/2022.02.11
[10] 刘明亮, 曹耀武, 王敏黛, 等. 腾冲热海热泉水化学组分来源及其形成机制探讨[J]. 安全与环境工程, 2014, 21(6): 1−7. doi: 10.13578/j.cnki.issn.1671-1556.2014.06.001 Liu M L, Cao Y W, Wang M D, et al. Source of hydrochemical composition and formation mechanism of Rehai geothermal water in Tengchong[J]. Safety and Environmental Engineering, 2014, 21(6): 1−7. doi: 10.13578/j.cnki.issn.1671-1556.2014.06.001
[11] 刘虹, 张国平, 金志升, 等. 云南腾冲地区地热流体的地球化学特征[J]. 矿物学报, 2009, 29(4): 496−501. doi: 10.16461/j.cnki.1000-4734.2009.04.009 Liu H, Zhang G P, Jin Z S, et al. Geochemical characteristics of geothermal fluid in Tengchong area, Yunnan Province, China[J]. Acta Mineralogica Sinica, 2009, 29(4): 496−501. doi: 10.16461/j.cnki.1000-4734.2009.04.009
[12] 李永林, 冯源强, 周会东, 等. 样品采取和保存对地热水样水化学分析影响[J]. 广州化工, 2022, 50(2): 84−86. Li Y L, Feng Y Q, Zhou H D, et al. Effects of sampling technique and sample preservation on thermomineral water chemistry parameters[J]. Guangzhou Chemical Industry, 2022, 50(2): 84−86.
[13] 张辰凌, 贾娜, 刘佳, 等. 电感耦合等离子体光谱法研究测定地热水中锂[J]. 光谱学与光谱分析, 2021, 41(12): 3876−3880. doi: 10.3964/j.issn.1000-0593(2021)12-3876-05 Zhang C L, Jia N, Liu J, et al. Investigation of lithium analysis in geothermal water by inductively coupled plasma optical emission spectrometry[J]. Spectroscopy and Spectral Analysis, 2021, 41(12): 3876−3880. doi: 10.3964/j.issn.1000-0593(2021)12-3876-05
[14] 姜贞贞, 刘高令, 王祝, 等. 电感耦合等离子体质谱法测定高海拔地区地热水中的微量元素[J]. 岩矿测试, 2016, 35(5): 475−480. doi: 10.15898/j.cnki.11-2131/td.2016.05.005 Jiang Z Z, Liu G L, Wang Z, et al. Determination of trace elements in thermomineral waters of a high altitude area by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(5): 475−480. doi: 10.15898/j.cnki.11-2131/td.2016.05.005
[15] Taddia M, Modesti P, Albertazzi A. Determination of macro-constituents in lithium zirconate for tritium-breeding applications[J]. Journal of Nuclear Materials, 2005, 336: 173−176. doi: 10.1016/j.jnucmat.2004.09.011
[16] Mezei P, Cserfalvi T. Electrolyte cathode atmospheric glow discharges for direct solution analysis[J]. Applied Spectroscopy Reviews, 2007, 42(6): 573−604. doi: 10.1080/05704920701624451
[17] Webb M R, Andrade F J, Hieftje G M. Use of electrolyte cathode glow discharge (ELCAD) for the analysis of complex mixtures[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(7): 766−774. doi: 10.1039/b616989a
[18] Webb M R, Andrade F J, Hieftje G M. Compact glow discharge for the elemental analysis of aqueous samples[J]. Analytical Chemistry, 2007, 79(20): 7899−7905. doi: 10.1021/ac070789x
[19] Mottaleb M A, Woo Y A, Kim H J. Evaluation of open-air type electrolyte-as-cathode glow discharge-atomic emission spectrometry for determination of trace heavy metals in liquid samples[J]. Microchemical Journal, 2001, 69(3): 219−230. doi: 10.1016/S0026-265X(01)00087-X
[20] Shekhar R, Karunasagar D, Dash K, et al. Determination of mercury in hepatitis-B vaccine by electrolyte cathode glow discharge atomic emission spectrometry (ELCAD-AES)[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(6): 875−879. doi: 10.1039/b927010h
[21] Zhang Z, Wang Z, Li Q, et al. Determination of trace heavy metals in environmental and biological samples by solution cathode glow discharge-atomic emission spectrometry and addition of ionic surfactants for improved sensitivity[J]. Talanta, 2014, 119: 613−619. doi: 10.1016/j.talanta.2013.11.010
[22] Wang Z, Schwartz A J, Ray S J, et al. Determination of trace sodium, lithium, magnesium, and potassium impurities in colloidal silica by slurry introduction into an atmospheric-pressure solution-cathode glow discharge and atomic emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(2): 234−240. doi: 10.1039/c2ja30253e
[23] 郑培超, 王鸿梅, 李建权, 等. 大气压电解液阴极辉光放电发射光谱检测水体中的金属残留[J]. 光谱学与光谱分析, 2010, 30(7): 1948−1951. doi: 10.3964/j.issn.1000-0593(2010)07-1948-04 Zheng P C, Wang H M, Li J Q, et al. Detection of metal residue in aqueous solutions by electrolyte cathode atmospheric glow discharge emission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(7): 1948−1951. doi: 10.3964/j.issn.1000-0593(2010)07-1948-04
[24] 刘晓,杨啸涛,詹秀春,等. 基于CCD检测器的便携式液体阴极辉光放电光谱仪快速测定卤水中的锂[J]. 光谱学与光谱分析, 2017, 37(3): 971−977. doi: 10.3964/j.issn.1000-0593(2017)03-0971-07 Liu X, Yang X T, Zhan X C, et al. Rapid determination of lithium in brine by a portable solution cathode glow discharge based on charge coupled device detector[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 971−977. doi: 10.3964/j.issn.1000-0593(2017)03-0971-07
[25] Zu W C, Yang Y, Wang Y, et al. Rapid determination of indium in water samples using a portable solution cathode glow discharge-atomic emission spectrometer[J]. Microchemical Journal, 2018, 137: 266−271. doi: 10.1016/j.microc.2017.11.001
[26] 刘晓, 袁继海, 孙东阳, 等. 便携式锂钾分析仪在钾盐资源现场勘查中的应用[J]. 地球学报, 2021, 42(4): 573−578. doi: 10.3975/cagsb.2020.103001 Liu X, Yuan J H, Sun D Y, et al. On-site application of portable Li-K analyzer in the exploration of potash resources[J]. Acta Geoscientica Sinica, 2021, 42(4): 573−578. doi: 10.3975/cagsb.2020.103001
[27] 盖荣银, 汪正, 贺岩峰, 等. 液体阴极辉光放电原子发射光谱法分析硅酸钇镥中痕量杂质元素[J]. 分析化学, 2014, 42(11): 1617−1622. doi: 10.11895/j.issn.0253-3820.140636 Gai R Y, Wang Z, He Y F, et al. Determination of trace metals in lutetium-yttrium orthosilicate by solution-cathode glow discharge-atomic emission spectrometry[J]. Chinese Journal of Analytical Chemistry, 2014, 42(11): 1617−1622. doi: 10.11895/j.issn.0253-3820.140636
-
期刊类型引用(8)
1. 王鹏亮,刘双,张钰,钟顺清. 改性凹凸棒石对汞吸附及土壤汞钝化性能影响. 环境保护科学. 2025(01): 96-106 . 百度学术
2. 陶玲,米成成,王丽,王艺蓉,王彤玉,任珺. 凹凸棒石组配硫酸锌对土壤Cd的钝化效果及生态风险评价. 环境科学研究. 2022(01): 211-218 . 百度学术
3. 陶玲,仝云龙,余方可,杨万辉,王艺蓉,王丽,任珺. 碱改性凹凸棒石对土壤中镉化学形态及环境风险的影响. 岩矿测试. 2022(01): 109-119 . 本站查看
4. 练建军,邬洪艳,叶天然,孔巧平,徐晴,吴朝阳,陈波,牛司平. 改性凹凸棒负载硫化亚铁的制备及其对水中Mo(Ⅵ)的吸附机制. 环境科学. 2022(12): 5647-5656 . 百度学术
5. 端爱玲,杨树俊,韩张雄,张树雄,王思远,李敏. 矿区土壤重金属污染化学修复及强化方法研究进展. 矿产综合利用. 2022(06): 104-109 . 百度学术
6. 宿俊杰,刘永兵,王鹤立,郭威,王嘉良,王宏鹏,张原浩. 面向碱性农地镉污染土壤钝化的凹凸棒改性特征及效果研究. 岩矿测试. 2022(06): 1029-1039 . 本站查看
7. 胡佳晨. 凹凸棒石对重金属污染农田土壤钝化修复效果研究. 广东化工. 2021(11): 117-119 . 百度学术
8. 王卓群,邱少芬,孙瑞莲. 有机改性天然矿物钝化土壤重金属研究进展. 环境科学与技术. 2021(11): 101-108 . 百度学术
其他类型引用(12)